Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:  Password:    
 Athens/Institution Login 
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information. 
Results List Previous  2 of 2  No Next Document
Surface Science Reports
Volume 61, Issue 3 , May 2006, Pages 129-199

This Document
SummaryPlus
Full Text + Links
PDF (6983 K)
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation

doi:10.1016/j.surfrep.2006.02.001    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2006 Elsevier Ltd All rights reserved.

Magnetic structure of films: Dependence on anisotropy and atomic morphology

P.J. JensenCorresponding Author Contact Information, E-mail The Corresponding Author and K.H. Bennemann

Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

Available online 31 March 2006.


Abstract

In this review a number of magnetic properties of different thin film systems are investigated as functions of the temperature and the atomic morphology. Special attention is paid to determine the influence of the collective magnetic excitations and the noncollinear magnetic structure. At finite temperatures these problems are studied within a Heisenberg model by application of a mean field approximation as well as by a many-body Green’s function theory.

First, the magnetization profiles and the magnetic ordering (Curie-) temperatures are calculated for different magnetic systems. In particular, single ferromagnetic (FM) films, coupled magnetic bilayers with two FM films, and trilayers consisting of two FM films separated by a nonmagnetic spacer layer are studied. Here the role of the magnetic fluctuations are highlighted, which are particularly important for these low-dimensional magnets. For the different systems under consideration we show that the strongly varying magnetic properties caused already by weak interlayer couplings can be explained only by taking into account the collective magnetic excitations. Hence, the effect of these excitations for two-dimensional magnets can be studied explicitly. The calculated results are partly compared with measurements.

Moreover, the thin-film magnetic structure of materials with a helical bulk magnetization is investigated. We show that due to the breaking of nearest- and next-nearest-neighbor bonds in the surface region the helical magnetic structure of, e.g., a thin Ho film becomes significantly disturbed. Even a FM phase may result in a decreasing film thickness or an increasing temperature. The possibility of a paramagnetic layer within an ordered magnetic structure is pointed out.

In addition, the spin reorientation transition of thin FM films is studied as a function of the temperature, the film thickness, and an external magnetic field. This phenomenon results from competing effective anisotropy contributions with a different dependence on the temperature, for example. Special attention is paid to investigate the influence of magnetic noncollinearities caused by an atomic roughness or a variation of the film thickness. We show that these noncollinearities result in a much broader magnetic reorientation as compared to the one of a smooth film. This feature can be considered by effective higher-order anisotropies for an otherwise collinear thin film magnetization. Approximate expressions for these quantities are presented. We show that for a strongly inhomogeneous system the magnetization profile during SRT exhibits a smooth behavior, hence is not characterized by magnetic domains separated by comparatively thin domain walls.

The magnetic reversal as induced by a transversal magnetic field is studied for the simple cases of FM and antiferromagnetic (AFM) monolayers. For the latter case we show that with increasing strength of the transversal field the magnetization component perpendicular to that field exhibits a maximum. This unexpected property is explained by the presence of quantum fluctuations which are particularly important for antiferromagnets.

Finally, the magnetic structure of coupled FM–AFM layers is studied. The interlayer coupling induces a net magnetic binding energy and thus results in an effective interface anisotropy of the FM layer. A noncollinear magnetization is induced in the AFM layers and possibly also in the FM layers close to the interface. We show that the magnetic structure of the interface layers and the resulting magnetic ordering temperature(s) depend sensitively on the lattice symmetry. The importance of the collective magnetic excitations for these coupled FM–AFM systems is also pointed out. The resulting interface anisotropy may enhance the total anisotropy of the FM subsystem. Alternatively, if the interface anisotropy competes with the intrinsic FM anisotropy, a magnetic reorientation of the FM film can take place with an increasing temperature and varying FM film thickness.

Keywords: Magnetic structure; Ordering temperature; Magnetic reorientation; Noncollinear magnetization; Ferro–antiferromagnetic interfaces


Article Outline

1. Introduction
2. Magnetization and ordering temperature of thin films
2.1. General remarks and experimental results
2.2. Single thin films
Diversion: Two layers
2.3. Antiferromagnetic thin films
2.4. Helical magnetic structure: Thin Ho films
2.5. Coupled magnetic systems
2.6. Magnetic trilayers
3. Spin reorientation transition
3.1. Experiments on the spin reorientation transition
3.2. Stripe-domain phase
3.3. Collinear magnetic reorientation
3.4. Temperature-driven magnetic reorientation
3.5. In-plane magnetic reorientation
3.6. Sixth-order uniaxial anisotropy
3.7. Field-induced spin reversal by GFT
Ferromagnetic monolayer
Anisotropic susceptibility of a FM monolayer
Antiferromagnetic monolayer
4. Noncollinear magnetic reorientation
4.1. Higher-order anisotropy coefficients of an inhomogeneous thin film
4.2. Vertically inhomogeneous thin films
4.3. Laterally inhomogeneous thin films
5. Ferromagnetic–antiferromagnetic interfaces
5.1. Magnetic reordering near ferromagnetic–antiferromagnetic interfaces
5.2. Spin reorientation of a ferromagnetic layer on an antiferromagnetic surface
6. Conclusions and outlook
Acknowledgements
Appendix A. The Heisenberg Hamiltonian
A.1. General remarks
A.2. Isotropic exchange interaction
A.3. Anisotropic interactions
A.3.1. Magnetocrystalline anisotropy
A.3.2. Exchange anisotropy
A.3.3. Magnetic dipole interaction
A.4. The full Hamiltonian
A.5. Rotation of spin operators
Appendix B. Magnetic anisotropies in thin films
B.1. General remarks
B.2. Explicit expressions
B.3. Temperature dependence of the anisotropies
Appendix C. Two-time Green’s functions
C.1. General definitions
C.2. Green’s functions for spin systems
C.3. Example: S=1/2
C.4. Subsystem structure
C.5. Mean field approximation
Appendix D. Effective fourth-order anisotropy
D.1. Two subsystems
D.2. Generalization to several subsystems
References



Enlarge Image
(43K)
Fig. 1. Sketch of the investigated layered magnetic systems. A nonmagnetic substrate may carry (a) a single magnetic film with thickness N, or (b) a magnetic bilayer consisting of two coupled films with different magnetic materials and with film thicknesses N1 and N2. These two systems can be covered by a nonmagnetic cap layer. Moreover, multilayer film systems have been prepared (c), consisting of alternating magnetic and nonmagnetic layers.

Enlarge Image
(39K)
Fig. 2. Measured Kerr intensity of a Co/Cu(001) thin film as a function of the relative temperature T/TC at an applied field H=0 (solid circles) and Click to view the MathML source (open circles). The Curie temperature of the single Co layer is measured to be Click to view the MathML source. The insets show two hysteresis loops below and above TC[25].

Enlarge Image
(60K)
Fig. 3. (Left) Real part of the measured ac-susceptibility during growth of a Co/Au(111) thin film at room temperature. The ac-modulation field is directed parallel (H=, solid circles) and perpendicular (Hperpendicular, open circles) to the film plane [37]. (Right) Real and imaginary parts of the measured ac-susceptibility of a Fe/W(110) film with Click to view the MathML source as a function of the temperature [23].

Enlarge Image
(41K)
Fig. 4. Measured relative Curie temperatures Click to view the MathML source as a function of the film thickness N for different thin film systems as indicated [47].

Enlarge Image
(36K)
Fig. 5. Reduced Curie temperature Click to view the MathML source of Gd(111)/W(110) thin films as a function of the film thickness N. The squares and the triangles denote TC(N) of a smooth and of a rough Gd film, respectively. The full line is obtained from the scaling law, Eq. (1)[30].

Enlarge Image
(37K)
Fig. 6. Measured Kerr ellipticities at saturation, extrapolated to Click to view the MathML source (top), and Curie temperatures (bottom) of fcc-like Fe/Cu(001) thin films as a function of the Fe coverage. I, II, and III denote different magnetic phases. The Fe magnetization is directed perpendicular to the film plane below 11 ML, and in-plane above 11 ML [17].

Enlarge Image
(37K)
Fig. 7. Measured relative Curie temperatures Click to view the MathML source for Ni(111) (solid diamonds, open triangles), Ni(001) (solid triangles and circles, open diamonds and squares), and Gd(111) (open circles) thin films as a function of the film thickness d/d0 in units of a normalized length (d0=1 Angstrom capital A, ring for Ni and d0=2 Angstrom capital A, ring for Gd). The solid lines are obtained from the scaling law, Eq. (1)[36].

Enlarge Image
(37K)
Fig. 8. Curie temperatureTC(N) of thin homogeneous ferromagnetic films as a function of the thickness N for different symmetries of the film structure: sc(001) (q1=1, Click to view the MathML source), fcc(001) (q1=4, Click to view the MathML source), and fcc(111) (q1=3, Click to view the MathML source) film faces. Here, Click to view the MathML source and q1 are the coordination numbers in the bulk magnet and between nearest-neighbor layers in the film, respectively. The results are obtained from a mean field approximation. The dotted line refers to the average coordination number estimate, Eq. (3), of the fcc (001) film. TC(N) is given in units of the bulk Curie temperature Click to view the MathML source, and N in units of atomic (mono-) layers (ML).

Enlarge Image
(34K)
Fig. 9. Curie temperature TC(N) of fcc(001) homogeneous ferromagnetic films as a function of the thickness N. The results are calculated from a mean field approximation (MFA, dashed line), and from a Green’s function theory (GFT, solid line). The dotted line is obtained from the average coordination number estimate, Eq. (3). For the other notations we refer to Fig. 8.

Enlarge Image
(57K)
Fig. 10. Sublayer magnetization components Click to view the MathML source and Click to view the MathML source as functions of the temperature T for ferromagnetic films with thicknesses N and with S=1 spins as calculated within GFT [72].

Enlarge Image
(43K)
Fig. 11. Layer-dependent magnetizations mi(T) as a function of the distance i from the surface. Different temperatures T below and above the bulk Curie temperature Click to view the MathML source are assumed as indicated. The surface layer carries an exchange interaction Click to view the MathML source much stronger than Click to view the MathML source of the bulk. The lower graph shows the results of the upper one using a semi-logarithmic plot.

Enlarge Image
(40K)
Fig. 12. Curie temperature TC(N) of inhomogeneous fcc(001) ferromagnetic films as a function of the thickness N. Different values of the exchange coupling Click to view the MathML source of both surface layers with respect to the exchange Click to view the MathML source of the bulk magnet are assumed as indicated. The results are obtained within MFA. For the other notations we refer to Fig. 8.

Enlarge Image
(19K)
Fig. 13. Sketch of sc(001) and fcc(001) AFM films. Depicted are the interlayer bonds of a given spin in a layer to the spins in the neighboring layers for both symmetries.

Enlarge Image
(46K)
Fig. 14. Magnetic structure peak (00τ) of a Ho thin film with 11 atomic layers measured by resonant magnetic scattering at various temperatures as indicated. The data are recorded at a photon energy hν=1353.2 eV [40].

Enlarge Image
(40K)
Fig. 15. Measured TN(d) of Ho films as a function of the film thickness d (solid squares). The dashed and solid lines represent fits according to Eqs. (1) and (8), respectively. Inset: comparison to thin-film data for Gd (open circles, [30]) [40].

Enlarge Image
(75K)
Fig. 16. Rotation angles Click to view the MathML source between neighboring layers as a function of the temperature T for thin Ho films. Different film thicknesses are applied: (a) N=5, (b) N=6, and (c) N=7. The ‘five-constant model’ by Nicklow et al. is used [99], yielding Click to view the MathML source and Click to view the MathML source. The corresponding magnetic structures are indicated by the sketches. (b) Click to view the MathML source for TTN(6). (c) ‘o’ denotes a disordered (paramagnetic) layer.

Enlarge Image
(40K)
Fig. 17. Layer-dependent magnetizations mi(T) as a function of the temperature T for a Ho film with N=7 layers, corresponding to the system shown in Fig. 16(c). At TN(7) the 4th layer becomes paramagnetic, whereas the other layers stay magnetically ordered up to TC(7).

Enlarge Image
(34K)
Fig. 18. Calculated critical temperatures TC(N) and TN(N) as functions of the thickness N of thin Ho films. Here the ‘six-constant model’ by Bohr et al. is used [100], yielding Click to view the MathML source. The solid and dashed lines are calculated from Eqs. (1) and (8), respectively, using λ=1.72 and Click to view the MathML source. ‘PM’ denotes the paramagnetic phase. The sketch depicts the ‘block-spin’ phase for Click to view the MathML source located between TN(N) and TC(N)[40].

Enlarge Image
(36K)
Fig. 19. Profile of the rotation angle Click to view the MathML source of Ho thin films with different thicknesses and for T=0. The structure is calculated within the J1J2-model, using J2/J1=−0.29 which yields Click to view the MathML source, i.e., Click to view the MathML source. The range of the disturbed helical phase near the surfaces is indicated by N0[40].

Enlarge Image
(32K)
Fig. 20. Range N0 of the disturbed helical structure near the surfaces (open circles) as a function of the bulk period Click to view the MathML source at T=0, calculated within the J1J2 model. The solid line is obtained from a linear fit to the data points [40].

Enlarge Image
(66K)
Fig. 21. Layer-resolved magnetizations mi(T) as functions of the temperature T of a ferromagnetic bilayer consisting of two different FM materials with three layers each and intralayer exchange couplings J11 (layers 1–3 as indicated) and J22 (layers 4–6), assuming J22/J11=0.5. The two constituents are coupled by the intralayer exchange coupling Click to view the MathML source. S=1 spins have been used. (a) GFT calculation, (b) MFA calculation.

Enlarge Image
(60K)
Fig. 22. Layer-resolved magnetizations m2(T) and m5(T) of atomic layers 2 and 5 corresponding to the bilayer system as depicted in Fig. 21. A decoupled (Click to view the MathML source) and a coupled (Click to view the MathML source) bilayer is assumed, where TC,1 and TC,2 refer to the bare Curie temperatures of the decoupled system, and TC to the ordering temperature of the coupled bilayer. (a) GFT calculation, (b) MFA calculation.

