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Abstract

In X-ray photon correlation spectroscopy (XPCS) the degree of coherence of the X-ray beam determines the contrast

of the observed intensity correlation function. In this article, we present XPCS measurements of smectic liquid crystal

membranes in a reflectivity geometry showing that both coherence and resolution can influence the time dependence of

the correlation function. Variation of the pre-detector slits as well as of the projected coherence length on the membrane

induce a time dependence of the intensity correlation function. We also treat several practical aspects and limitations we

encountered during our XPCS studies. Finally the conditions for heterodyne detection at the specular ridge and hom-

odyne detection at off-specular conditions are discussed.
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1. Introduction

During the last decade the development of

third-generation synchrotrons made it possible to

extend dynamic light scattering or photon correla-

tion spectroscopy (PCS) into the X-ray domain
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[1–6]. This allowed to probe dynamics on molecu-
lar length scales as well as the use of optically

dense samples inappropriate for conventional light

scattering. In recent years several publications

have appeared reporting results of the application

of X-ray photon correlation spectroscopy (XPCS)

to soft condensed matter systems [7–19]. The

coherent properties of X-rays have been discussed

in [20], sources of decoherence of the optics in
[21]. In the absence of X-ray lasers a paramount
ed.

mailto:irakli@amolf.nl 


1.175 1.180 1.185 1.190 1.195 1.200

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

ns
ity

 / 
10

4 
cp

s

Fig. 1. Rocking curve of a 13-layer FPP membrane at the

Bragg position. The almost perfect uniformity is reflected in the

FWHM of 0.7 mdeg.
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problem in XPCS is to get sufficient scattered

intensity. A sufficient degree of coherence can only

be obtained by selecting via a pinhole the central

flat wavefront from an incoherent source at large

distance. For the small wavelength involved in
X-rays the beam must be collimated down to mi-

cron size, which results in a large loss of intensity.

In addition effects of beam damage put a limit on

the incoming flux of the X-rays that can be ac-

cepted. As a consequence scattering geometries

have to be used in XPCS that differ from those in

conventional PCS. This has unveiled new ways in

which both the coherence properties of light and
the resolution of the setup influence the measure-

ments. These effects are the main subject of this

paper. In addition we discuss several other techni-

cal aspects and limitations we encountered during

our XPCS studies of smectic membranes, including

heterodyne vs. homodyne detection schemes.

In smectic-A liquid crystals the elongated mole-

cules are organized in stacks of layers in which the
long molecular axes are, on average, parallel to the

layer normal. Hence a periodic structure exists in

one dimension: the rod-like molecules form a den-

sity wave along the layer normal, while the system

remains fluid in the other two directions. In smec-

tic membranes the material is suspended over an

opening in a solid frame [22]. They have a high de-

gree of uniformity and a controlled thickness rang-
ing from two to over thousands of layers. Smectic

membranes provide excellent model systems for

XPCS experiments [23–26]. The nearly perfect

alignment of the smectic structure by the surfaces

allows us to obtain intense and narrow reflections

(see Fig. 1). This property makes smectic mem-

branes particularly suitable for the use in a high-

resolution XPCS setup. The one-dimensional
ordering of the smectic layers leads to strong fluc-

tuations in the system. Defining u(r) as the layer

displacement from its equilibrium position, Æu2(r)
is found to diverge logarithmically with the sample

size (Landau–Peierls instability) [27], finally

destroying the ordering. However, the divergence

is slow, which opens the possibility to prepare fi-

nite-size samples. These fluctuations generate
undulations of the membrane, which can be mea-

sured using dynamic light scattering techniques

including XPCS.
The intensity of X-rays scattered with a wave

vector q is defined by the dynamic structure factor

S(q,t), which is related to the layer-displacement

correlation function Æu(r1,0)u(r2,t)æ. Because of

the Landau–Peierls instability such a correlator di-

verges when the wave vector of the fluctuations

approaches q ! 0. To avoid this complication a
cut-off parameter has been introduced, which de-

