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The static structure factor S(IZ) for a two-dimensional harmonic lattice of finite size L
is expressed analytically. Although one consequence of finite size is the absence of very-
long-wavelength phonons, we find that the explicit introduction of a phonon cutoff has
very little effect. The structure factor shows an universal behavior for all L, differing
only by scale factors: S(K) always has the infinite-size form far from a Bragg point,
but is always rounded off close to the Bragg point. Implications for the interpretation

of experimental results are discussed.

PACS numbers: 63.90.+t, 05.50.+q

It is by now well known that for an infinite two-
dimensional (2D) crystal, long-range positional
order is destroyed by long-wavelength phonons!*?
so that the Bragg peaks in S(K) are replaced by
power-law singularities of the form S(K) ~1/g%"
(where g = II_f— C‘:I and G is a vector of the 2D
reciprocal lattice). On the other hand, the effect
~ of any finite size is to remove these phonons, so
that the above form is expected to be modified.

In general, only qualitative arguments have been
given? as to the form taken by S(K) for finite 2D
crystals. The matter is of considerable impor-
tance, since the real world is necessarily finite
sized. Diffraction experiments on incommensur-
ate monolayers on graphite® (crystallite sizes
200-2000 A) and on liquid crystals* show line
shapes with substantial “tails” that are very plau-
sibly fitted with power-law structure factors. The
question which arises is to what extent finite-size
effects make such an analysis invalid, and force
a different interpretation of these “tails.” A

lack of understanding of finite-size effects on the
observed line shape also precludes a reliable de-
termination of correlation lengths across the
melting transition.

In a recent Letter,® Weling and Griffin (WG)
have shown that S(K) for a square domain of side
L can be reduced to a two-dimensional integral;
they then evaluated this integral numerically to
find structure factors that are increasingly oscil-
latory as L increases. They claim that “power-
law singularities are not really present in lattices
of size L =500 f&, ” whereas ‘“one can expect to
see power-law behavior characteristic of the in-
finite lattice as soon as one is dealing with crys-
tallites of size L ~5000 A.” They also state that
“the picture which emerges is quite different
from that of a single Bragg peak of width 1/L
combined with a power-law singularity.”

We have determined that the structure factors
computed by WG are oscillatory because they
postulate the domains to be perfect squares of
specified orientation. Using a more physical def-
inition, we find that the integrals can be per-
formed analytically and the 2D finite-size struc-
ture factor written in terms of known functions.
We reach conclusions regarding the behavior of
S(K), and regarding the importance of finite size
in experimental situations, that are different
from those obtained by WG.

We start from the definition

S(R) =N 2 expl - iR« (R, - R )1 fa(R, - R
1.

il
where
ff(’(ﬁi— §1)5<6‘Xp[— if{"(ﬁi—ﬁj)]>;

u7 being the atomic displacement at site 7. For a
two-dimensional Debye lattice, it has been shown?
that fz(R) can be written as an integral over pho-
nons:

fe(Ry=exp{-nz [ Paxx (1= I (xR}, (1)

where ngz «K® The Debye cutoff is at g~ na ™,
where a is the lattice spacing. Finite size mani-
fests itself in two ways: first, through a low-fre-
quency phonon cutoff at ¢, =#/L; and second, in
that the sums over 7 and j only extend over a
finite system. In the vicinity of a reciprocal-lat-
tice vector (ff z@) we neglect the K dependence of
f# (R) and write ng=nz=7n. Fourier transforming
f(R) in terms of momentum vector ﬁ, we make
the “Warren” approximation® for the finite lattice
sums:

> exp[ - i(K+p) (K, - R,)]

1,J

~N? exp| — LXK - G +p)?/4n].
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This result is not in fact obtained if the lattice
sums are performed over any single domain of
specified size and shape; rather, the approxima-
tion takes into account the “smearing” due to
superposition of scattering from many different
domains. Fourier transforming back to a real-
space integral gives us

S(K)=(27N/L?) [,” dR J(gR)f (R) exp(— nR?/L?),
(2)

where ¢ = |K -G|. The one-dimensional integral
in Eq. (2) is analogous to the two-dimensional
integral given by WG, except for the radial Gaus-
sian pair distribution which simulates the effect
of a distribution of domain sizes and shapes. The
use of a single “sharp-edged” model domain
leads to structure factors that oscillate even in
the long-range-order case f(R)=const (this can
be seen, for example, in the expression of WG,
which is easily integrated in this limit). Experi-
mentally, however, such oscillations are never
seen; rather, diffraction line shapes from nu-
merous systems follow the familiar Gaussian
(“Warren”) form S(K) ccexp(—q2L?/4n). (Experi-
mental values of L, such as those quoted by WG,
are determined from fits to this structure factor.)
Indeed, this Gaussian line shape emerges from
our expression [Eq. (2)] when f(R) =const.
Integrals such as Eq. (2) (or the integral given
by WG) can be numerically computed only for
very small g because the integrands become very
oscillatory as g increases. On the other hand,
the existence of an analytic solution depends on ,
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FIG. 1. f(R) as defined in Eq. (1), showing the effect
of a low-frequency phonon cutoff at g, =r/L for L =200,
600, and * A. We have chosen 11=0.2.

the form of f(R). In Fig. 1, we have plotted f(R)
for L=200 A, 600 A, and infinity. If ¢,=0,