Enlarge Image
(25K)
Fig. 23. Sketch of a magnetic trilayer system. Two ferromagnetic films FM1 and FM2 with thicknesses Click to view the MathML source and Click to view the MathML source are separated by a nonmagnetic spacer layer NM with thickness Click to view the MathML source. The two magnetic films are coupled by the interlayer exchange Click to view the MathML source across the spacer.

Enlarge Image
(31K)
Fig. 24. Temperature shift of the magnetization curve as a function of the Cu spacer thickness Click to view the MathML source for various Co/Cu/Ni/Cu(001) trilayers, which is proportional to the strength of the interlayer coupling Click to view the MathML source[141]. The solid line is obtained from calculations of Click to view the MathML source[153].

Enlarge Image
(62K)
Fig. 25. Coupling field Hj at the maximum strengths of the AFM coupling in Cu/Co/Cu/Co /Cu(001) trilayers as a function of the thickness of the Cu cap layer. The dashed lines denote the phase differences between the oscillations. The solid lines are obtained from calculations [146].

Enlarge Image
(44K)
Fig. 26. Sublayer magnetizations of the Ni (circles) and the Co (squares) films of a Cu/Ni/Cu(001) system (open symbols) and a coupled Co/Cu/Ni/Cu(001) trilayer (solid symbols) as probed by XMCD. The influence of the interlayer coupling Click to view the MathML source results in a shift of the Ni magnetization curve estimated by Click to view the MathML source[142].

Enlarge Image
(33K)
Fig. 27. Phase diagram of the magnetic phases of (a) Cu/Co/Cu(2ML)/Ni/Cu(100) and (b) Cu/Co/Fe(5ML)/Ni/Cu(100) systems at ambient temperatures. The triangles and squares are the Co and Ni critical film thicknesses, respectively, at which the paramagnetic-to-ferromagnetic order transitions occur. The Co and Ni films are both ordered (IV), or both disordered (I). Phase (II) refers to an ordered Ni and a disordered Co film, and phase (III) vice versa. The solid lines are guides to the eye [140].

Enlarge Image
(24K)
Fig. 28. Sketch of a magnetic trilayer consisting of two ferromagnetic films, FM1 and FM2, and a nonmagnetic spacer layer NM, illustrating the general problem when investigating such a system. The decreasing thickness Click to view the MathML source of FM1 reduces its Curie temperature TC,1. In contrast, the decreasing thickness Click to view the MathML source of the spacer layer increases the magnetic order in FM1, since the strength of the interlayer exchange Click to view the MathML source behaves approximately as Click to view the MathML source[171].

Enlarge Image
(37K)
Fig. 29. Ni magnetization of a Co/Cu/Ni/Cu(001) trilayer system as a function of the temperature T. The measurements have been obtained by XMCD [142]. For the calculations within GFT we have assumed integer thicknesses next to the real ones, and exchange interactions as indicated [172].

Enlarge Image
(37K)
Fig. 30. Relative temperature shift Click to view the MathML source of a Co/Cu/Ni trilayer as a function of the Ni film thickness Click to view the MathML source. The results are obtained by applying the Green’s function method, assuming two small values of the interlayer exchange Click to view the MathML source as indicated. The dotted line refers to MFA results, assuming a much larger value Click to view the MathML source.

Enlarge Image
(54K)
Fig. 31. Calculated phase diagram of the Co/Cu/Ni trilayer system as a function of the exchange coupling Click to view the MathML source of the Co film for the Co/Cu/Ni trilayer system. Here, Click to view the MathML source and Click to view the MathML source are the bare Curie temperatures of the decoupled trilayer, and Click to view the MathML source the one of the coupled case with Click to view the MathML source. The ‘quasi-critical temperatures’ Click to view the MathML source and Click to view the MathML source are obtained from the inflection points of the Co and Ni magnetization curves. In addition we have assumed Click to view the MathML source, Click to view the MathML source, and Click to view the MathML source[142].

Enlarge Image
(39K)
Fig. 32. Susceptibility χ1(T) of the layer with the lower bare Curie temperature TC,1 of a coupled ferromagnetic trilayer for different interlayer couplings Click to view the MathML source. For Click to view the MathML source the common singularity of the susceptibility at TC,1 is obtained, which is decreased by the factor 50 for a better visibility. A maximum (resonance) of χ1(T) is obtained for Click to view the MathML source, and a singularity at the ordering temperature TC of the trilayer close to the lower bare Curie temperature TC,2 of the other FM layer.

Enlarge Image
(46K)
Fig. 33. Measured susceptibility χ(T) as a function of the temperature T for (a) a single Ni film and (b) a Co/Cu/Ni/Cu(001) trilayer with thicknesses as indicated. The two FM layers are separated by a comparably thick Cu spacer, yielding a very weak interlayer coupling Click to view the MathML source. For thinner spacer layers and correspondingly stronger Click to view the MathML source no signal of χ(T) near Click to view the MathML source could be detected. For the dashed line in (b) an additional magnetic field of about 147 A/m has been applied [139].

Enlarge Image
(34K)
Fig. 34. Temperature difference Click to view the MathML source of the maximum of the susceptibility (full line) and the inflection of the magnetization curve m1(T) with respect to the lower bare Curie temperature TC,1 of the FM1 layer in a trilayer system. For the other notations we refer to Fig. 32.

Enlarge Image
(18K)
Fig. 35. Sketch of the polar spin reorientation transition between a perpendicular (left) and an in-plane (right) orientation of the thin film magnetization. This SRT can be induced by the temperature T, by the film thickness N, or by an applied magnetic field Click to view the MathML source, for example. θ is the angle between the magnetization and the film normal.

Enlarge Image
(52K)
Fig. 36. Polar and in-plane (longitudinal) hysteresis loops of W/Co/Au(111) thin films for different thicknesses of the Co film at Click to view the MathML source[208].

Enlarge Image
(49K)
Fig. 37. Thickness-induced magnetic reorientation of the Fe/Ag(001) (top) and the Fe/Cu(001) (bottom) thin film systems at Click to view the MathML source. The diamonds represent the perpendicular, and the open circles the in-plane magnetization component. The solid lines indicate the magnetizations of single-domain films [193].

Enlarge Image
(48K)
Fig. 38. Perpendicular and in-plane components of the remanent magnetizations of Fe/Ag(001) thin films as functions of the temperature T for Click to view the MathML source (left) and as functions of the film thickness N for Click to view the MathML source (right) [203].

Enlarge Image
(71K)
Fig. 39. Evolution of the domain pattern with increasing temperature for a Fe/Cu(001) thin film with thickness N=5.3 grown at Click to view the MathML source. Shown are the perpendicular (upper panel) and in-plane (lower panel) magnetization components [194].

Enlarge Image
(38K)
Fig. 40. Perpendicular magnetization component of a Fe/Gd(111) thin film as a function of increasing and decreasing temperature, indicating hysteresis effects of the magnetization [188].

Enlarge Image
(109K)
Fig. 41. Magnetic phase diagram of (a) W/Co/Au(111) and (b) Au/Co/Au(111) thin film systems in the temperature–thickness plane. The polarization values P=±1 correspond to the perpendicular (bright areas) and the in-plane magnetization (dark areas) [208].

Enlarge Image
(38K)
Fig. 42. Magnetic phase diagram of the Ni/Cu(001) thin film system in the temperature–thickness plane. The lines separate the paramagnetic, the perpendicular, and the in-plane magnetization phases. In the hatched area a canted magnetization is observed [242].

Enlarge Image
(19K)
Fig. 43. Sketch of in-plane magnetic reorientations between different in-plane directions of a rectangular (110)- (left), a square (001)- (middle), and a triangular (111)-film face (right).

Enlarge Image
(122K)
Fig. 44. Magnetic domain structure in wedge-shaped Co/Au(111) thin films before (left) and after (right) annealing. The black and white areas indicate domains with a perpendicular magnetization, the grey areas refer to an in-plane magnetization. The scanning area is Click to view the MathML source, tc denotes the reorientation thickness [42].

Enlarge Image
(62K)
Fig. 45. Domain wall density vs. film thickness of a Co/Au(001) thin film before (left) and after (right) annealing, referring to the films shown in Fig. 44. The hatched area denotes the thickness ranges where the SRT takes place. The solid line in the right panel results from a theoretical analysis [263], using the indicated anisotropy parameters [42].

Enlarge Image
(89K)
Fig. 46. Kerr images of a Fe/Cu(001) wedge grown at Click to view the MathML source for different oxygen coverages. The black and white contrasts refer to perpendicularly magnetized domains, and the grey areas to an in-plane magnetization [200].

Enlarge Image
(43K)
Fig. 47. Effective spin magnetic moments of (a) clean and (b) CO-covered Co/Pd(111) thin films at 200 K as a function of the Co thickness. Circles and solid lines correspond to the perpendicular components, and the triangles and dashed lines to the in-plane components of the magnetization. The hatched areas indicate the regions of a perpendicular magnetization [222].

Enlarge Image
(60K)
Fig. 48. Reversible H2-induced variation of the polar magnetization of a Ni/Cu(001) thin film with Click to view the MathML source at Click to view the MathML source. Depicted are (a) the polar MOKE signal, (b) the H2 partial pressure, and (c) the H2 coverage on the Ni surface. Note the time delay between the H2 partial pressure and the polar MOKE signal, indicating the dynamics of the H2-adsorption process. The dashed lines show the locations of the SRT [217].

Enlarge Image
(20K)
Fig. 49. Sketch of the magnetic stripe domain phase of a thin film. Perpendicularly magnetized domains with alternating magnetic directions are separated by Bloch-type domain walls. The directions of the in-plane magnetization component inside the domain walls also alternates.

Enlarge Image
(20K)
Fig. 50. Phase diagram in the Click to view the MathML source-plane for the polar orientation of a thin film. The ‘perpendicular’ and the ‘in-plane’ phases are characterized by the polar angles θ=0 and θ=π/2, and the ‘canted’ phase by 0<θ<π/2. In the ‘coexistence’ region the perpendicular and the in-plane phase both refer to energy minima, and are separated by an energy barrier.

Enlarge Image
(53K)
Fig. 51. Behavior of the polar angle θ(K2) as a function of the second-order magnetic anisotropy K2 during a polar SRT for a negative (top) and a positive (bottom) fourth-order anisotropy K4 (left panel). In the right panel the free energy F(θ) as a function of θ is depicted for K4<0 and K4>0. The numbers correspond to the locations indicated in the left panel. In the case K4<0 a continuous SRT results, the canted magnetization 0<θ<π/2 refers to a minimum of the energy. For K4>0 a discontinuous SRT is present, the perpendicular and the in-plane magnetic phases are separated by an energy barrier, resulting in a hysteretic behavior. The dotted line in the lower left panel denotes the angle of the energy maximum, i.e., the unstable solution.

Enlarge Image
(57K)
Fig. 52. The polar angle θ(T), the internal energy E(T), the entropy S(T), the free energy F(T), and the specific heat cH(T) during a continuous polar SRT as a function of the relative temperature T/TC in units of the Curie temperature TC. The dashed and dotted lines refer to unstable perpendicular and in-plane magnetizations. The thin vertical lines indicate the range of the canted magnetic phase.

Enlarge Image
(33K)
Fig. 53. Anisotropy flow in the Click to view the MathML source phase diagram (top), corresponding to the polar angle θ (bottom) during a continuous polar SRT. Two different values for the anisotropy parameter K4 are assumed. The arrows indicate the direction of an increasing temperature.

Enlarge Image
(39K)
Fig. 54. Effective dipole-coupling-induced quartic in-plane magnetic anisotropy Click to view the MathML source for a square monolayer as a function of the temperature T, calculated within a mean field approach for spin cluster sizes Click to view the MathML source. Two different magnetic field strengths B are considered. The dot–dashed line shows Click to view the MathML source for B=0 and N=4 by considering non-diagonal matrix elements of the Hamiltonian. For comparison, also the effective single-ion quartic anisotropy Click to view the MathML source resulting from the spin–orbit interaction is shown (dotted line). The field energies and anisotropies are given in units of the demagnetizing energy. For details we refer to [320].

Enlarge Image
(26K)
Fig. 55. Magnetic phase diagram of the polar SRT of a ferromagnetic thin film in the K2K4 plane as obtained from Eq. (15). The second-, fourth-, and sixth-order uniaxial anisotropies Kl are considered, with K6>0. Besides the perpendicular and the in-plane magnetizations, phase I denotes the region with a canted magnetization and a smooth variation of the polar angle θ. In phase II the perpendicular magnetization coexists with the in-plane, and in phase III with the canted magnetization. The latter phase is located in the triangle-shaped region ranging between K2=0 and the bullet. At the dashed line, referring to K4=−K2K6, the perpendicular and in-plane phases have the same energy.

Enlarge Image
(60K)
Fig. 56. Anisotropy energy E(θ) as a function of the polar angle θ. (a) E(θ) obtained from Eq. (15) for three different values of K4 located in different regions of the phase diagram as shown in Fig. 55; a perpendicular magnetization (K4/K6=−1.1, solid line); a coexisting region (phase III, K4/K6=−1.4, dashed line); and a canted magnetization (phase I, K4/K6=−1.8, dashed–dotted line). We have assumed K2/K6=0.5 and K6>0. (b) Electronic band structure calculations for different thicknesses m of the Pd/Com/Pd(111) ferromagnetic thin film system [321].

Enlarge Image
(41K)
Fig. 57. Magnetization components mz(T,Bx) and mx(T,Bx) of a ferromagnetic monolayer during magnetic reversal as a function of the transversal magnetic field Bx. Different temperatures T in units of the exchange interaction J are assumed as indicated. An exchange anisotropy Dz/J=0.01 along the z-direction is present, yielding the Curie temperature TC/J=0.472. The calculations are performed within GFT.

Enlarge Image
(32K)
Fig. 58. (a) Magnetization modulus m(Bx) and (b) expectation value left angle bracketSSright-pointing angle bracket(Bx) of a FM monolayer as a function of the transversal magnetic field Bx for T=0. For the other notations we refer to Fig. 57.

