APS Journals Homepage Physical Review Online Archive Homepage Contact Information Online Journal Help Physical Review Online Archive Homepage Browse Available Volumes Search Members Subscription Information What's New in PROLA?
Volume: Page/Article:

Article Collection: View Collection  Help (Click on the Check Box to add an article.)

Phys. Rev. B 32, 6374–6384 (1985)

[Issue 10 – 15 November 1985 ]

Previous article | Next article | Issue 10 contents ]

Add to article collection View Page Images or PDF (1902 kB)


Grazing-incidence antireflection films. IV. Application to Mössbauer filtering of synchrotron radiation

J. P. Hannon and G. T. Trammell
Physics Department, Rice University, Houston, Texas 77251
M. Mueller, E. Gerdau, R. Rüffer, and H. Winkler
II. Institute für Experimentalphysik, Universitat D-2000 Hamburg 50, Federal Republic of Germany
Received 9 May 1984

In principle, a very bright, monochromatic 1-A-ring signal with [h-bar] Delta omega [approx equals] 10-810-6 eV can be filtered from white synchrotron radiation by multiple reflection at grazing incidence from mirrors coated with grazing-incidence antireflection (GIAR) films in which either the films or substrate contain resonant Mössbauer nuclei. Typically, nonresonant reflectivities can be suppressed to 10-410-3 while maintaining resonant reflectivities of [approx equals] 70%, with half-widths strongly broadened by ``enhancement'' to Gamma eff [approx equals] 20 Gamma . Effective filtering should be possible with two to four reflections, or alternatively, with one to two reflections plus time resolution.

By using different combinations of films and substrates, the response can be tailored to give narrow resonance widths Delta omega [approx equals] Gamma and corresponding delayed scattering times to optimize time filtering, or at the other extreme, to produce broad-width filters with [h-bar] Delta omega [approx equals] 100 Gamma which would be ideal for a high-resolution x-ray source. In the time response there will be ``quantum beats'' at frequencies Omega B due to the interference between the radiation emitted by different hyperfine oscillators, so the beat pattern is determined by the hyperfine splitting. Also, there are two interesting dynamical effectsfirst, due to the ``enchancement effect'' the coherent decay is speeded up relative to the natural lifetime for incoherent decay and internal conversion absorption; and secondly, there will be ``dynamical beats'' at frequencies omega B (superimposed on the quantum-beat spectrum) which is essentially an interference between the natural ``ringing'' of an oscillator at its resonsance frequency omega 0 and the collective response which rings with a median frequency omega 0+ omega B.

Finally, there is also a multiple-reflection delay to the response, which should be a useful aid for time filtering. This paper develops the general theory for resonant filtering of synchrotron radiation using GIAR films, examining in particular the resulting frequency spectrum, the integrated response, and the time response for resonant 57Fe mirrors coated with lambda /4 GIAR films.

©1985 The American Physical Society

URL: http://link.aps.org/abstract/PRB/v32/p6374
DOI: 10.1103/PhysRevB.32.6374
PACS: 78.65.-s, 76.80.+y, 42.78.Hk


Add to article collection View Page Images or PDF (1902 kB)

Previous article | Next article | Issue 10 contents ]


References

(Reference links marked with dot may require a separate subscription.)
  1. J. P. Hannon, G. T. Trammell, M. Mueller, E. Gerdau, H. Winkler and R. Rüffer, preceding paper Phys. Rev. B 32, 6363 (1985) (paper III).
  2. S. L. Ruby, J. Phys. (Paris) 35, C6-209 (1974).
  3. R. L. Mössbauer, Proceedings of the International Union of Crystallography, Madrid, April, 1974 (unpublished), p. 463.
  4. G. T. Trammell, J. P. Hannon, S. L. Ruby, Paul Flinn, R. L. Mössbauer, and F. Parak, in .ul 2 Workshop on New Directions in Mössbauer Spectroscopy (Argonne, 1977), edited by G. J. Perlow (AIP, New York, 1978), pp. 46–49 (AIP Conf. Proc. No. 38).
  5. G. T. Trammell and J. P. Hannon, Phys. Rev. B 18, 165 (1978).
  6. R. L. Cohen, G. L. Miller and K. W. West, Phys. Rev. Lett. 41, 381 (1978) [SPIRES].
  7. G. N. Kulipanov and A. N. Skrinskii, Usp. Fiz. Nauk 122, 369 (1977) [Sov. Phys.—Usp. 20, 559 (1977)] [dot SPIN].
  8. A. N. Artern'ev, G. N. Kulipanov, and E. P. Stepanov, Institute of Nuclear Physics (Novosibirsk), Report No. 77-106 (1977) (unpublished).
  9. Yu. M. Kagan, A. M. Afanas'ev and V. G. Kohn, Phys. Lett. 68A, 339 (1978); J. Phys. C 12, 615 (1979) [dot INSPEC].
  10. A. I. Chechin, N. V. Andronova, M. V. Zelepurkhin, A. N. Artem'ev and E. P. Stepanov, Zh. Eksp. Teor. Fiz. Pis'ma Red 37, 531 (1983) [JETP Lett. 37, 633 (1983)] [dot SPIN].
  11. E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C. P. Klages and J. P. Hannon, Phys. Rev. Lett. 54, 835 (1985).
  12. J. P. Hannon, G. T. Trammell, M. Mueller, E. Gerdau, H. Winkler and R. Rüffer, Phys. Rev. Lett. 43, 636 (1979).
  13. J. P. Hannon, Nguyen Hung, G. T. Trammell, E. Gerdau, M. Mueller, R. Rüffer and H. Winkler, Phys. Rev. B 32, 5068 (1985); and, , 5081 (1985) (papers I and II).
  14. J. P. Hannon, J. T. Hutton, G. T. Trammell, E. Gerdau, R. Rüffer (unpublished) (paper VI).
  15. J. P. Hannon, J. T. Hutton, N. H. Hung, G. T. Trammell, E. Gerdau, and R. Rüffer (unpublished) (paper V).
  16. G. T. Trammell, in Chemical Effects on Nuclear Transformations (International Atomic Energy Agency, Vienna, 1961), Vol. I, p. 75.
  17. J. P. Hannon and G. T. Trammell, Phys. Rev. 169, 315 (1968).
  18. J. P. Hannon, N. J. Carron and G. T. Trammell, Phys. Rev. B 9, 2791 (1974); and, , 2810 (1974).


Add to article collection View Page Images or PDF (1902 kB)

[Show Articles Citing This One] Requires Subscription

Previous article | Next article | Issue 10 contents ]








[ APS   |   APS Journals   |   PROLA Homepage   |   Browse   |   Search ]