F(R)=(2/vqpR)",

where y=1.7810724.... Thus f(R—«)=0 and
there is no long-range order. [In this case Eq.
(2) is fully integrable—see Eq. (4) below.] If the
cutoff at ¢, =7/L is included, f(R-)=(a/L)"
and there is some long-range order; it is often
thought that the situation is thereby substantially
changed. However, the Gaussian in Eq. (2) (rep-
resenting the finiteness of the lattice sums) cuts
off large R values and makes the long-range be-
havior inconsequential; and since the effect of the
cutoff on f(R) is small for R= L (see Fig. 1), we
anticipate that it should in fact have little effect
on the structure factor. To make this quantitative
we expand Eq. (1) as follows (note that ¢, is
small):

f(R)=exp{-n),"P dxx"[1 - Jy(xR)]} exp{nfy Zdxx"[1 - J(xR)]}

=(2/yq,R) ™1+ r/foq"dxx"[l —Jy(xR)] + -+
—W2R2/4L2)s ...jl

=(2/quR)"[1 -7 i‘ ¢

L Tas(se T

Retaining only terms of order 7nis an excellent approximation for R< L. When g =0, only the first
term remains; the second term is the effect of the cutoff. The integral in Eq.(2) can now be performed

analytically”:

T(k+1-17/2)

S(K) =So[ B(1-n/2%1; —¢2L*/4m) = n 33

Z 2R(EIT(1 -

where & is the degenerate hyperbolic function
(“Kummer’s function”)

N (b +s)I(c) z°
¥ G2 = L [y ers) sT

and S,=(L/a)* "(2a/y V7 )"I{1 - /2) for a square
lattice. For a triangular lattice there is a trivial

(- %)kq’(’*”-g; L - 28], (3)

I constant factor of order unity. All sums involved

in S(K) converge rapidly. Clearly, when =0,
the expected Gaussian form S(K) =N exp(—-¢2L?/
47) is obtained. Moreover, from the known as-
ymptotic form of Kummer’s function, we find
that at large g the term of highest order in ¢q is
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independent of L and has the familiar power-law
form:

S(K)=4n(ym) " "I(1 - n/2)(qa) 2*"/T(n/2). (4)

In Fig. 2, we have plotted S(K) for a triangular
lattice with a=4.2 A, L=200 A, and n=0.2, both
with and without the last term in Eq. (3). As an-
ticipated, we find that the cutoff has no qualitative
effect and only a minor quantitative effect. We
therefore neglect the cutoff, and Eq. (3) reduces

to
3

- r<1 '3) (7 \/27;14)(1 -2 _qu > (5)

In other words, (a/L)* ”S(I_f) is an universal func-
tion of gL, irrespective of the value of L. This
universal function is plotted in Fig. 3 for a tri-
angular lattice and shows that the structure fac-
tors are always qualitatively similiar, differing
quantitatively only by L-dependent scale factors.
At large enough ¢ (g2 10/L) the structure factors
always look like the infinite-size structure fac-
tor,® while finite-size effects round off S(K) closer
to the Bragg point. From Fig. 3 it can be seen
that for small ¢, S(K) contains a central peak of
width ~L™, as has been qualitatively predicted.?
This is to be identified with the Bragg peak of a
finite crystal, since a low-frequency phonon cut-
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FIG. 2. S(I_E) for K near a reciprocal-lattice vector of
a triangular lattice with @ =4.2 10\, for a finite coherence
length L =200 A, calculated with and without a low-
frequency cutoff in the phonon spectrum. We have cho-
sen 1=0.2.
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off exists in such crystals and the Debye-Waller
factor f(«~) is nonzero. However, in writing Eq.
(5) we have ignored the cutoff [ strictly speaking,
Eq. (5) applies to the situation where a finite area
of an infinite crystal is illuminated by the radia-
tion beam]; thus the persistence of Bragg scat-
tering may seem surprising. The fact is, how-
ever, that even if the phonons with A> L are al-
lowed to remain, they are unimportant when the
scattering is over distances smaller than L.
Thus, when the lattice sums are over a finite sys-
tem, for all practical purposes a cutoff exists
whether it has been explicitly introduced or not.’
Looked at in another way, in a system that ex-
tends only up to R~ L, the relevant question is
not whether f(«) is nonzero but whether f(L) is
nonzero. Landau-Peierls systems are unique in
that f(L) can be appreciable (“intermediate-range
order”) even if f()=0 (no long-range order).
Because f(L)x L™", S(G)« L*™" [for a normal
2D Bragg peak, S(G)« L?]. Since 7 is a function
of temperature, the height of the “central peak”
relative to the power-law “tail” changes with
temperature in a size-dependent way.? However,
it is easily shown that the finite-size S(K) [Eq.
(5)] has approximately the same integrated in-
tensity as the infinite-size S(K) [Eq. (4)] between
q=0and ¢ ~10/L. [In other words finite-size ef-
fects change the shape of S(K) but not the area
under it.] Thus when the resolution function is
wider than the central peak, one cannot discern
finite-size effects in the observed line shape.
This is the situation that applies in the typical x-
ray or neutron diffraction experiment [resolution
~0.01 A™! full width at half maximum (FWHM) |
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FIG. 3. “Universal curve” showing the behavior of
the structure factor for any finite L. We have chosen
1=0.2 and a triangular lattice.
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with use of ZYX graphite (if Z~500 A, FWHM of
central peak ~0.004 A™!). We have explicitly ver-
ified that for diffraction from incommensurate
methane on ZYX graphite,? fits that use Eq. (5)
cannot be distinguished from fits that use Eq. (4).
(Details will be published elsewhere.) While im-
proved resolution (such as is available when syn-
chrotron radiation radiation is used) might make
finite-size effects observable for the same value
of L, our example does serve to illustrate that
available surface coherence lengths are less re-
strictive than sometimes imagined.
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