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The static structure factor for a finite two-dimensional classical harmonic lattice is
evaluated, including finite-size effects from both lattice sums and the lower % cutoff
on the phonon spectrum. The numerical results show that the power-law behavior of
S(@ expected in an infinite two-dimensional crystal should be already quite apparent

in crystallites of size L~ 10005000 A.

PACS numbers: 68.30.+z, 67.70.+n, 68.70.+w

Because of the absence of long-range order, the
static structure factor S(q) of a two-dimensional
(2D) harmonic crystal exhibits' power-law singu-
larities at the 2D reciprocal-lattice vectors {I—f}
instead of the usual 6-function Bragg peaks found
in 3D lattices. In the present Letter, we present
a detailed study of S(q) for a finite 2D lattice of
area L2, We show that, typically, the power-law
behavior??® characteristic of the infinite lattice is
already quite apparent when L is in the range |

=g

S(q)=N"13 exp[-iq+(R-R’)]exp[- 30%d; R, R")],

R R
where
od; R, R")=({d- [U(R) - T(R)]}?. (2)

Here R is a Bravais lattice vector of our 2D crys-
tal. In principal at least, it is straightforward to
evaluate S(q) for a 2D harmonic lattice of finite
size (say a square for side L). Imposing fixed
boundary conditions, for example, one can work
out 0%d; R, R’) by expanding the lattice displace-
ments J(ﬁ) in terms of the appropriate normal
modes of the finite 2D harmonic crystal. How-
ever, this kind of calculation is fairly involved
and is not really appropriate in our study, which
is to find the qualitative effect of finite size on
the characteristic Landau-Peierls singularities
exhibited by S(i) in an infinite crystal for d’close
to a 2D reciprocal lattice vector K. We are not
interested in the effect of the boundaries insofar
as they modify the bulk phonon dispersion rela-
tions or give rise to surface modes. In a word,
we are interested in finite-size effects but not
surface effects. Thus, in evaluating o2 in (2), we
shall use the usual infinite-crystal result® but
shall exclude phonons with a wavelength exceeding

the size of the system,® i.e.,
- > AT rk - R-R’
o @ B )= 2T [0 g Lok R=RD
Tq /L k

(3)
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1000-5000 A, Secondly, our numerical results
indicate the inadequacy of the usual Warren line-
shape approximation even for monolayers of size
L~200-500 A. Our results are directly applica-
ble to the analysis of diffraction studies on physi-
sorbed, incommensurate monolayers on graphite
substrates, a subject of great current interest
(see, for example, Refs. 4-6).

The static structure factor of a 2D harmonic
crystal is given by the standard expression’

(1)

|where Jy(x) is the zero-order Bessel function.

This only includes the interesting contribution
from phonons Zw <k 7 and hence the cutoff is
k,~(m/a)T/Tp), where Ty is the 2D Debye tem-
perature. We have defined a characteristic tem-
perature':

1 q¢21/1 1
BT, 41 55(5?*::2) (4)
where v, (v,) is the longitudinal (transverse)
sound velocity and p is the areal density of our
2D crystal. This result follows from continuum
elasticity theory of a 2D isotropic crystal® and
hence is appropriate for the triangular lattices
one generally finds on graphite substrates. One
may evaluate (3) by using an asymptotic expansion
of the k& integral to give

0, X(d; B) ~(47/ T )n[kyuR(TR/L) 0™ D] | (5)

where 1=0.5exp(0.577)=0.89. This is not valid
for R smaller than a few lattice constants.

The lower k cutoff in (3) will clearly damp out
the effect of the long-range fluctuations'® which
gives rise to the anomalous behavior of 2D crys-
tals.3*!' We recall that the mean-square displace-
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ment in the same approximation is®
2w(q) =((d- Q(R)]?)=(27/T)In(k,L/7),  (6)

which can be quite small even if L is large. While
Imry and Gunther? included the lower 2 cutoff in
computing the Debye-Waller factor exp(—- 2W),
they used the infinite- L approximation

For a finite crystal, the fwo lattice sums in (1)
must be treated carefully. A change of variable
to R — R’ must take into account that the limits
are also altered. If d is close to some given re-
ciprocal lattice vector K of the 2D lattice, one
can use the continuum approximation for the two
lattice sums. We have been able to reduce the re-
sulting fourfold integral to a much simpler two-

2( . — > -
0=4a; R) =(47/ T Jnlko ). (7) fold integral, For the specific case when ¢ ~K is
| along the x axis, we obtain
- L L ) .
S(d)=(4/1% [, dR, |, dR,(L - R, YL - R,)cos(q, - K,)R, min{l, exp[ - 30 A& B}, (8)

where R=(R,‘2+Ry2)1/z. Since we are assuming
that q is very close to I_f, it is an excellent ap-
proximation to use o LZ(I_{ R) in the integrand of
(8). Further details will be given elsewhere!? but
we note that use has been made of the identity

L ax [ ayF(y) = [ an L - 9)F(). (9)

It is to be emphasized that (8) does not involve
any one-phonon expansion and that it includes fi-
nite-size effects in both real space (R) and mo-
mentum space (k). The former turns out to be
most important and is not adequately treated in
the previous literature? on this topic.

