Phys. Rev. B 73, 144428 (2006)
(7 pages)
Hard-axis magnetization behavior and the surface spin-flop transition in antiferromagnetic Fe/Cr(100) superlattices
J. Meersschaut,1,2 C. L'abbé,1 F. M. Almeida,1 J. S. Jiang,2 J. Pearson,2 U. Welp,2 M. Gierlings,3 H. Maletta,3 and S. D. Bader2
1Instituut voor Kern- en Stralingsfysica and INPAC, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
2Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Hahn-Meitner Institut, Glienicker Strasse 100, 14109 Berlin, Germany
(Received 12 December 2005; published 25 April 2006)
We investigated the hard-axis magnetization behavior of a biaxial antiferromagnetic Fe/Cr(100) superlattice. We discovered a surface spin-flop transition that separates the field-induced nonsymmetric state at low fields and the symmetric twisted state at higher fields. We studied the transition via realistic model calculations using the Landau-Lifshitz equations of motion, via stray field observations using magneto-optic indicator film imaging, and via polarized-neutron reflectivity measurements.
©2006 The American Physical Society
View ISI's Web of Science data for this article: [Source Abstract
|Related Articles
]
References
For more information on reference linking in this journal, see Reference Sections and Reference Linking in Abstracts.
- D. L. Mills and W. M. Saslow, Phys. Rev. 171, 488 (1968).
- F. Keffer and H. Chow, Phys. Rev. Lett. 31, 1061 (1973).
- R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, Phys. Rev. Lett. 72, 920 (1994).
- N. Papanicolaou, J. Phys.: Condens. Matter 10, L131 (1998).
- C. Micheletti, R. B. Griffiths, and J. M. Yeomans, Phys. Rev. B 59, 6239 (1999).
- S. G. E. teVelthuis, J. S. Jiang, S. D. Bader, and G. P. Felcher, Phys. Rev. Lett. 89, 127203 (2002).
- T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998).
- A. Hoffmann, Phys. Rev. Lett. 93, 097203 (2004).
- P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).
- S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).
- B. Dieny, J. P. Gavigan, and J. P. Rebouillat, J. Phys.: Condens. Matter 2, 159 (1990).
- R. O'Handley, Modern Magnetic Materials: Principles and Applications (John Wiley & Sons, New York, 2000).
- M. Grimsditch, S. Kumar, and E. E. Fullerton, Phys. Rev. B 54, 3385 (1996).
- V. K. Vlasko-Vlasov, G. W. Crabtree, U. Welp, and V. I. Nikitenko, in Physics and Materials Science of Vortex States, Flux Pinning and Dynamics, edited by R. Kossowsky et al., Vol. 356 of NATO Advanced Study Institute, Ser. E (Kluwer Academic, Dordrecht, 1999), p. 205.
- L. H. Bennett, R. D. McMichael, L. J. Swartzendruber, S. Hua, D. S. Lashmore, A. J. Shapiro, V. S. Gornakov, L. M. Dedukh, and V. I. Nikitenko, Appl. Phys. Lett. 66, 888 (1995).
- V. F. Sears, Neutron News 3(3), 29 (1992), http://www.ncnr.nist.gov/resources/n-lengths/.
- A. Schreyer, J. F. Anker, T. Zeidler, H. Zabel, C. F. Majkrzak, M. Schäfer, and P. Grünberg, Europhys. Lett. 32, 595 (1995). [Inspec] [ISI]
- J. F. Anker and G. P. Felcher, J. Magn. Magn. Mater. 200, 741 (1999).
- V. Lauter-Pasyuk, H. J. Lauter, B. P. Toperverg, L. Romashev, and V. Ustinov, Phys. Rev. Lett. 89, 167203 (2002).
- F. Ott, T.-D. Doan, P. Humbert, and C. Fermon, Computer code SIMULREFLEC, Laboratoire Léon Brillouin CEA/CNRS, 2001, http://www-llb.cea.fr / prism / programs / simulreflec / simulreflec.html