Enlarge Image
(39K)
Fig. 59. Inverse susceptibilities Click to view the MathML source and Click to view the MathML source in SI units measured along the easy and hard in-plane directions of a vicinal Co/Cu(1 1 17) thin film as a function of the temperature T. In addition the solid line shows Click to view the MathML source calculated within GFT using the exchange coupling Click to view the MathML source and the anisotropy Click to view the MathML source. For details we refer to [324].

Enlarge Image
(38K)
Fig. 60. Calculated inverse longitudinal and transversal susceptibilities Click to view the MathML source and Click to view the MathML source along the easy and hard directions of a FM (001) monolayer as a function of the temperature T in the paramagnetic regime (solid lines). An exchange anisotropy Dz/J=0.05 is considered, yielding the Curie temperature TC/J=0.63 as calculated from GFT. For comparison the inverse susceptibilities are also shown as obtained from MFA (dashed lines) [324].

Enlarge Image
(15K)
Fig. 61. Sketch of the angles θ1 and θ2 of the two sublattices of an AFM monolayer in the presence of an exchange anisotropy along the z-direction and a transversal magnetic field parallel to the x-axis.

Enlarge Image
(60K)
Fig. 62. (a) Magnetization modulus m(T,Bx) and (b) equilibrium angle θ0(T,Bx) of an AFM monolayer as functions of the transversal field Bx for different temperatures T below and above the Néel temperature TN. The temperatures and interactions are given in units of the isotropic exchange J. We have assumed a spin quantum number S=1/2 and an exchange anisotropy Dz/J=0.01. The calculations are performed within GFT.

Enlarge Image
(37K)
Fig. 63. Staggered magnetization component |mz(T,Bx)| along the easy axis as a function of the transversal field Bx for different temperatures T. For the other notations we refer to Fig. 62.

Enlarge Image
(40K)
Fig. 64. Staggered magnetization component |mz(T,Bx)| along the easy axis as a function of the temperature T for different Bx as indicated. For the other notations we refer to Fig. 62.

Enlarge Image
(31K)
Fig. 65. Reorientation temperature TR(Bx) as a function of the transversal magnetic field Bx for an AFM and a FM monolayer. In both cases the exchange anisotropy is chosen to be Dz/J=0.01. TC and TN refer to the critical temperatures of the FM and the AFM, respectively. For a better comparison Bx for the FM monolayer is multiplied by the factor 200.

Enlarge Image
(18K)
Fig. 66. Sketch of the phase diagram in the K2K4 plane. Along the dashed line a continuous polar SRT between the perpendicular and the in-plane magnetization occurs via a canted phase (shaded region). The width of the transition is indicated by Click to view the MathML source.

Enlarge Image
(20K)
Fig. 67. (a) Sketch of an inhomogeneous thin film system with a second-order surface anisotropy K2s and a ‘volume’ anisotropy K2v in the film interior layers. N is the film thickness. (b) Sketch of the equilibrium polar angles θi dependent on the layer i.

Enlarge Image
(34K)
Fig. 68. Effective fourth-order anisotropy Click to view the MathML source resulting from the noncollinear magnetization of a smooth thin film as a function of the film thickness N. The surface anisotropy K2s is varied by such an amount that a polar SRT occurs. Different assumptions for the volume anisotropy K2v have been used as indicated. The anisotropies and the strength w of the dipole coupling are given in units of the exchange interaction J.

Enlarge Image
(56K)
Fig. 69. Linear (left) and double-logarithmic (right) plots of the effective fourth-order anisotropy Click to view the MathML source of a smooth thin film as a function of the strength w of the dipole coupling for two film thicknesses N as indicated. The volume anisotropy is neglected here (K2v=0). The anisotropies are given in units of the exchange interaction J.

Enlarge Image
(19K)
Fig. 70. Sketch of the laterally structured thin film. The film normal defines the z-direction, N is the film thickness, and L the periodicity along the x-direction. The periodicity along the y-direction is equal to unity. The magnetization Click to view the MathML source of lattice site i varies in the yz-plane, its direction is given by the polar angle θi.

Enlarge Image
(41K)
Fig. 71. (Left) Sketch of the thin film structure with ‘one-atom-steps’. The sites indicated by solid circles carry the surface anisotropy K2s, and the open circles the volume anisotropy K2v. (Right) Corresponding effective fourth-order anisotropy Click to view the MathML source as a function of the nominal film thickness N ranging from 2 ML to 4 ML. The anisotropies and the strength w of the dipole coupling are given in units of the isotropic exchange J. The lateral periodicity is chosen to be L/a0=31, and K2v=0.

Enlarge Image
(41K)
Fig. 72. (Left) Sketch of the thin film structure with ‘two-atom steps’. (Right) Corresponding effective fourth-order anisotropy Click to view the MathML source as a function of the nominal film thickness N. Caused by the growth mode the film thickness ranges from 1 ML to 3 ML, and from 2 ML to 4 ML. For the other notations we refer to Fig. 71.

Enlarge Image
(35K)
Fig. 73. Effective fourth-order anisotropy Click to view the MathML source as a function of the lateral periodicity L for different nominal film thicknesses N as indicated. The assumed growth mode refers to one-atom steps. For the other notations we refer to Fig. 71.

Enlarge Image
(53K)
Fig. 74. (a) Average polar angle Click to view the MathML source during SRT as a function of the surface anisotropy K2s. The averaging procedure is performed over all spins in the unit cell (solid line) and over the surface spins carrying the surface anisotropy K2s (dashed line). The nominal film thickness is Click to view the MathML source, and the lateral periodicity L/a0=101. One-atom steps are present. The arrow indicates the SRT in the case of an infinite exchange J, where the total second-order anisotropy Click to view the MathML source changes sign. The dotted line represents the simple cos2θ function for a collinear rotation with second- and fourth-order anisotropies, cf. Eq. (13). (b) Corresponding standard deviation σθ(K2s) of the polar angle θ. For the other notations we refer to Fig. 71.

Enlarge Image
(60K)
Fig. 75. Angular profile θ(x) as a function of the lateral (x-) position and for different film layers. The nominal film thickness is Click to view the MathML source. K2s is chosen in such a way that the average polar angle is Click to view the MathML source, moreover, K2v=0. (a) θ(x) for different lateral periodicities L/a0=31 (dotted line), L/a0=71 (dashed line), and L/a0=101 (solid line). The strength of the dipole coupling is put equal to w/J=2×10−3. (b) θ(x) for L/a0=101 and for w/J=2×10−3 (solid line), w/J=1×10−2 (dashed line), and w/J=2×10−2 (dotted line). For the other notations we refer to Fig. 71.

Enlarge Image
(39K)
Fig. 76. Angular profile θ(x) for Click to view the MathML source and L/a0=101. Here the dipole interaction is neglected (w=0). Instead, different volume anisotropies are assumed, namely K2v/J=−0.02 (solid line), K2v/J=−0.1 (dashed line), and K2v/J=−0.2 (dotted line). As before, K2s is chosen in such a way that the average polar angle yields Click to view the MathML source. For the other notations we refer to Fig. 71.

Enlarge Image
(23K)
Fig. 77. Topview sketch of (a) the sc(001) and (b) the fcc(001) bilayer system. A single FM layer (dark arrows) and a single AFM layer (grey arrows) are assumed, with two sublattices per layer. Both layers are coupled by the interlayer exchange Click to view the MathML source. The angles Click to view the MathML source and Click to view the MathML source quantify the deviations from the undisturbed magnetic arrangement [373].

Enlarge Image
(61K)
Fig. 78. (a) Magnetizations mi(T) and (b) equilibrium angles phi0,i(T) for a sc(001) bilayer as functions of the temperature T for different values of the interlayer exchange coupling Click to view the MathML source as indicated. The AFM exchange is chosen to be Click to view the MathML source, hence Click to view the MathML source. The temperature is given in units of the bare Curie temperature Click to view the MathML source of the FM monolayer. At the sublattice reorientation temperature Click to view the MathML source one obtains Click to view the MathML source and Click to view the MathML source[373].

Enlarge Image
(53K)
Fig. 79. (a) Magnetizations mi(T) and (b) equilibrium angles Click to view the MathML source for a fcc(001) bilayer as functions of the temperature T for different values of the interlayer exchange coupling Click to view the MathML source as indicated. We have chosen Click to view the MathML source, hence Click to view the MathML source. For these systems two different critical temperatures Click to view the MathML source and Click to view the MathML source for the FM and AFM layers, respectively, are obtained. For Click to view the MathML source the AFM spins relax to the undisturbed AFM arrangement [373].

Enlarge Image
(62K)
Fig. 80. Curie temperature Click to view the MathML source as a function of the interlayer exchange Click to view the MathML source for sc(001) (top) and fcc(001) (bottom) FM–AFM bilayers, normalized to Click to view the MathML source. The results are obtained within MFA and GFT, as indicated [377].

Enlarge Image
(39K)
Fig. 81. Magnetic energy E(phi) of FM–AFM bilayers in units of K/spin as a function of the magnetization direction phi of a FM particle deposited on an AFM substrate. The full line refers to an interface coupling of Click to view the MathML source, and the dashed line to Click to view the MathML source. Click to view the MathML source and Click to view the MathML source are the corresponding energy barriers representing the total magnetic anisotropy of the FM particle. For the intralayer couplings we have assumed Click to view the MathML source and Click to view the MathML source, referring approximately to a bulk Ni ferromagnet and a bulk NiO antiferromagnet. The corresponding anisotropies are set equal to Click to view the MathML source[13].

Enlarge Image
(39K)
Fig. 82. Energy barrier Click to view the MathML source of a FM particle deposited on an AFM substrate in units of K/spin as a function of the interface coupling Click to view the MathML source. Different values of the exchange coupling Click to view the MathML source of the AFM are assumed as indicated. For the other couplings we refer to Fig. 81. The coupling values used for that figure are indicated by the dot [13].

Enlarge Image
(41K)
Fig. 83. Total effective anisotropy Click to view the MathML source per spin of the FM film as a function of the temperature T. Click to view the MathML source prefers a collinear, and Click to view the MathML source an orthogonal FM film magnetization with respect to the AFM magnetic direction. The exchange couplings, the intrinsic anisotropies, and the temperature are given in units of Click to view the MathML source. We have assumed Click to view the MathML source and Click to view the MathML source, in addition Click to view the MathML source and Click to view the MathML source for the thicknesses of the FM and AFM films. For these values the Curie temperature Click to view the MathML source is larger than the Néel temperature Click to view the MathML source. The solid line (a) shows the intrinsic anisotropy for a decoupled FM film (Click to view the MathML source) for Click to view the MathML source. The dashed line (b) refers to the bare interface anisotropy (Click to view the MathML source), assuming Click to view the MathML source. The presence of both anisotropic contributions results in a reduced Click to view the MathML source, dot–dashed line (c). For Click to view the MathML source an enhanced absolute value Click to view the MathML source is obtained, dotted line (d) [372].

Enlarge Image
(45K)
Fig. 84. Total effective anisotropy Click to view the MathML source per FM film spin as a function of the temperature T for different interlayer exchange couplings Click to view the MathML source. The reorientation temperature TR is defined by the change of sign of Click to view the MathML source. In addition, the equilibrium angles Click to view the MathML source of the FM film magnetization for Click to view the MathML source and Click to view the MathML source are displayed, indicating a continuous magnetic reorientation near TR[372].

Enlarge Image
(48K)
Fig. 85. Same as Fig. 84 for different FM film thicknesses Click to view the MathML source, assuming Click to view the MathML source. The equilibrium angles Click to view the MathML source are shown for Click to view the MathML source and Click to view the MathML source. For the former case a continuous SRT between the collinear and orthogonal magnetic arrangements with an intermediate canted magnetization is obtained, whereas for the latter a canted arrangement is present at low temperatures [372].

Enlarge Image
(39K)
Fig. A.1. Magnetization curves for the easy (111) and hard (100) axis of bulk Ni. The hatched area enclosed by the two curves is a direct measure for the strength of the magnetocrystalline anisotropy. The saturation magnetizations are slightly different for both directions [242].

Enlarge Image
(62K)
Fig. B.1. (Left) Measured magnetic anisotropies for Fe/W(110) thin films as a function of the inverse thickness for two different temperatures as indicated [228]. (Right) Calculated magnetocrystalline anisotropy Click to view the MathML source (squares, dotted line) for Co/Cu(111) thin films as a function of the number N of Co layers. In addition the shape anisotropy Click to view the MathML source resulting from the dipole interaction is given (circles, solid line), which adds with Click to view the MathML source to the total anisotropy Ea(N) (diamonds, dashed line) [433].

Enlarge Image
(36K)
Fig. B.2. Measured anisotropy coefficients determined by FMR for a Ni/Cu(001) thin film with 7–8 Ni layers as a function of the temperature T. Shown are the second- and fourth-order perpendicular anisotropies K2 and K4perpendicular, and the fourth-order in-plane anisotropy K4short parallel[242].

Enlarge Image
(76K)
Fig. B.3. Temperature factors Click to view the MathML source as functions of the relative temperature T/TC obtained from a mean field approximation, and for classical spins. In (a) also the magnetization m(T) is depicted.

Enlarge Image
(33K)
Fig. D.1. Phase diagram of the magnetic structure with two subsystems in the K2,1K2,2-plane, see text. The anisotropies are given in units of the exchange coupling J between the subsystems. In between the perpendicular and the in-plane magnetic phases a canted magnetic phase with a noncollinear structure is located. Click to view the MathML source and Click to view the MathML source denote the phase boundaries to the perpendicular and to the in-plane magnetizations, respectively. The dashed line refers to K2,2=−K2,1.

Enlarge Image
(49K)
Fig. D.2. (a) Average angle Click to view the MathML source and angular deviation ε as a function of K2,2 along the thick line indicated in Fig. D.1, assuming K2,1/J=0.1. By variation of K2,2 the canting angle Click to view the MathML source varies from Click to view the MathML source (in-plane magnetization) to Click to view the MathML source (perpendicular magnetization), passing a noncollinear magnetic phase with a finite ε>0. For a better visibility ε is enlarged by a factor 10. The dotted line indicates the polar angle in the case of a collinear rotation (ε=0). (b) Corresponding energy E(K2,2) for the noncollinear (solid line) and the collinear structure (dotted line) as shown in (a).