fines the longest wavelength of the fluctuation

present in the system [28]. For finite-size mem-

branes this parameter is expected to be at the order

of the lateral dimension of the membrane. How-

ever, fitting of the experimental data revealed that

the cut-off value was closer to the footprint of the

beam on the surface of the membrane [25,26]. This
result establishes a connection with the dimension

of the coherently illuminated volume of the sample

from which the scattering image (speckle pattern)

originates. The coherence volume is determined

by the area of the sample over which the phase

of the incident beam remains correlated. For a fi-

nite-size source the transverse correlation length

is defined as the distance across the wavefront be-
tween points with a phase difference of p (or p/2, p/
4 depending on convention). For a complex opti-

cal system the phase profile over the wavefront is

more intricate. In this case one can describe the

coherence properties of the beam by the complex

degree of coherence l(r1,r2) = ÆE(r1,t)E*(r2,t)æ. This
parameter can be measured in, for instance, a dou-

ble slit experiment. In that situation, the transverse
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coherence length can be identified with the slit

separation corresponding to the maximum of the

zeroth order of l(r1,r2). However, maxima corre-

sponding to higher orders of l(r1,r2) are present

that manifest phase correlations in the wavefront
at longer distances. The latter correlations could

play a vital role as they probe fluctuations with a

long wavelength that provide a dominant contri-

bution to S(q,t), since they diverge for q ! 0.

The arguments given above suggest that varia-

tions of the scattering volume could lead to differ-

ent relaxation profiles. In the following sections,

we present several experiments illustrating this
statement. First we show that variation of the

detector slits results in a shift of the correlation

function. Subsequently, we discuss changes of the

projection of the coherence length that also induce

a time dependence of intensity correlation func-

tion. Finally the question of homodyne vs. hetero-

dyne detection will be considered.
2. Theoretical background

2.1. Coherence of X-ray radiation and XPCS

Superposition of waves with a different phase

leads to the phenomenon of interference. In the

classical interpretation of scattering the interfer-
ence of secondary waves is considered. In the ideal

case the incident wave has a constant frequency

and originates from either a point source or a

source at infinite distance. This means that the

phases of the wave in any two points and at any

two times are correlated. In reality a beam repre-

sents a superposition of waves generated by a

source that is composed of many correlated or
chaotic emitters positioned at a finite distance

from the observer. In that situation correlations

between the phase at two different points decrease

for larger distances and longer time intervals

between the measurements. The term coherence

describes to which extent a real beam resembles a

single wave and is expressed in two length scales:

the longitudinal (or temporal) and the lateral
coherence length. The longitudinal coherence

length defines the distance between two points

along the propagation direction of the beam for
which the correlation between the phases is lost.

An equivalent picture uses the coherence time,

defined as the time interval for which correlations

are lost for the phase at a fixed point. Such a dec-

orrelation of the phases can occur as a result of the
superposition of waves with different frequencies.

If we define the frequency difference as Dx and

take waves to be out of phase for a difference of

2p, the coherence time is given by tcoh = 2p/Dx.
Depending on the convention used for the defini-

tion of the out-of-phase waves, in this definition

the factor two could be removed.

XPCS experiments are based upon optical mix-
ing as used in dynamic light scattering [29,30]. The

scattered intensity is integrated out at the detector

without any prior filtering. The recorded intensity

is fed into a hardware autocorrelator that com-

putes the normalized intensity correlation

function,

g2ðsÞ ¼
hIðtÞIðt þ sÞi

hIðtÞi2
; ð1Þ

where I(t) = |E(t)|2 is the intensity at the detector.

Similarly we can define

g1ðsÞ ¼
hEðtÞE�ðt þ sÞi

hIðtÞi : ð2Þ

The time dependence in the field correlator in

this equation is somewhat delicate. The phase of

the wave in the incident beam is correlated on

the scale of the coherence time tcoh, which is in

our setup of the order of 10�14 s. Obviously any

dynamic event to be measured is orders of magni-
tude slower at timescales for which the phases of

the incident waves are not correlated anymore.

To obtain useful information we should consider

in Eq. (2) correlations of the amplitude of the scat-

tered field only.