It is straightforward to numerically evaluate
S(q) in (8) and see how the static structure fac-
tor depends on the lattice size L, for a given val-
ue of T/T,. Before turning to a discussion of
some examples, it is convenient to relate the
Jancovici characteristic temperature® defined in
(4) to the Kosterlitz-Thouless expression for the
melting temperature T, due to the unbinding of
dislocation pairs in a 2D lattice (see Ref. 9). For
a 2D triangular lattice, the melting temperature
is related to the sound velocities according to

1 4m1 < 1 1 )
== ———t+t—3 10
kT, a°p v,z-vt2+vt2 ’ (10)
where a is the lattice spacing. Evaluating the
Jancovici temperature at the minimum reciprocal

lattice vector of a triangular lattice (K,=4mn/
V3a), one finds with a little algebra that

TKO/TM= 6/[1 - (”t/vz)‘l]-

This indicates that T Ky 1S always somewhat great-
er than 6 times the Kosterlitz-Thouless melting
temperature 7,. Most diffraction studies of
physisorbed monolayers on graphite* concentrate
on the first Bragg peak arising from I—fo and for
temperatures fairly close to melting,!! we con-
clude that a realistic value of 7/T, to take in the
evaluation of (8) is <0.1.

(11)
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In Figs. 1-3, we plot S(q) for d very close to
K, i.e., g—K<a"!. We have somewhat arbitrar-
ily taken a=3 A. Figure 1 might be viewed as
appropriate to ZYX exfoliated graphite, where
crystal planes of size L ~500 Aare expected un-
der optimum conditions.?® The curve marked
“without £ cutoff” means that we have evaluated

T .
Tk

L=5004
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FIG. 1. The static structure factor S@ =50y ,q =K,)
as a function o_f; the wave vector & Ela -K|= 4, — K.,
for g close to K, the reciprocal lattice vector of the
2D lattice. In all the figures, the 2D lattice is taken
to be a square of side L and the lattice spacing is a
=3 A. All results are based on (8), with the Jancovici
temperature Tk defined in (4).
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FIG. 2. S(a) vs wave vector k= ﬁ—ﬁl for three dif-
ferent monolayer sizes L. See caption of Fig. 1.

(8) using (7) instead of (5). As can be seen, the
effect of the finite %2 cutoff in (3) is already quite
small for lattices of this size.'* In Fig. 1, for
comparison, we have also plotted the often-used
Warren (or Gaussian) line-shape approxima-
ti0n15,16

-

S(q ~K)
=Nexp[- 2W(K)]exp[- (¢ -K)*L?*/4n],  (12)

where W(K) is given by (6). While it is clearly
inadequate for 7/7T,~0.1, we note that (12) is a
very good approximation at low temperatures
(T<T,), where T/T, can be in the range 10 "%~
1073,

In Fig. 2, we give results for L=1000 A and
10000 A as well as for an infinite lattice where
S(q) ~(g —K)~2*"k, with 1x=2T/Ty These curves
show in a dramatic way how S(f:’f ) for a 2D lattice
develops the characteristic Landau-Peierls sin-
gular behavior as we let the size L increase. As
one might have expected, the oscillations have a
wave vector Ak ~2n/L and thus become increas-
ingly rapid as L —«, From an experimental point
of view, the curves in Fig. 2 are especially sig-
nificant since they clearly indicate that, for 7/

1.0

0.8

0.6

s(q)[x10°]

0.4

0.2

9 0.005 0.010 5015

(q—K)[°A—l]

FIG. 3. S@) vs wave vector k= |§— K| for three dif-
ferent monolayer sizes L in the case T /Ty =0.5. A
physical realization of this case would involve a higher-
order diffraction peak, corresponding to a smaller
value of Ty than that given by (11).

T,~0.1, 2D crystals of size ~1000-5000 A al-
ready give rise to a static structure factor which
is quite close to an infinite crystal. By way of
contrast, Fig. 1 shows that such power-law Bragg
singularities are not really present in lattices of
size L =500 A. Unfortunately most experimental
data available are for crystallites in the range
L~100-500 A, Our present results show that one
should not try to analyze such data in terms of
the infinite-lattice power-law singularities.!®

In Fig. 3, we give some results for 7/7,=0.5.
Here again, one sees that by the time one reaches
L~5000 A, S(q) is very similar (in an average
sense) to the L= case.

In summary, we have given the first satisfac-
tory calculation of the effect of finite size on the
power-law singularities exhibited by 2D crystals.
The key step in our study lies in our finding a new
two-dimensional integral representation for the
four-dimensional integral in (1). Our expres-
sion'? in (8) is very easy to evaluate by computer
and should be of considerable use in analysis of
diffraction data from physisorbed incommensu-
rate monolayers (such as CD,, Xe, and Kr). Our
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results for S(qd) in Figs. 2 and 3 show how the
power-law behavior grows out of the characteris-
tic diffraction pattern of a finite lattice. The pic-
ture which emerges is quite different from that

of a single Bragg peak of width 1/L combined with
a power-law singularity, such as suggested by
previous workers.??

The most important implication of our results
is that one can expect to see the Landau-Peierls
power-law behavior characteristic of the infinite
lattice S(&) as soon as one is dealing with crys-
tallites of size L~5000 A. This seems especially
significant in view of the recent report!'? of crys-
tallites of just such a size in a new form of ex-
foliated graphite.
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The thermodynamics of the Kondo model are formulated in terms of coupled integral
equations and various properties, in particular the scaling property, are deduced. Then,
with definition of the various scales parametrizing various asymptotic regions of the
H-T plane, universal numbers are calculated and, in particular, Wilson’s result is ob-

tained analytically.

PACS numbers: 75.20.Hr

Recently it was shown' that the Kondo Hamil-
tonian? can be exactly diagonalized with use of
Bethe-Ansatz techniques. It is our purpose in
this note to extend the formulation to nonzero

temperatures, showing how the phenomenon of
scaling arises in the model. Then, by means of
explicit perturbative and nonperturbative calcula-
tions, we shall determine the dimensional scales
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