References

[1] J.A.C. Bland and B. Heinrich, Ultrathin Magnetic Structures vol. I + II, Springer, Berlin (1994).

[2] P.J. Jensen and K.H. Bennemann, Magnetism of interacting two-dimensional nanostructures. In: A.V. Narlikar, Editor, Frontiers in Magnetic Materials, Springer Verlag, Berlin (2005).

[3] L.M. Falicov, D.T. Pierce, S.D. Bader, R. Gronsky, K.B. Hathaway, H.J. Hopster, D.N. Lambeth, S.S.P. Parkin, G. Prinz, M. Salamon, I.K. Schuller and R.H. Victora, J. Mater. Res. 5 (1990), p. 1299. Abstract-Compendex | Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[4] D. Weller and A. Moser, IEEE Trans. Magn. 35 (1999), p. 4423. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[5] M.J. Zuckermann, Solid State Commun. 12 (1973), p. 745. Abstract | Full Text + Links | PDF (266 K) | Abstract + References in Scopus | Cited By in Scopus

[6] D. Altbir, M. Kiwi, G. Martínez and M.J. Zuckermann, Phys. Rev. B 40 (1989), p. 6963. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[7] H. Hasegawa and F. Herman, Phys. Rev. B 38 (1988), p. 4863. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[8] S. Chikazumi and S. Charap, Physics of Magnetism, Wiley, New York (1964).

[9] J. Nogués and I.K. Schuller, J. Magn. Magn. Mater. 192 (1999), p. 203. Abstract | PDF (383 K) | Abstract + References in Scopus | Cited By in Scopus

[10] R.L. Stamps, J. Phys. D: Appl. Phys. 33 (2000), p. R247. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[11] M. Kiwi, J. Magn. Magn. Mater. 234 (2001), p. 584. SummaryPlus | Full Text + Links | PDF (202 K) | Abstract + References in Scopus | Cited By in Scopus

[12] T.C. Schulthess and W.H. Butler, Phys. Rev. Lett. 81 (1998), p. 4516. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[13] P.J. Jensen, Appl. Phys. Lett. 78 (2001), p. 2190. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[14] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogues, Nature 423 (2003), p. 850. Abstract-EMBASE | Abstract-GEOBASE | Abstract-MEDLINE | Abstract-Compendex | Abstract-Elsevier BIOBASE   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[15] A. Barthélémy, A. Fert and F. Petroff In: K.H.J. Buschow, Editor, Handbook of Magnetic Materials vol. 12, Elsevier, Amsterdam (1999).

[16] In: K.H. Bennemann, Editor, Nonlinear Optics in Metals, Clarendon Press, Oxford (1998).

[17] J. Thomassen, F. May, B. Feldmann, M. Wuttig and H. Ibach, Phys. Rev. Lett. 69 (1992), p. 3831. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[18] R.D. Ellerbrock, A. Fuest, A. Schatz, W. Keune and R.A. Brand, Phys. Rev. Lett. 74 (1995), p. 3053. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[19] M. Straub, R. Vollmer and J. Kirschner, Phys. Rev. Lett. 77 (1996), p. 743. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[20] M. Stampanoni, A. Vaterlaus, M. Aeschlimann and F. Meier, Phys. Rev. Lett. 59 (1987), p. 2483. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[21] H.J. Elmers, G. Liu and U. Gradmann, Phys. Rev. Lett. 63 (1989), p. 566. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[22] W. Weber, D. Kerkmann, D. Pescia, D.A. Wesner and G. Güntherodt, Phys. Rev. Lett. 65 (1990), p. 2058. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[23] M.J. Dunlavy and D. Venus, Phys. Rev. B 69 (2004), p. 094411. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[24] C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J.J de Miguel and R. Miranda, Phys. Rev. Lett. 64 (1990), p. 1059. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[25] D. Kerkmann, D. Pescia and R. Allenspach, Phys. Rev. Lett. 68 (1992), p. 686. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[26] F. Huang, M.T. Kief, G.J. Mankey and R.F. Willis, Phys. Rev. B 49 (1994), p. 3962. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[27] R. Zhang and R.F. Willis, Phys. Rev. Lett. 86 (2001), p. 2665. Abstract-MEDLINE | Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[28] Y. Li and K. Baberschke, Phys. Rev. Lett. 68 (1992), p. 1208. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[29] F.H. Salas and M. Mirabal-García, J. Appl. Phys. 66 (1989), p. 5523. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[30] M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier and F. Gerhardter, Phys. Rev. B 47 (1994), p. 11571.

[31] K. Starke, F. Heigl, A. Vollmer, M. Weiss, G. Reichardt and G. Kaindl, Phys. Rev. Lett. 86 (2001), p. 3415. Abstract-MEDLINE | Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[32] H.J. Elmers and U. Gradmann, Appl. Phys. A 51 (1990), p. 255. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[33] H. Fritzsche, J. Kohlhepp, H.J. Elmers and U. Gradmann, Phys. Rev. B 49 (1994), p. 15665. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[34] T. Nawrath, B. Damaske, O. Schulte and W. Felsch, Phys. Rev. B 55 (1997), p. 3071. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[35] Y. Li, C. Polaczyk and D. Riegel, Thin Solid Films 317 (1998), p. 310. SummaryPlus | Full Text + Links | PDF (191 K) | Abstract + References in Scopus | Cited By in Scopus

[36] B. Schulz, A. Aspelmeier and K. Baberschke, Vacuum 46 (1995), p. 1189. SummaryPlus | Full Text + Links | PDF (812 K) | Abstract + References in Scopus | Cited By in Scopus

[37] S. Pütter, H.F. Ding, Y.T. Millev, H.P. Oepen and J. Kirschner, Phys. Rev. B 64 (2001), p. 092409. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[38] U. Gradmann, M. Przybylski, H.J. Elmers and G. Liu, Appl. Phys. A 49 (1989), p. 563. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[39] C. Schüßler-Langeheine, E. Weschke, A.Yu. Grigoriev, H. Ott, R. Meier, D.V. Vyalikh, C. Mazumdar, C. Sutter, D. Abernathy, G. Grübel and G. Kaindl, J. Electron Spectrosc. Relat. Phenom. 114–116 (2001), p. 953. SummaryPlus | Full Text + Links | PDF (132 K)

[40] E. Weschke, H. Ott, E. Schierle, C. Schüßler-Langeheine, D.V. Vyalikh, G. Kaindl, V. Leiner, M. Ay, T. Schmitte, H. Zabel and P.J. Jensen, Phys. Rev. Lett. 93 (2004), p. 157204. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[41] K. Koike and K. Hayakawa, Appl. Phys. Lett. 45 (1984), p. 585. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[42] M. Speckmann, H.P. Oepen and H. Ibach, Phys. Rev. Lett. 75 (1995), p. 2035. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[43] H.P. Oepen, M. Speckmann, Y.T. Millev and J. Kirschner, Phys. Rev. B 55 (1997), p. 2752. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[44] Y. Martin and H.K. Wickramasinghe, Appl. Phys. Lett. 50 (1987), p. 1455. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[45] J.R. Barnes, S.J. O’Shea, M.E. Welland, J.Y. Kim, J.E. Evetts and R.E. Somekh, J. Appl. Phys. 76 (1994), p. 2974. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[46] V.L. Pokrovskii, Adv. Phys. 28 (1979), p. 595.

[47] C.M. Schneider, Ph.D. Thesis, Freie Universität Berlin, 1990.

[48] M.E. Fisher and M.N. Barber, Phys. Rev. Lett. 28 (1972), p. 1516. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[49] M.N. Barber In: C. Domb and J. Lebovitz, Editors, Phase Transitions and Critical Phenomena vol. 8, Academic, New York (1983).

[50] K. Binder and P.C. Hohenberg, Phys. Rev. B 9 (1974), p. 2194. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[51] F. Huang, G.J. Mankey, M.T. Kief and R.F. Willis, J. Appl. Phys. 73 (1993), p. 6760. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[52] M. Henkel, S. Andrieu, P. Bauer and M. Piecuch, Phys. Rev. Lett. 80 (1998), p. 4783. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[53] M. Henkel, Conformal Invariance and Critical Phenomena, Oxford, New York (1971).

[54] W. Maciejewski and A. Duda, Solid State Commun. 64 (1987), p. 557. Abstract | Abstract + References | PDF (185 K) | Abstract + References in Scopus | Cited By in Scopus

[55] U. Gummich, G.G. Cabrera and C.E.T. Gona̧lves da Silva, Surf. Sci. 196 (1988), p. 643. Abstract | Abstract + References | PDF (470 K)

[56] H.K. Sy and M.H. Ow, J. Phys.: Condens. Matter. 4 (1992), p. 5891. Abstract-INSPEC   | Order Document

[57] P.J. Jensen, H. Dreyssé and K.H. Bennemann, Europhys. Lett. 18 (1992), p. 463. Abstract-INSPEC   | Order Document

[58] P.J. Jensen, H. Dreyssé and K.H. Bennemann, Surf. Sci. 269–270 (1992), p. 627. Abstract | Abstract + References | PDF (416 K) | Abstract + References in Scopus | Cited By in Scopus

[59] T. Kaneyoshi and T. Balcerzak, Physica A 197 (1993), p. 667. Abstract | Abstract + References | PDF (415 K)

[60] Y.M. Seidov and G.R. Shaulov, J. Phys.: Condens. Matter. 6 (1994), p. 9621. Abstract-INSPEC | Abstract-Compendex   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[61] J.T. Ou, W. Lai, D.L. Lin and F. Lee, J. Phys.: Condens. Matter. 9 (1997), p. 3687. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[62] R.E. Camley and D. Li, Phys. Rev. Lett. 84 (2000), p. 4709. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[63] J. Wu, G.S. Dong and X. Jin, Phys. Rev. B 70 (2004), p. 212406. Full Text via CrossRef

[64] M.E. Lines, Phys. Rev. 133 (1964), p. A841. Full Text via CrossRef

[65] D.T. Hung, J.C.S. Levy and O. Nagai, Phys. Status Solidi (b) 93 (1979), p. 351. Abstract + References in Scopus | Cited By in Scopus

[66] P. Bruno, Phys. Rev. B 43 (1991), p. 6015. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[67] D.A. Yablonskiy, Phys. Rev. B 44 (1991), p. 4467. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[68] L.P. Shi and W.G. Yang, J. Phys.: Condens. Matter. 4 (1992), p. 7997. Abstract-INSPEC   | Order Document

[69] N.S. Almeida, D.L. Mills and M. Teitelman, Phys. Rev. Lett. 75 (1995), p. 733. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[70] L. Hu, H. Li and R. Tao, Phys. Rev. B 60 (1999), p. 10222. Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[71] P. Fröbrich, P.J. Jensen and P.J. Kuntz, Eur. Phys. J. B 13 (2000), p. 477. Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[72] P. Fröbrich, P.J. Jensen and P.J. Kuntz, Eur. Phys. J. B 18 (2000), p. 579. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[73] S.B. Khokhlachev, Sov. Phys. JETP 43 (1976), p. 137.

[74] S.V. Maleev, Sov. Phys. JETP 43 (1976), p. 1240.

[75] V.L. Pokrovsky and M.V. Feigel’man, Sov. Phys. JETP 45 (1977), p. 291.

[76] V.Yu Irkhin, A.A. Katanin and M.I. Katsnelson, Phys. Rev. B 60 (1999), p. 1082. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[77] A. Grechnev, V.Yu. Irkhin, M.I. Katsnelson and O. Eriksson, Phys. Rev. B 71 (2005), p. 024427. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[78] A.E. Ferdinand and M.E. Fisher, Phys. Rev. 185 (1969), p. 185.

[79] G.A.T. Allan, Phys. Rev. B 1 (1970), p. 352. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[80] D.S. Ritchie and M.E. Fisher, Phys. Rev. B 7 (1973), p. 480. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[81] H. Bakrim, M. Hamedoun and A. Hourmatallah, J. Magn. Magn. Mater. 261 (2003), p. 415. SummaryPlus | Full Text + Links | PDF (189 K) | Abstract + References in Scopus | Cited By in Scopus

[82] E. Brézin and J. Zinn-Justin, Phys. Rev. Lett. 36 (1976), p. 691. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[83] M. Bander and D.L. Mills, Phys. Rev. B 38 (1988), p. R12015.

[84] P. Politi, A. Rettori, M.G. Pini and D. Pescia, J. Magn. Magn. Mater. 140–144 (1995), p. 647. SummaryPlus | Full Text + Links | PDF (233 K) | Abstract + References in Scopus | Cited By in Scopus

[85] K. Binder and D.P. Landau, Phys. Rev. B 13 (1976), p. 1140. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[86] R.P. Erickson and D.L. Mills, Phys. Rev. B 43 (1991), p. R11527.

[87] P.A. Serena, N. García and A. Levanyuk, Phys. Rev. B 47 (1993), p. 5027. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[88] P. Henelius, P. Fröbrich, P.J. Kuntz and P.J. Jensen, Phys. Rev. B 66 (2002), p. 094407. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[89] J.L. Moran-López and J.M. Sanchez, Phys. Rev. B 39 (1989), p. 9746. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[90] J.S. Smart, Effective Field Theories of Magnetism, Saunders, Philadelphia (1966).

[91] T. Oguchi, Progr. Theoret. Phys. 13 (1955), p. 148. Full Text via CrossRef

[92] P.J. Jensen, unpublished.

[93] H.T. Diep, Phys. Rev. B 43 (1991), p. 8509. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[94] A. Moschel, K.D. Usadel and A. Hucht, Phys. Rev. B 47 (1993), p. 8676. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[95] H.Y. Wang, M. Qian and E.G. Wang, J. Appl. Phys. 95 (2004), p. 7551. Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[96] V. Leiner, D. Labergerie, R. Siebrecht, C. Sutter and H. Zabel, Physica B 283 (2000), p. 167. SummaryPlus | Full Text + Links | PDF (130 K) | Abstract + References in Scopus | Cited By in Scopus

[97] W.C. Köhler In: R.J. Elliott, Editor, Magnetic Properties of Rare Earth Metals, Plenum, London (1972).

