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Abstract

Reflectometric methods like polarised neutron reflectometry (PNR) and synchrotron Mössbauer reflectometry (SMR) are capable of

investigating the plane-perpendicular and lateral magnetic structure of multilayers (MLs). Previously, a variety of domain formation and

transformation phenomena was found and systematically studied in a Fe/Cr ML of strong antiferromagnetic coupling by PNR and

SMR. Growth of the primary domains on passing the bulk-spin-flop transition was established. The domains were found to revert to

their native state only in a field considerably higher than the apparent saturation field, a phenomenon referred to as the supersaturation

domain memory effect (SDME). We present a comparative PNR study of two antiferromagnetically coupled Fe/Cr MLs with different

magnetisation curves. We show that the distribution of the layer–layer coupling rather than the magnetic structure of the Cr spacer layer

is responsible for the SDME.
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1. Introduction

Antiferromagnetically (AF) coupled metallic multilayers
(MLs) [1] have received much attention due to their
relevance in fundamental science and technology alike. The
archetype Fe/Cr system shows oscillatory interlayer
coupling [2,3] and giant magnetoresistance (GMR) [4].
GMR is applied in broad range of everyday devices, and
the domain- size-dependent resistance noise may limit those
applications [5]. To improve the performance of devices
based on nanomagnetic systems the first step could be the
tailoring of the domain structure and investigation of the
domain transformation dynamics in AF-coupled MLs.
Recently, domain transformation processes were shown in
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an AF-coupled Fe/Cr ML [6]. It was shown that primary
domains were formed when the magnetic field was
decreased just below saturation. The primary domains
became coarser on passing the bulk-spin-flop (BSF)
transition [6], a phenomenon related to the fourfold in-
plane anisotropy of the epitaxial ML [7–9]. The BSF
transition is the rotation of the layer magnetisations from
the field parallel/antiparallel alignment to the perpendicu-
lar-to-field alignment when the magnetic field is increased
from zero.
The coarsened domains return to the primary state

on saturating the sample. For one of the Fe/Cr MLs,
the saturation field obtained from the domain size
recovery was much higher than the saturation field
observed by other magnetisation measurements (SQUID,
VSM). The possible microscopic origin of this phenomen-
on, which we shall call the ‘supersaturation domain
memory effect’ (SDME) henceforth, is investigated in this
paper.
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2. Experimental details

The epitaxial Fe/Cr MLs A and B were prepared by
MBE and sputtering, respectively. Sample A had 20
repetitions of the 57Fe(2.6 nm)/Cr(1.3 nm) bilayer (starting
with iron) grown on MgO(0 0 1) single crystal at 450K [8].
The last Cr layer served as capping layer. Sample B was
grown on MgO(0 0 1) substrate and 11.1 nm of Cr buffer
deposited at 673K. The ½Feð3:6 nmÞ=Crð1:1 nmÞ�22=
Crð3:9 nmÞ structure was grown at 383K [10].

The S-like shape of the magnetisation curve of sample A
(Fig. 1a) was characteristic for a broad distribution of the
coupling strength and/or for a strong biquadratic coupling.
Conversely, sample B showed a well-defined saturation
field in both easy and hard directions [10] of the fourfold
in-plane anisotropy (Fig. 1b). All measurements described
in this article were performed at RT.

SDME on sample A was investigated in detail by
polarised neutron reflectometry (PNR) and synchrotron
Mössbauer reflectometry (SMR) [11]. We investigated the
details of domain coarsening and possible SDME on
sample B by time-of-flight PNR at the REMUR reflect-
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Fig. 1. Hysteresis loops of samples (a) and (b) along an easy axis of

magnetic anisotropy.
ometer at the IBR-2 pulsed reactor of the JINR in Dubna
using a position-sensitive detector [12]. The domain
transformations were traced by momentum-space measure-
ments around the structurally forbidden 1/2 Bragg peak
(the first AF peak). All the measurements discussed here
were made along the easy axis of magnetic anisotropy. The
saturation field of sample A was ð0:85� 0:1ÞT, while the
supersaturation field (the field needed for erasing the
domain memory) was ð1:3� 0:05ÞT [11]. In case of sample
B the saturation field was 0.42 T [10].
3. Results and discussion

The prerequisite of SDME observation is the coarsening
of the domains. Sample B also showed the domain
coarsening previously observed on sample A, albeit at a
different level. However, the external field at which the
original small-domain state is restored was found to be
different for the two samples. In contrast to sample A
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Fig. 2. Off-specular spin-flip scattering at the first AF peak of sample B

measured in remanence after the application of different maximal fields (a:

0.38T, b: 0.42T, c: 0.46T).
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where the application of an unexpectedly high field above
apparent saturation was necessary, for sample B the small-
domain state was restored exactly at the saturation field
derived from the magnetisation loop.

In the following, we describe measurements on sample B.
To start the magnetic history from a well-defined state an
above saturation field of 1.36 T was applied and then
released to remanence. To transform the domains to the
coarsened state the BSF transition was used. First the
sample was rotated by 90� in zero field, then a field of
52mT was applied, i.e. a field definitely inducing the BSF
transition [13]. The procedure was repeated another three
times to get back to the initial orientation of the sample.
We monitored the potential manifestation of the SDME by
measuring the off-specular scattering at the first AF peak in
remanence after the application of step-by-step increasing
maximal field values (Fig. 2). The orientation of the layer
magnetisations compared to the polarisation of the
incident neutrons was such that only spin-flip scattering
was present at the AF position. The experimental data
showed no difference up to the saturation field of 0.42 T
(see Fig. 2), while after applying 0.46 T, i.e. a field only
slightly above saturation, the well-pronounced specular
peak was missing in remanence, a fact indicative of the
domain state recovery.

4. Conclusions

One might speculate that the SDME observed on sample
A was connected to the memory of the exchange spring of
the Cr spacer. However, in view of the similarity of the Cr
layer thicknesses of both samples, the presented experi-
ments strongly indicate that the SDME of sample A was
caused by the broad distribution of the saturation field [14].
Indeed, on releasing the applied magnetic field from a value
slightly above the apparent saturation field, a tiny fraction
of the still not saturated regions could act as seeds for the
nucleation of large domains. Lacking a comparably broad
distribution of the interlayer coupling, no SDME was
manifested on sample B.
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[9] F. Tanczikó, et al., Nucl. Instr. and Meth. (B) 226 (2004) 461.

[10] J. Meersschaut, et al., Phys. Rev. (B) 73 (2006) 144428.
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