[98] B. Coqblin, The Electronic Structure of Rare-Earth Metals and Alloys: the Heavy Magnetic Rare Earths, Academic Press, London (1977).

[99] R.M. Nicklow, H.A. Mook, H.G. Smith, R.E. Reed and M.K. Wilkinson, J. Appl. Phys. 40 (1969), p. 1452. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[100] J. Bohr, D. Gibbs, J.D. Axe, D.E. Moncton, K.L. D’Amico, C.F. Majkrzak, J. Kwo, M. Hong, C.L. Chien and J. Jensen, Physica B 159 (1989), p. 93. Abstract | Abstract + References | PDF (1067 K) | Abstract + References in Scopus | Cited By in Scopus

[101] E.E. Fullerton, K.T. Riggs, C.H. Sowers, S.D. Bader and A. Berger, Phys. Rev. Lett. 75 (1995), p. 330. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[102] E. Fawcett, Rev. Modern Phys. 60 (1988), p. 209. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[103] W.L. O’Brien and B.T. Tonner, Phys. Rev. B 52 (1995), p. 15332.

[104] B. Schirmer and M. Wuttig, Phys. Rev. B 60 (1999), p. 12945. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[105] X. Liu and M. Wuttig, Phys. Rev. B 64 (2001), p. 104408. Full Text via CrossRef

[106] H.W. Zhao, C. Won, Y.Z. Wu, A. Scholl, A. Doran and Z.Q. Qiu, Phys. Rev. B 70 (2004), p. 024423. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[107] R. Ramchal, A.K. Schmid, M. Farle and H. Poppa, Phys. Rev. B 69 (2004), p. 214401. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[108] K. Amemiya, D. Matsumura, H. Abe, S. Kitagawa, T. Ohta and T. Yokoyama, Phys. Rev. B 70 (2004), p. 195405. Full Text via CrossRef

[109] M. Przybylski, S. Chakraborty and J. Kirschner, J. Magn. Magn. Mater. 234 (2001), p. 505. SummaryPlus | Full Text + Links | PDF (351 K) | Abstract + References in Scopus | Cited By in Scopus

[110] K. Cherifi, C. Dufour, M. Piecuch, A. Bruson, Ph. Bauer, G. Marchal and Ph. Mangin, J. Magn. Magn. Mater. 93 (1991), p. 609. Abstract | Abstract + References | PDF (385 K) | Abstract + References in Scopus | Cited By in Scopus

[111] Y.L. Wang and W. Kleemann, Phys. Rev. B 44 (1991), p. 5132. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[112] O. Schulte, F. Klose and W. Felsch, Phys. Rev. B 52 (1995), p. 6480. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[113] M. Arend, W. Felsch, G. Krill, A. Delobbe, F. Baudelet, E. Dartyge, J.P. Kappler, M. Finazzi, A. San Miguel-Fuster, S. Pizzini and A. Fontaine, Phys. Rev. B 59 (1999), p. 3707. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[114] S.S. Dhesi, H.A. Dürr, M. Münzenberg and W. Felsch, Phys. Rev. Lett. 90 (2003), p. 117204. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[115] H.A. Dürr, G.Y. Guo, G. van der Laan, J. Lee, G. Lauhoff and J.A.C. Bland, Science 277 (1997), p. 213. Abstract-EMBASE | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[116] W. Kuch, J. Gilles, S.S. Kang, S. Imada, S. Suga and J. Kirschner, Phys. Rev. B 62 (2000), p. 3824. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[117] C. Won, Y.Z. Wu, K.T. Law, H.W. Zhao, A. Scholl, A. Duran and Z.Q. Qiu, Phys. Rev. B 67 (2003), p. 174425. Full Text via CrossRef

[118] G. Garreau, E. Beaurepaire, K. Ounadjela and M. Farle, Phys. Rev. B 53 (1996), p. 1083. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[119] W. Kuch, J. Gilles, F. Offi, S.S. Kang, S. Imada, S. Suga and J. Kirschner, J. Electron Spectrosc. Relat. Phenom. 109 (2000), p. 249. SummaryPlus | Full Text + Links | PDF (1314 K) | Abstract + References in Scopus | Cited By in Scopus

[120] Y.Z. Wu, C. Won, A. Scholl, A. Duran, F. Toyama, X.F. Jin, N.V. Smith and Z.Q. Qiu, Phys. Rev. B 65 (2002), p. 214417. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[121] E.J. Escorcia-Aparicio, R.K. Kawakami and Z.Q. Qiu, Phys. Rev. B 54 (1996), p. 4155. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[122] J. Tersoff and L.M. Falicov, Phys. Rev. B 25 (1982), p. 6186. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[123] A. Scherz, H. Wende, P. Poulopoulos, J. Lindner, K. Baberschke, P. Blomquist, R. Wäppling, F. Wilhelm and N.B. Brookes, Phys. Rev. B 64 (2001), p. 180407. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[124] A. Scherz, P. Poulopoulos, R. Nünthel, J. Lindner, H. Wende, F. Wilhelm and K. Baberschke, Phys. Rev. B 68 (2003), p. 140401. Full Text via CrossRef

[125] H.J. Choi, R.K. Kawakami, E.J. Escorcia-Aparicio, Z.Q. Qiu, J. Pearson, J.S. Jiang and S.D. Bader, Phys. Rev. Lett. 82 (1999), p. 1947. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[126] K. von Bergmann, M. Bode and R. Wiesendanger, Phys. Rev. B 70 (2004), p. 174455. Full Text via CrossRef

[127] J. Kohlhepp and U. Gradmann, J. Magn. Magn. Mater. 139 (1995), p. 347. Abstract | Abstract + References | PDF (579 K) | Abstract + References in Scopus | Cited By in Scopus

[128] Y. Xiao, J.H. Xu and K.V. Rao, J. Appl. Phys. 79 (1996), p. 6267. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[129] F.O. Schumann, S.Z. Wu, G.J. Mankey and R.F. Willis, Phys. Rev. B 56 (1997), p. 2668. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[130] F.O. Schumann, R.F. Willis, K.G. Goodman and J.G. Tobin, Phys. Rev. Lett. 79 (1997), p. 5166. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[131] R. Thamankar, A. Ostroukhova and F.O. Schumann, Phys. Rev. B 66 (2002), p. 134414. Full Text via CrossRef

[132] A. Dittschar, M. Zharnikov, W. Kuch, M.T. Lin, C.M. Schneider and J. Kirschner, Phys. Rev. B 57 (1998), p. 3209.

[133] R. Zdyb and E. Bauer, Phys. Rev. B 67 (2003), p. 134420. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[134] M. Pratzer and H.J. Elmers, Phys. Rev. B 69 (2004), p. 134418. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[135] M.T. Lin, W.C. Lin, C.C. Kuo and C.L. Chiu, Phys. Rev. B 62 (2000), p. 14268. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[136] P. Talagala, P.S. Fodor, D. Haddad, R. Naik, L.E. Wenger, P.P. Vaishnava and V.M. Naik, Phys. Rev. B 66 (2002), p. 144426. Full Text via CrossRef

[137] H. Tang, D. Weller, T.G. Walker, J.C. Scott, C. Chappert, H. Hopster, A.W. Pang, D.S. Dessau and D.P. Pappas, Phys. Rev. Lett. 71 (1993), p. 444. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[138] M. Donath, B. Gubanka and F. Passek, Phys. Rev. Lett. 77 (1996), p. 5138. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[139] U. Bovensiepen, F. Wilhelm, P. Srivastava, P. Poloupolous, M. Farle, A. Ney and K. Baberschke, Phys. Rev. Lett. 81 (1998), p. 2368. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[140] C. Won, Y.Z. Wu, A. Scholl, A. Doran, N. Kurahashi, H.W. Zhao and Z.Q. Qiu, Phys. Rev. Lett. 91 (2003), p. 147202. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[141] A. Ney, F. Wilhelm, M. Farle, P. Poulopoulos, P. Srivastava and K. Baberschke, Phys. Rev. B 59 (1999), p. R3938. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[142] A. Scherz, C. Sorg, M. Bernien, N. Ponpandian, K. Baberschke, H. Wende and P.J. Jensen, Phys. Rev. B 72 (2005), p. 054447. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[143] P. Srivastava, F. Wilhelm, A. Ney, M. Farle, H. Wende, N. Haack, G. Ceballos and K. Baberschke, Phys. Rev. B 58 (1998), p. 5701. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[144] W. Kuch, X. Gao and J. Kirschner, Phys. Rev. B 65 (2002), p. 064406. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[145] H.J. Choi, W.L. Ling, A. Scholl, J.H. Wolfe, U. Bovensiepen, F. Toyama and Z.Q. Qiu, Phys. Rev. B 66 (2002), p. 014409. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[146] J.J. de Vries, A.A.P. Schudelaro, R. Jungblut, P.J.H. Bloemen, A. Reinders, J. Kohlhepp, R. Coehoorn and W.J.M. de Jonge, Phys. Rev. Lett. 75 (1995), p. 4306. Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[147] W.H. Rippard and R.A. Buhrmann, J. Appl. Phys. 87 (2000), p. 6490. Abstract-INSPEC   | Order Document | OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[148] J. Grollier, V. Cros, H. Jaffrés, A. Hamzic, J.M. George, G. Faini, J. Ben Youssef, H. Le Gall and A. Fert, Phys. Rev. B 67 (2003), p. 174402. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[149] Z.Y. Liu and S. Adenwalla, Phys. Rev. Lett. 91 (2003), p. 037207. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[150] P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky and H. Sowers, Phys. Rev. Lett. 57 (1986), p. 2442. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[151] M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Eitenne, G. Creuzet and A. Friederich, J. Chazelas, Phys. Rev. Lett. 61 (1988), p. 2472. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[152] S.S.P. Parkin, Phys. Rev. Lett. 67 (1991), p. 3598. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[153] P. Bruno, Phys. Rev. B 52 (1995), p. 411. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[154] J. Mathon, M. Villeret, R.B. Muniz, J. d’Albuquerque e Castro and D.M. Edwards, Phys. Rev. Lett. 74 (1995), p. 3696. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[155] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal and P. Bruno, Phys. Rev. Lett. 85 (2000), p. 5424. Abstract-Compendex | Abstract-INSPEC | Abstract-MEDLINE   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[156] C.H. Back, W. Weber, Ch. Würsch, A. Bischof, D. Pescia and R. Allenspach, J. Appl. Phys. 81 (1997), p. 5054. Abstract-INSPEC   | Order Document | OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[157] J.C. Sloncewski, Phys. Rev. Lett. 67 (1991), p. 3172.

[158] S.O. Demokritov, J. Phys. D: Appl. Phys. 31 (1998), p. 925. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[159] T. Duden and E. Bauer, Phys. Rev. B 59 (1999), p. 474. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[160] V.K. Vlasko-Vlasov, U. Welp, J.S. Jiang, D.J. Miller, G.W. Crabtree and S.D. Bader, Phys. Rev. Lett. 86 (2001), p. 4386. Abstract-INSPEC | Abstract-MEDLINE | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[161] G. Bayreuther, F. Bensch and V. Kottler, J. Appl. Phys. 79 (1996), p. 4509. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[162] R. Ramchal, A.K. Schmid, M. Farle and H. Poppa, Phys. Rev. B 68 (2003), p. 054418. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[163] A. Scherz, F. Wilhelm, U. Bovensiepen, P. Poloupolous, H. Wende and K. Baberschke, J. Magn. Magn. Mater. 236 (2001), p. 1. SummaryPlus | Full Text + Links | PDF (80 K) | Abstract + References in Scopus | Cited By in Scopus

[164] R. Tahir-Kheli and D. ter Haar, Phys. Rev. 127 (1962), p. 88. Full Text via CrossRef

[165] H.B. Callen, Phys. Rev. 130 (1963), p. 890. Full Text via CrossRef

[166] N.M. Mermin and H. Wagner, Phys. Rev. Lett. 17 (1966), p. 1133. Full Text via CrossRef

[167] P. Bruno, Phys. Rev. Lett. 87 (2001), p. 137203. Full Text via CrossRef

[168] A. Gelfert and W. Nolting, J. Phys.: Condens. Matter. 13 (2001), p. R505. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[169] P.J. Jensen, K.H. Bennemann, P. Poulopoulos, M. Farle, F. Wilhelm and K. Baberschke, Phys. Rev. B 60 (1999), p. 14994.

[170] P.J. Jensen, K.H. Bennemann, K. Baberschke, P. Poulopoulos and M. Farle, J. Appl. Phys. 87 (2000), p. 6692. Abstract-INSPEC   | Order Document | OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[171] H. Wende, C. Sorg, M. Bernien, A. Scherz, P.J. Jensen, N. Ponpandian and K. Baberschke, Phys. Status Solidi (b) 243 (2006), p. 165. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[172] P.J. Jensen, C. Sorg, A. Scherz, M. Bernien, K. Baberschke and H. Wende, Phys. Rev. Lett. 94 (2005), p. 039703. Full Text via CrossRef

[173] A. Scherz, F. Wilhelm, P. Poloupolous, H. Wende and K. Baberschke, J. Synchrotron Radiat. 8 (2001), p. 472. Abstract-MEDLINE | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[174] R.W. Wang and D.L. Mills, Phys. Rev. B 46 (1992), p. 11681. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[175] D.S. Deng, X.F. Jin and R. Tao, Phys. Rev. B 69 (2004), p. 172403. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[176] R.P. Erickson and D.L. Mills, Phys. Rev. B 44 (1991), p. 11825. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[177] R. Tao, X. Hu and Y. Kawazoe, Phys. Rev. B 52 (1995), p. 6178. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[178] Y.T. Millev, H.P. Oepen and J. Kirschner, Phys. Rev. B 57 (1998), p. 5837, 5848.

[179] Y.T. Millev, H.P. Oepen and J. Kirschner, J. Phys. D (1999), p. 2599. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[180] W. Guo and D.L. Lin, Phys. Rev. B 67 (2003), p. 224402. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[181] A. Hucht and K.D. Usadel, Philos. Mag. B 80 (2000), p. 275. Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[182] S. Schwieger, J. Kienert and W. Nolting, Phys. Rev. B 71 (2005), p. 024428. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[183] M.G. Pini, P. Politi and R.L. Stamps, Phys. Rev. B 72 (2005), p. 014454. Full Text via CrossRef

[184] L. Néel, Compt. Rend. 237 (1953), p. 1468. Abstract + References in Scopus | Cited By in Scopus

[185] L. Néel, J. Phys. Radium 15 (1954) 225, 376.

[186] P. Castrucci, R. Gunnella, R. Bernardini, P. Falconi and M. De Crescenzi, Phys. Rev. B 65 (2002), p. 235435. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[187] H.F. Ding, S. Pütter, H.P. Oepen and J. Kirschner, Phys. Rev. B 63 (2001), p. 134425. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[188] C.S. Arnold, D.P. Pappas and A.P. Popov, Phys. Rev. Lett. 83 (1999), p. 3305. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[189] U. Gradmann and J. Müller, Phys. Status Solidi 27 (1968), p. 313.

[190] C. Liu, E.R. Moog and S.D. Bader, Phys. Rev. Lett. 60 (1987), p. 2422.

[191] J. Araya-Pochet, C.A. Ballentine and J.L. Erskine, Phys. Rev. B 38 (1988), p. 7846. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[192] D.P. Pappas, K.P. Kämper and H. Hopster, Phys. Rev. Lett. 64 (1990), p. 3179. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[193] D.P. Pappas, C.R. Brundle and H. Hopster, Phys. Rev. B 45 (1992), p. 8169. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[194] R. Allenspach and A. Bischof, Phys. Rev. Lett. 69 (1992), p. 3385. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[195] D. Li, M. Freitag, J. Pearson, Z. Qiu and S. Bader, Phys. Rev. Lett. 72 (1994), p. 3112. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[196] S. Müller, P. Bayer, C. Reischl, K. Heinz, B. Feldmann, H. Zillgen and M. Wuttig, Phys. Rev. Lett. 74 (1995), p. 765. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[197] M.T. Lin, J. Shen, W. Kuch, H. Jenniches, M. Klaua, C.M. Schneider and J. Kirschner, Phys. Rev. B 55 (1997), p. 5886. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[198] S.S. Kang, W. Kuch and J. Kirschner, Phys. Rev. B 63 (2001), p. 024401.

[199] M.A. Torija, J.P. Pierce and J. Shen, Phys. Rev. B 63 (2001), p. 092404. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[200] D. Peterka, A. Enders, G. Haas and K. Kern, Phys. Rev. B 66 (2002), p. 104411. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[201] A. Enders, D. Peterka, D. Repetto, N. Lin, A. Dmitriev and K. Kern, Phys. Rev. Lett. 90 (2003), p. 217203. Full Text via CrossRef

[202] N.C. Koon, B.T. Jonker, F.A. Volkening, J.J. Krebs and G.A. Prinz, Phys. Rev. Lett. 59 (1987), p. 2463. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[203] Z. Qiu, J. Pearson and S. Bader, Phys. Rev. Lett. 70 (1993), p. 1006. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[204] A. Berger and H. Hopster, Phys. Rev. Lett. 76 (1996), p. 519. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[205] D.M. Schaller, D.E. Brugler, C.M. Schmidt, F. Meisinger and H.J. Güntherodt, Phys. Rev. B 59 (1999), p. 14516. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[206] R. Allenspach, M. Stampanoni and A. Bischof, Phys. Rev. Lett. 65 (1990), p. 3344. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[207] L. Cagnon, T. Devolder, R. Cortes, A. Morrone, J.E. Schmidt and C. Chappert, Phys. Rev. B 63 (2001), p. 104419. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[208] R. Sellmann, H. Fritzsche, H. Maletta, V. Leiner and R. Siebrecht, Phys. Rev. B 64 (2001), p. 054418. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[209] J. Langer, J. Hunter Dunn, A. Hahlin, O. Karis, R. Sellmann, D. Arvanitis and H. Maletta, Phys. Rev. B 66 (2002), p. 172401. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[210] M. Kisielewski, A. Maziewski, M. Tekielak, A. Wawro and L.T. Baczewski, Phys. Rev. Lett. 89 (2002), p. 087203. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[211] W.L. O’Brien and B.P. Tonner, Phys. Rev. B 49 (1994), p. 15370.

[212] W.L. O’Brien, T. Doubray and B.P. Tonner, Phys. Rev. B 54 (1996), p. 9297.

[213] B. Schulz and K. Baberschke, Phys. Rev. B 50 (1994), p. 13467. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[214] S.S. Dhesi, H.A. Dürr and G. van der Laan, Phys. Rev. B 59 (1999), p. 8408. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[215] V. Jähnke, J. Güdde and E. Matthias, J. Magn. Magn. Mater. 237 (2001), p. 69. SummaryPlus | Full Text + Links | PDF (160 K) | Abstract + References in Scopus | Cited By in Scopus

[216] H.W. Zhao, Y.Z. Wu, C. Won, F. Toyama and Z.Q. Qiu, Phys. Rev. B 66 (2002), p. 104402. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[217] D. Sander, W. Pan, S. Quazi, J. Kirschner, W. Meyer, M. Krause, S. Müller, L. Hammer and K. Heinz, Phys. Rev. Lett. 93 (2004), p. 247203. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[218] G. Garreau, S. Hajjar, J.L. Bubendorff, C. Pirri, D. Berling, A. Mehdaoui, R. Stephan, P. Wetzel, S. Zabrocki, G. Gewinner, S. Boukari and E. Beaurepaire, Phys. Rev. B 71 (2005), p. 094430. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[219] Y. Xiao, K.V. Rao, P.J. Jensen and J.J. Xu, IEEE Trans. Magn. 34 (1998), p. 876.

[220] J.W. Lee, J.R. Jeong, S.C. Shin, J. Kim and S.K. Kim, Phys. Rev. B 66 (2002), p. 172409. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[221] D. Matsumura, T. Yokoyama, K. Amemiya, S. Kitagawa and T. Ohta, Phys. Rev. B 66 (2002), p. 024402. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[222] T. Yokoyama, D. Matsumura, K. Amemiya, S. Kitagawa, N. Suzuki and T. Ohta, J. Phys.: Condens. Matter. 15 (2003), p. S537. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[223] J.W. Lee, J. Kim, S.K. Kim, J.R. Jeong and S.C. Shin, Phys. Rev. B 65 (2002), p. 144437. Full Text via CrossRef

[224] M. Kisielewski, A. Maziewski, M. Tekielak, J. Ferré, S. Lemerle, V. Mathet and C. Chappert, J. Magn. Magn. Mater. 260 (2003), p. 231. SummaryPlus | Full Text + Links | PDF (1218 K) | Abstract + References in Scopus | Cited By in Scopus

[225] R. Sellmann, H. Fritzsche, H. Maletta, V. Leiner and R. Siebrecht, Phys. Rev. B 63 (2001), p. 224415. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[226] U. Gradmann, J. Magn. Magn. Mater. 54–57 (1986), p. 733. Abstract | Abstract + References | PDF (298 K)

[227] U. Gradmann, J. Korecki and G. Waller, Appl. Phys. A 39 (1986), p. 101. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[228] F. Gerhardter, Y. Li and K. Baberschke, Phys. Rev. B 47 (1993), p. 11204. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[229] K. Baberschke, Appl. Phys. A 62 (1996), p. 417. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[230] H. Fritzsche, J. Kohlhepp and U. Gradmann, Phys. Rev. B 51 (1995), p. 15933. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[231] M. Farle, B. Mirwald-Schulz, A.N. Anisimov, W. Platow and K. Baberschke, Phys. Rev. B 55 (1997), p. 3708. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[232] J. Prokop, D.A. Valdaitsev, A. Kukunin, M. Pratzer, G. Schönhense and H.J. Elmers, Phys. Rev. B 70 (2004), p. 184423. Full Text via CrossRef

[233] T. Jung, R. Schlittler, J.K. Gimzewski and F.J. Himpsel, Appl. Phys. A 61 (1995), p. 467. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[234] R.K. Kawakami, E.J. Escorcia-Aparicio and Z.Q. Qiu, Phys. Rev. Lett. 77 (1996), p. 2570. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[235] R.K. Kawakami, M.O. Bowen, H.J. Choi, E.J. Escorcia-Aparicio and Z.Q. Qiu, Phys. Rev. B 58 (1998), p. R5924. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[236] M.A.M Gijs, A. Reinders, R.M. Jungblut, W. Oepts and W.J.M. de Jonge, J. Magn. Magn. Mater. 165 (1997), p. 17. SummaryPlus | Full Text + Links | PDF (644 K) | Abstract + References in Scopus | Cited By in Scopus

[237] A. Sugarawa, T. Coyle, G.G. Hembree and M.R. Scheinfein, Appl. Phys. Lett. 70 (1997), p. 1043.

[238] J. Shen, R. Skomski, M. Klaua, H. Jenniches, S.S. Manoharan and J. Kirschner, Phys. Rev. B 56 (1997), p. 2340. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[239] J. Hauschild, H.J. Elmers and U. Gradmann, Phys. Rev. B 57 (1998), p. 677.

[240] U. Bovensiepen, H.J. Choi and Z.Q. Qiu, Phys. Rev. B 61 (2000), p. 3235. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[241] M. Rickart, T. Mewes, S.O. Demokritov, B. Hillebrands and M. Scheib, Phys. Rev. B 70 (2004), p. 060408. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[242] P. Poulopoulos and K. Baberschke,J. Phys.: Condens. Matter. 11 (1999), p. 9495. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[243] G.A. Prinz, G.T. Rado and J.J. Krebs, J. Appl. Phys. 53 (1982), p. 2087. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[244] F. Gerhardter, Y. Li and K. Baberschke, Phys. Rev. B 47 (1993), p. 11204. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[245] I.G. Baek, H.G. Lee, H.J. Kim and E. Vescovo, Phys. Rev. B 67 (2003), p. 075401. Full Text via CrossRef

[246] M. Brockmann, S. Miethaner, R. Onderka, M. Köhler, F. Himmelhuber, H. Regensburger, M. Bensch, T. Schweinböck and G. Bayreuther, J. Appl. Phys. 81 (1997), p. 5047. Abstract-INSPEC   | Order Document | OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[247] A. Aspelmeier, Ph.D. Thesis, FU Berlin, 1996.

[248] R. Naik, A. Poli, D. McKague, A. Lukaszew and L.E. Wenger, Phys. Rev. B 51 (1995), p. 3549. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[249] D.L. Nagy, L. Bottyán, B. Croonenborghs, L. Deák, B. Degroote, J. Dekoster, H.J. Lauter, V. Lauter-Pasyuk, O. Leupold, M. Major, J. Meerschaut, O. Nikonov, A. Petrenko, R. Rüffer, H. Spiering and E. Szilágyi, Phys. Rev. Lett. 88 (2002), p. 157202. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[250] R.J. Hicken, S.J. Gray, A. Ercole, C. Daboo, D.J. Freeland, E. Gu, E. Ahmad and J.A.C. Bland, Phys. Rev. B 55 (1997), p. 5898. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[251] G. Gubbiotti, G. Carlotti, M.G. Pini, P. Politi, A. Rettori, P. Vavassori, M. Ciria and R.C. O’Handley, Phys. Rev. B 65 (2002), p. 214420. Full Text via CrossRef

[252] C. Spezzani, P. Torelli, M. Sacchi, R. Delaunay, C.F. Hague, F. Salmassi and E.M. Gullikson, Phys. Rev. B 66 (2002), p. 052408. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[253] A. Kirilyuk, Th. Rasing, R. Mégy and P. Beauvillain, Phys. Rev. Lett. 77 (1996), p. 4608. Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[254] T. Duden and E. Bauer, Phys. Rev. B 59 (1999), p. 468. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[255] F. Wilhelm, U. Bovensiepen, A. Scherz, P. Poulopoulos, A. Ney, H. Wende, G. Ceballos and K. Baberschke, J. Magn. Magn. Mater. 222 (2000), p. 163. SummaryPlus | Full Text + Links | PDF (116 K) | Abstract + References in Scopus | Cited By in Scopus

[256] J.P. Pierce, J. Shen and R.Q. Wu, Phys. Rev. B 65 (2002), p. 132408. Full Text via CrossRef

[257] F. Zavaliche, W. Wulfhekel, M. Przybylski, S. Bodea, J. Grabowski and J. Kirschner, J. Phys. D: Appl. Phys. 36 (2003), p. 779. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[258] R. Koch, M. Weber, K. Thurmer and K.H. Rieder, J. Magn. Magn. Mater. 159 (1996), p. L11. SummaryPlus | Full Text + Links | PDF (454 K) | Abstract + References in Scopus | Cited By in Scopus

[259] D. Sander, S. Oazi, A. Enders and J. Kirschner, J. Phys.: Condens. Matter. 14 (2002), p. 4165. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[260] F. Nouvertné, U. May, M. Bamming, A. Rampe, U. Korte, G. Güntherodt, R. Pentcheva and M. Scheffler, Phys. Rev. B 60 (1999), p. 14382. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[261] W. Schindler and J. Kirschner, Phys. Rev. B 55 (1997), p. 1989.

[262] V.L. Moruzzi, P.M. Marcus and J. Kübler, Phys. Rev. B 39 (1989), p. 6957. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[263] B. Kaplan and G.A. Gehring, J. Magn. Magn. Mater. 128 (1993), p. 111. Abstract | Abstract + References | PDF (354 K) | Abstract + References in Scopus | Cited By in Scopus

[264] Z. Málek and V. Kambersky, Czech. J. Phys. 8 (1958), p. 416. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[265] T. Garel and S. Doniach, Phys. Rev. B 26 (1982), p. 325. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[266] M. Gabay and T. Garel, J. Phys. (Paris) 46 (1985), p. 5. Abstract-Compendex | Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[267] M. Gajdek and W. Wasilewski, J. Magn. Magn. Mater. 37 (1983), p. 246. Abstract | Abstract + References | PDF (470 K) | Abstract + References in Scopus | Cited By in Scopus

[268] Y. Yafet and E.M. Gyorgy, Phys. Rev. B 38 (1988), p. 9145. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[269] R. Czech and J. Villain, J. Phys.: Condens. Matter. 1 (1989), p. 619. Abstract-INSPEC   | Order Document

[270] M.B. Taylor and B.L. Gyorffy, J. Phys.: Condens. Matter. 5 (1993), p. 4527. Abstract-INSPEC   | Order Document

[271] A. Kashuba and V.L. Pokrovsky, Phys. Rev. Lett. 70 (1993), p. 3155. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[272] A. Kashuba and V.L. Pokrovsky, Phys. Rev. B 48 (1993), p. 10335. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[273] A. Abanov, V. Kalatsky, V.L. Pokrovsky and W.M. Saslow, Phys. Rev. B (1995), p. 1023. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[274] P.J. Jensen and K.H. Bennemann, Phys. Rev. B 52 (1995), p. 16012. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[275] I. Booth, A.B. MacIsaac, J.P. Whitehead and K. De’Bell, Phys. Rev. Lett. 75 (1995), p. 950. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[276] A.B. MacIsaac, K. De’Bell and J.P. Whitehead, Phys. Rev. Lett. 80 (1998), p. 616. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[277] P. Politi and M.G. Pini, Eur. Phys. J. B 2 (1998), p. 475. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[278] P. Politi, Comm. Condens. Matter Phys. 18 (1998), p. 191. Abstract-INSPEC   | Order Document

[279] S. Choe and S. Shin, Phys. Rev. B 59 (1999), p. 142. Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[280] E.Y. Vedmedenko, H.P. Oepen, A. Ghazali, J.C. Lévy and J. Kirschner, Phys. Rev. Lett. 84 (2000), p. 5884. Abstract-MEDLINE | Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[281] E.Y. Vedmedenko, H.P. Oepen and J. Kirschner, Phys. Rev. B 66 (2002), p. 214401. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[282] D.K. Morr, P.J. Jensen and K.H. Bennemann, Surf. Sci. 307–309 (1994), p. 1109. Abstract | Full Text + Links | PDF (338 K) | Abstract + References in Scopus | Cited By in Scopus

[283] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1960).

[284] H.B.G. Casimir, J. Smit, U. Enz, J.F. Fast, H.P. Wijn, E.W. Gorter, A.J.W. Duyvesteyn, J.D. Fast and J.J. de Jong, J. Phys. Radium 20 (1959), p. 360.

[285] A.M. Grishin and A.N. Ul’yanov, Sov. Phys. Solid State 27 (1985), p. 143.

[286] P.J. Jensen and K.H. Bennemann, Phys. Rev. B 42 (1990), p. 849. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[287] P.J. Jensen and K.H. Bennemann, Solid State Commun. 83 (1992), p. 1057. Abstract | Abstract + References | PDF (267 K) | Abstract + References in Scopus | Cited By in Scopus

[288] X. Hu and Y. Kawazoe, Phys. Rev. B 51 (1995), p. 311. Full Text via CrossRef

[289] X. Hu, R. Tao and Y. Kawazoe, Phys. Rev. B 54 (1996), p. 65. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[290] M.H. Yu and Z.D. Zhang, J. Magn. Magn. Mater. 232 (2001), p. 60. SummaryPlus | Full Text + Links | PDF (238 K) | Abstract + References in Scopus | Cited By in Scopus

[291] A.P. Popov, A.V. Anisimov and D.P. Pappas, Phys. Rev. B 67 (2003), p. 094428. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[292] A. Moschel and K.D. Usadel, Phys. Rev. B 49 (1994), p. 12868. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[293] A. Moschel and K.D. Usadel, Phys. Rev. B 51 (1995), p. 16111. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[294] A. Moschel and K.D. Usadel, J. Magn. Magn. Mater. 140–144 (1995), p. 649. SummaryPlus | Full Text + Links | PDF (187 K) | Abstract + References in Scopus | Cited By in Scopus

[295] P.J. Jensen and K.H. Bennemann, Solid State Commun. 100 (1996), p. 585. Abstract | Abstract + References | PDF (605 K) | Abstract + References in Scopus | Cited By in Scopus

[296] P.J. Jensen, Acta Phys. Polon. A 92 (1997), p. 427. Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[297] A. Hucht and K.D. Usadel, Phys. Rev. B 55 (1997), p. 12309. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[298] P.J. Jensen and K.H. Bennemann In: M. Donath, P.A. Dowben and W. Nolting, Editors, Magnetism and Electronic Correlations in Local-Moment Systems, World Scientific, Singapore (1998).

[299] P.J. Jensen and K.H. Bennemann, Solid State Commun. 105 (1998), p. 577. Abstract | Abstract + References | PDF (677 K) | Abstract + References in Scopus | Cited By in Scopus

[300] K.D. Usadel and A. Hucht, Phys. Rev. B 66 (2002), p. 024419. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[301] D. Pescia and V.L. Pokrovsky, Phys. Rev. Lett. 65 (1990), p. 2599. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[302] P. Politi, A. Rettori, M.G. Pini and D. Pescia, Europhys. Lett. 28 (1994), p. 71. Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[303] S.T. Chui, Phys. Rev. Lett. (1994), p. 3896.

[304] S.T. Chui, Phys. Rev. B 50 (1994), p. 12559. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[305] A. Hucht, A. Moschel and K.D. Usadel, J. Magn. Magn. Mater. 148 (1995), p. 32. Abstract | Abstract + References | PDF (155 K) | Abstract + References in Scopus | Cited By in Scopus

[306] A.B. MacIsaac, J.P. Whitehead, K. De’Bell and P.H. Poole, Phys. Rev. Lett. 77 (1996), p. 739. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[307] E.Y. Vedmedenko, A. Ghazali and J.C. Lévy, Phys. Rev. B 59 (1999), p. 3329. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[308] T. Herrmann, M. Potthoff and W. Nolting, Phys. Rev. B 58 (1998), p. 831. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[309] W. Guo, L.P. Shi and D.L. Lin, Phys. Rev. B 62 (2000), p. 14259. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[310] R.P. Erickson and D.L. Mills, Phys. Rev. B 46 (1992), p. 861. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[311] H. Wang, Z. Dai, P. Fröbrich, P.J. Jensen and P.J. Kuntz, Phys. Rev. B 70 (2004), p. 134424. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[312] P. Fröbrich and P.J. Kuntz, Phys. Rev. B 68 (2003), p. 014410. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[313] P. Fröbrich and P.J. Kuntz, J. Phys.: Condens Matter. 17 (2005), p. 1167. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[314] P.J. Jensen, Ann. Phys. (Leipzig) 6 (1997), p. 317. Abstract-Compendex | Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[315] P. Politi and M.G. Pini, Phys. Rev. B 66 (2002), p. 214414. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[316] Y.T. Millev and J. Kirschner, Phys. Rev. B 54 (1996), p. 4137. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[317] Y.T. Millev, IEEE Trans. Magn. 32 (1996), p. 4573. Abstract-Compendex | Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[318] A. Berghaus, M. Farle, Y. Li and K. Baberschke In: L.M. Falicov, F. Mejía Lira and J.L. Morán Lopéz, Editors, Magnetic Properties of Low-Dimensional Systems II, Springer Verlag, Berlin (1990).

[319] S. Prakash and C.L. Henley, Phys. Rev. B 42 (1990), p. 6574. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[320] M. Dantziger, B. Glinsmann, S. Scheffler, B. Zimmermann and P.J. Jensen, Phys. Rev. B 66 (2002), p. 094416. Full Text via CrossRef

[321] J. Dorantes-Dávila, H. Dreyssé and G.M. Pastor, Phys. Rev. Lett. 91 (2004), p. 197206.

[322] D.L. Mills, Phys. Rev. B 40 (1989), p. 11153. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[323] T. Tamaribuchi and M. Ishikawa, Phys. Rev. B 43 (1991), p. R1283.

[324] P.J. Jensen, S. Knappmann, W. Wulfhekel and H.P. Oepen, Phys. Rev. B 67 (2003), p. 184417. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[325] W. Wulfhekel, S. Knappmann, B. Gehring and H.P. Oepen, Phys. Rev. B 50 (1994), p. 16074. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[326] A. Aspelmeier, M. Tischer, M. Farle, M. Russo, K. Baberschke and D. Arvanitis, J. Magn. Magn. Mater. 146 (1995), p. 256. SummaryPlus | Full Text + Links | PDF (823 K) | Abstract + References in Scopus | Cited By in Scopus

[327] D. Venus, C.S. Arnold and M. Dunlavy, Phys. Rev. B 60 (1999), p. 9607. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[328] F. Beusch, G. Garreau, R. Moosbühler and G. Bayreuther, J. Appl. Phys. 89 (2001), p. 7133.

[329] H. Suzuki and T. Watanabe, J. Phys. Soc. Japan 30 (1970), p. 367.

[330] C.H. Back, A. Kashuba and D. Pescia, Phys. Low-Dimens. Semicond. Struct. 2 (1994), p. 9.

[331] A. Berger, U. Linke and H.P. Oepen, Phys. Rev. Lett. 68 (1992), p. 839. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[332] P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena, Wiley, London (1977).

[333] M.E. Zhitomirsky and T. Nikuni, Phys. Rev. B 57 (1998), p. 5013. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[334] M.E. Zhitomirsky and A.L. Chernyshev, Phys. Rev. Lett. 82 (1999), p. 4536. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[335] D. Petitgrand, S.V. Maleyev, Ph. Bourges and A.S. Ivanov, Phys. Rev. B 59 (1999), p. 1079. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[336] A.V. Syromyatnikov and S.V. Maleyev, Phys. Rev. B 65 (2002), p. 012401.

[337] B.B. Beard, R.J. Birgeneau, M. Greven and U.J. Wiese, Phys. Rev. Lett. 80 (1998), p. 1742. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[338] J.K. Kim and M. Troyer, Phys. Rev. Lett. 80 (1998), p. 2705. Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[339] H.Q. Ding, J. Phys.: Condens. Matter. 2 (1990), p. 7979. Abstract-INSPEC   | Order Document

[340] S.S. Aplesnin, Phys. Status Solidi (b) 207 (1998), p. 491. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[341] A. Cuccoli, T. Roscilde, V. Tognetti, R. Vaia and P. Verrucchi, Phys. Rev. B 67 (2003), p. 104414. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[342] M. Holtschneider, W. Selke and R. Leidl, Phys. Rev. B 72 (2005), p. 064443. Full Text via CrossRef

[343] P.J. Jensen, K.H. Bennemann, D.K. Morr, H. Dreyssé, Phys. Rev. B (2006) (in press).

[344] D.V. Dmitriev and V.Ya. Krivnov, Phys. Rev. B 70 (2004), p. 144414. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[345] W.F. Brown and S. Shtrikman, Phys. Rev. 125 (1962), p. 825. Full Text via CrossRef

[346] A. Aharony, Introduction to the Theory of Ferromagnetism, Oxford University Press, Oxford (1996).

[347] B. Dieny and A. Vedyayev, Europhys. Lett. 25 (1994), p. 723. Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[348] B. Heinrich, T. Monchesky and R. Urban, J. Magn. Magn. Mater. 236 (2001), p. 339. SummaryPlus | Full Text + Links | PDF (129 K) | Abstract + References in Scopus | Cited By in Scopus

[349] A. Thiaville and A. Fert, J. Magn. Magn. Mater. 113 (1992), p. 161. Abstract | Abstract + References | PDF (1026 K) | Abstract + References in Scopus | Cited By in Scopus

[350] X. Hu, Phys. Rev. B 55 (1997), p. 8382. Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[351] H.J. Elmers, J. Magn. Magn. Mater. 185 (1998), p. 274. Abstract | PDF (212 K) | Abstract + References in Scopus | Cited By in Scopus

[352] R. Arias and D.L. Mills, Phys. Rev. B 59 (1999), p. 11871. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[353] F. Porrati, W. Wulfhekel and J. Kirschner, J. Magn. Magn. Mater. 270 (2004), p. 22. SummaryPlus | Full Text + Links | PDF (322 K) | Abstract + References in Scopus | Cited By in Scopus

[354] L. Udvardi, R. Király, L. Szunyogh, F. Denat, M.B. Taylor, B.L. Györffy, B. Újfalussy and C. Uiberacker, J. Magn. Magn. Mater. 183 (1998), p. 283. SummaryPlus | Full Text + Links | PDF (379 K) | Abstract + References in Scopus | Cited By in Scopus

[355] A.P. Popov and D.P. Pappas, Phys. Rev. B 64 (2001), p. 184401. Full Text via CrossRef

[356] P. Betti, M.G. Pini and P. Politi, Phys. Rev. B 67 (2003), p. 012402. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[357] J. Chen and J.L. Erskine, Phys. Rev. Lett. 68 (1992), p. 1212. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[358] W. Weber, C.H. Back, A. Bischof, Ch. Würsch and R. Allenspach, Phys. Rev. Lett. 76 (1996), p. 1940. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[359] H.J. Choi, Z.Q. Qiu, E.J. Escorcia-Aparicio, J. Pearson, J.S. Jiang and S.D. Bader, Phys. Rev. B 57 (1998), p. R12713. Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[360] P. Bruno, J. Appl. Phys. 64 (1988), p. 3153. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[361] J.H. Wolfe, R.K. Kawakami, W.L. Ling, Z.Q. Qiu, R. Arias and D.L. Mills, J. Magn. Magn. Mater. 232 (2001), p. 36. SummaryPlus | Full Text + Links | PDF (220 K) | Abstract + References in Scopus | Cited By in Scopus

[362] E.W. Hill, S.L. Tomlinson and J.P. Li, J. Appl. Phys. 73 (1993), p. 5978. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[363] D. Altbir, M. Kiwi, R. Ramírez and I.K. Schuller, J. Magn. Magn. Mater. 149 (1995), p. L246. SummaryPlus | Full Text + Links | PDF (385 K) | Abstract + References in Scopus | Cited By in Scopus

[364] L. Hu, H. Li and R. Tao, Appl. Phys. Lett. 74 (1999), p. 2221. OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[365] N.C. Koon, Phys. Rev. Lett. 78 (1997), p. 4865. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[366] L.L. Hinchey and D.L. Mills, Phys. Rev. B 33 (1986), p. 3329. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[367] L. Néel, Ann. Phys. (Paris) 2 (1967), p. 61. Abstract + References in Scopus | Cited By in Scopus

[368] W.H. Meiklejohn and C.P. Bean, Phys. Rev. 105 (1957), p. 904. Full Text via CrossRef

[369] T.J. Moran, J. Nogués, D. Lederman and I.K. Schuller, Appl. Phys. Lett. 72 (1998), p. 617. Abstract-INSPEC   | Order Document | OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[370] L.L. Hinchey and D.L. Mills, Phys. Rev. B 34 (1986), p. 1689. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[371] N. Cramer and R.E. Camley, Phys. Rev. B 63 (2001), p. 060404. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[372] P.J. Jensen and H. Dreyssé, Phys. Rev. B 66 (2002), p. 220407. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[373] P.J. Jensen, H. Dreyssé and M. Kiwi, Eur. Phys. J. B 46 (2005), p. 541. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[374] Y. Ijiri, J.A. Borchers, R.W. Erwin, S.H. Lee, P.J. van der Zaag and R.M. Wolf, Phys. Rev. Lett. 80 (1998), p. 608. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[375] P. Miltényi, M. Gierlings, J. Keller, B. Beschoten, G. Güntherodt, U. Nowak and K.D. Usadel, Phys. Rev. Lett. 84 (2000), p. 4224. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[376] M. Finazzi, Phys. Rev. B 69 (2004), p. 064405. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[377] P. Fröbrich, P.J. Kuntz and P.J. Jensen, J. Phys.: Condens. Matter. 17 (2005), p. 5059. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[378] C.A. Ross, T.P. Nolan, R. Ranjan and D. Lu, J. Appl. Phys. 81 (1997), p. 7441. Abstract-INSPEC   | Order Document | OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[379] H.B. Callen and E.R. Callen, J. Phys. Chem. Solids 16 (1960), p. 310.

[380] H.B. Callen and E.R. Callen, J. Phys. Chem. Solids 27 (1966), p. 1271. Abstract | Abstract + References | PDF (1452 K)

[381] R. Pastor-Satorras and J.M. Rubí, Phys. Rev. Lett. 80 (1998), p. 5373. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[382] P.J. Jensen and G.M. Pastor, New J. Phys. 5 (2003), p. 68. Full Text via CrossRef

[383] R. Brinzanik, P.J. Jensen and K.H. Bennemann, J. Magn. Magn. Mater. 238 (2002), p. 258. SummaryPlus | Full Text + Links | PDF (377 K) | Abstract + References in Scopus | Cited By in Scopus

[384] R. Brinzanik, P.J. Jensen and K.H. Bennemann, Phys. Rev. B 68 (2003), p. 174414. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[385] P. Poulopoulos, P.J. Jensen, A. Ney, J. Lindner and K. Baberschke, Phys. Rev. B 65 (2002), p. 064431. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[386] U. Bovensiepen, P. Poulopoulos, W. Platow, M. Farle and K. Baberschke, J. Magn. Magn. Mater. 192 (1999), p. 386. SummaryPlus | Full Text + Links | PDF (125 K)

[387] J. Miltat, G. Alburquerque and A. Thiaville In: B. Hillebrands and K. Ounadjela, Editors, Spin Dynamics in Confined Magnetic Structures, Springer, Berlin (2001).

[388] H.W. Schumacher, C. Chappert, P. Crozat, R.C. Sousa, P.P. Freitas, J. Miltat, J. Fassbender and B. Hillebrands, Phys. Rev. Lett. 90 (2003), p. 017201. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[389] I. Zutic, J. Fabian and S. Das Sarma, Rev. Modern Phys. 76 (2004), p. 323. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[390] J.S. Moodera, L.R. Kinder, T.M. Wong and R. Meservey, Phys. Rev. Lett. 74 (1995), p. 3273. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[391] F. Gautier In: M. Cyrot, Editor, Magnetism of Metals and Alloys, North-Holland, Amsterdam (1982).

[392] W. Nolting, W. Borgiel, V. Dose and Th. Fauster, Phys. Rev. B 40 (1989), p. 5015. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[393] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal and P. Bruno, Phys. Rev. B 64 (2001), p. 174402. Full Text via CrossRef

[394] P. Weiss and R. Forrer, Ann. Phys. (Paris) 5 (1926), p. 153.

[395] S. Arajs and D.S. Miller, J. Appl. Phys. 31 (1960), p. 986. Full Text via CrossRef

[396] E.C. Stoner, Proc. Roy. Soc. A 154 (1936), p. 656.

[397] D.M. Roy and D.G. Pettifor, J. Phys. F 7 (1977), p. L183. Abstract-INSPEC   | Order Document

[398] V.L. Moruzzi, P.M. Marcus, K. Schwarz and P. Mohn, Phys. Rev. B 34 (1986), p. 1784. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[399] P.M. Marcus and V.L. Moruzzi, Phys. Rev. B 38 (1988), p. 6949. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[400] W. Nolting, Quantentheorie des Magnetismus vol. I + II, Teubner, Stuttgart (1986).

[401] A.A. Ruderman and C. Kittel, Phys. Rev. 96 (1954), p. 99.

[402] K. Yosida, Phys. Rev. 106 (1957), p. 893. Full Text via CrossRef

[403] G.M. Pastor, J. Dorantes-Dávila, S. Pick and H. Dreyssé, Phys. Rev. Lett. 75 (1995), p. 326. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[404] B. Lazarovits, L. Szunyogh and P. Weinberger, Phys. Rev. B 65 (2002), p. 104441. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[405] J. Hong and R.Q. Wu, Phys. Rev. B 67 (2003), p. R020406.

[406] J. Hong and R.Q. Wu, Phys. Rev. B 70 (2004), p. R060406.

[407] P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone and H. Brune, Science 300 (2003), p. 1130. Abstract-GEOBASE | Abstract-MEDLINE | Abstract-EMBASE | Abstract-INSPEC | Abstract-Elsevier BIOBASE | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[408] C. Herring and C. Kittel, Phys. Rev. 81 (1951), p. 869. Full Text via CrossRef

[409] W. Döring, Z. Naturforsch. 16A (1961), p. 1008. Abstract + References in Scopus | Cited By in Scopus

[410] P. Bruno, Phys. Rev. B 39 (1989), p. 865. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[411] A. Vernes, I. Reichl, P. Weinberger, L. Szunyogh and C. Sommers, Phys. Rev. B 70 (2004), p. 195407. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[412] L.M. Levinson, M. Luban and S. Shtrikman, Phys. Rev. 187 (1969), p. 715. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[413] P. Bruno, Magnetismus von Festkörpern und Grenzflächen, Forschungszentrum Jülich, Germany (1993).

[414] J. Trygg, B. Johansson, O. Erickson and J.M. Wills, Phys. Rev. Lett. 75 (1995), p. 2871. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[415] P. Fröbrich and P.J. Kuntz, Eur. Phys. J. B 32 (2003), p. 445. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[416] H.Y. Wang, C.Y. Wang and E.G. Wang, Phys. Rev. B 69 (2004), p. 174431. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[417] J. Jensen, J. Phys. F 4 (1974), p. 1065. Abstract-INSPEC   | Order Document

[418] P.A. Lindgård and O. Danielsen, J. Phys. C: Solid State Phys. 7 (1974), p. 1523. Abstract-INSPEC   | Order Document | Abstract + References in Scopus | Cited By in Scopus

[419] E. du Trémolet de Lacheisserie, Phys. Rev. B 51 (1995), p. 15925. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[420] T. Dietl, H. Ohno and F. Matsukura, Phys. Rev. B 63 (2001), p. 195205. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[421] A.J. Bennett and B.R. Cooper, Phys. Rev. B 3 (1971), p. 1642. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[422] H. Takayama, K.P. Bohnen and P. Fulde, Phys. Rev. B 6 (1976), p. 2287. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[423] J.P. Gay and R. Richter, Phys. Rev. Lett. 56 (1986), p. 2728. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[424] J.P. Gay and R. Richter, J. Appl. Phys. 61 (1987), p. 3362. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[425] G.H.O. Daalderop, P.J. Kelly and M.F.H. Schuurmans, Phys. Rev. B 42 (1990), p. 7270. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[426] G.H.O. Daalderop, P.J. Kelly and F.J.A. den Broeder, Phys. Rev. Lett. 68 (1992), p. 682. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[427] S. Pick and H. Dreyssé, Phys. Rev. B 48 (1993), p. 13588. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[428] L. Szunyogh, B. Ujfalussy and P. Weinberger, Phys. Rev. B 51 (1995), p. 9552. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[429] B. Ujfalussy, L. Szunyogh and P. Weinberger, Phys. Rev. B 54 (1996), p. 9883. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[430] B. Ujfalussy, L. Szunyogh, P. Bruno and P. Weinberger, Phys. Rev. Lett. 77 (1996), p. 1805. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[431] L. Szunyogh, B. Ujfalussy, P. Bruno and P. Weinberger, J. Magn. Magn. Mater. 165 (1997), p. 254. SummaryPlus | Full Text + Links | PDF (379 K) | Abstract + References in Scopus | Cited By in Scopus

[432] U. Pustogowa, J. Zabloudil, C. Uiberacker, C. Blaas, P. Weinberger, L. Szunyogh and C. Sommers, Phys. Rev. B 60 (1999), p. 414. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[433] R. Hammerling, C. Uiberacker, J. Zabloudil, P. Weinberger, L. Szunyogh and J. Kirschner, Phys. Rev. B 66 (2002), p. 052402. Full Text via CrossRef

[434] I. Reichl, A. Vernes, P. Weinberger, L. Szunyogh and C. Sommers, Phys. Rev. B 71 (2005), p. 214416. Full Text via CrossRef

[435] J.H. Wu, H.Y. Chen and W. Nolting, Phys. Rev. B 65 (2002), p. 014424.

[436] O. Hjortstam, K. Baberschke, J.M. Wills, B. Johannson and O. Eriksson, Phys. Rev. B 55 (1997), p. 15026. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[437] C. Uiberacker, J. Zabloudil, P. Weinberger, L. Szunyogh and C. Sommers, Phys. Rev. Lett. 82 (1999), p. 1289. Abstract-INSPEC   | Order Document | Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[438] J. Dorantes-Dávila and G.M. Pastor, Phys. Rev. Lett. 77 (1996), p. 4450. Full Text via CrossRef | APS full text | Abstract + References in Scopus | Cited By in Scopus

[439] S. Pick and H. Dreyssé, Phys. Rev. B 63 (2000), p. 205427.

[440] D.C. Douglass, J.P. Bucher and L.A. Bloomfield, Phys. Rev. Lett. 68 (1992), p. 1774. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[441] T. Moos, W. Hübner and K.H. Bennemann, Solid State Commun. 98 (1996), p. 639. SummaryPlus | Full Text + Links | PDF (585 K) | Abstract + References in Scopus | Cited By in Scopus

[442] T. de Simone and R.M. Stratt, Phys. Rev. B 32 (1985), p. 1537. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[443] P.J. Jensen and K.H. Bennemann, Ann. Phys. (Leipzig) 2 (1993), p. 475. Abstract-INSPEC   | Order Document

[444] Y. Millev and M. Fähnle, J. Magn. Magn. Mater. 135 (1994), p. 284. Abstract | Abstract + References | PDF (563 K) | Abstract + References in Scopus | Cited By in Scopus

[445] Y. Millev and M. Fähnle, Phys. Rev. B 51 (1995), p. 2937. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[446] Y. Millev and M. Fähnle, Phys. Rev. B 52 (1995), p. 4336. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[447] A. Ecker, P. Fröbrich, P.J. Jensen and P.J. Kuntz, J. Phys.: Condens. Matter. 11 (1999), p. 1557. Abstract-INSPEC   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[448] H.B. Callen and S. Shtrikman, Solid State Commun. 3 (1965), p. 5. Abstract | Abstract + References | PDF (381 K)

[449] S.V. Tyablikov, Methods in the Quantum Theory of Magnetism, Plenum Press, New York (1967).

[450] K. Elk and W. Gasser, Die Methode der Greenschen Funktionen in der Festkörperphysik, Akademie-Verlag, Berlin (1979).

[451] S.V. Tyablikov, Ukrain. Mat. Zh. 11 (1959), p. 287. MathSciNet

[452] F.B. Anderson and H.B. Callen, Phys. Rev. (1964), p. A1068. Full Text via CrossRef

[453] M.E. Lines, Phys. Rev. 156 (1967), p. 534. Full Text via CrossRef

[454] P.J. Jensen and F. Aguilera-Granja, Phys. Lett. A 269 (2000), p. 158. SummaryPlus | Full Text + Links | PDF (64 K) | Abstract + References in Scopus | Cited By in Scopus

[455] J.F. Devlin, Phys. Rev. B 4 (1971), p. 136. Abstract-INSPEC   | Order Document | Full Text via CrossRef

[456] P. Fröbrich, P.J. Kuntz and M. Saber, Ann. Phys. (Leipzig) (2002), p. 387. Abstract-INSPEC | Abstract-Compendex   | Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[457] I. Junger, D. Ihle, J. Richter and A. Klümper, Phys. Rev. B 70 (2004), p. 104419. Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

[458] I.M.L. Billas, A. Châtelain and W.A. deHeer, Science 265 (1994), p. 1682. Abstract + References in Scopus | Cited By in Scopus



Corresponding Author Contact InformationCorresponding author. Tel.: +49 30 83851178; fax: +49 30 83857422.


This Document
SummaryPlus
Full Text + Links
PDF (6983 K)
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation
Surface Science Reports
Volume 61, Issue 3 , May 2006, Pages 129-199


Results ListPrevious 2 of 2 No Next Document
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)

Contact Us  |  Terms & Conditions  |  Privacy Policy

Copyright © 2006 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.