The wave field E(t) scattered from a particular

coherence volume interferes with itself but not

with the field originating from neighboring volume
elements. As a result, we can represent the scatter-

ing intensity as a sum of intensities scattered by

each coherence region. Each component is related

to the structure within the coherence volume and if

this structure is changing in time the scattered

intensity will also exhibit a time dependence. On

the basis of this approach, we can express the
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scattered intensity and the intensity correlator of

Eq. (1) as

hIðtÞi ¼
XM
i¼1

hI iðtÞi;

hIðtÞIðt þ sÞi ¼
XM
i;j¼1

I iðtÞIjðt þ sÞ
* +

¼
XM
i¼1

hI iðtÞI iðt þ sÞi

þ
XM
i¼1

hI iðtÞi
XM
j¼1

hIjðtÞi;

ð3Þ

where M is the number of coherence regions. Fur-

thermore we used the property that the scattered

intensities from different coherence volumes are
not correlated and ÆIi(t)Ij(t + s)æ = ÆIæ2 if i 6¼ j.

According to Eq. (3) both the first, time-dependent

term in ÆI(t)I(t + s)æ and ÆI(t)æ increase proportion-
ally to the number of coherence volumes in the

scattering region. Consequently g2(s) will decrease
if the number of coherence volumes increases.

Maximum performance is achieved for a spatially

highly coherent beam in which the coherence and
the scattering volume match.

In optical mixing experiments we can distin-

guish homodyne and heterodyne detection

schemes. The homodyne mode works with a super-

position of the scattered fields E(t) =
P

Es(t), while

in heterodyne scheme the field Es(t) scattered by

the sample is mixed with the field Eref scattered

from a local oscillator. If in the homodyne situa-
tion the fields Es(t) are statistically independent

random variables, E(t) will follow a Gaussian dis-

tribution that is completely characterized by its

first and second moment. This implies that for

the homodyne scheme the intensity correlator in

g2(t) – which is a 4-field correlator – can be ex-

pressed through the 2-field correlator,

g2ðsÞ ¼ 1þ jg1ðsÞj
2
: ð4Þ

This expression is known as the Siegert relation.

It is valid for systems with many independent scat-

terers or when we have many coherence volumes
within a scattering region (although this situation

is unfavorable from the experimental point of

view; see above). A direct consequence of Eq. (4)
is that g2(s) P 1. When the scatterers become cor-

related, collective effects come into play and Eq.

(4) is not longer valid. In Section 3, we will

encounter correlation functions with time intervals

where g2(s) < 1.
In the case of heterodyne mixing an additional

source is present. This field Eref does not depend

on time and can interfere with Es(t) from the sam-

ple: E(t) = Eref + Es(t). In PCS experiments a spe-

cial grating is often placed in the beam to create

a strong secondary source, which increases the sen-

sitivity of the instrument. This can be seen from

the expression for g2(s); assuming |Eref| � |Es(t)|,
we can write,

hIðtÞIðt þ sÞi � I2ref þ 2I sI refRe ½g1ðsÞ�: ð5Þ
Compared to the homodyne regime two points

are remarkable. First we observe in heterodyne re-

gime g1(s) and not its squared value. This has a di-

rect implication on the relaxation time observed in

the homodyne and heterodyne detection schemes.

Particularly, if g1(s) decays exponentially with

the relaxation time s, than in homodyne experi-

ment based on Eq. 4 we would observe the relaxa-

tion time s/2, while in heterodyne mode according
to Eq. (5) we would detect time s [31]. In Section

4.3, we would use this fact in the interpretation

of the experimental data. Second the intensity of

the local oscillator amplifies the contribution of

the weakly scattered signal, which makes hetero-

dyne detection the preferred choice in PCS. As

we shall see in Section 4.3 this increase in intensity

does not necessary lead to an increase in contrast
of the correlation function.

The static reference field does not necessarily

have to be external but can come from the sample

itself. If we can separate the scattered intensity

from the sample into a time-dependent and a

time-independent part, similar arguments as used

above can be applied [32]. A linear dependence

exists between the scattered field and the elec-
tron-density profile of the sample, which can be

expressed in the form,

Eðq; tÞ ¼
Z

drqðr; tÞRðq; rÞe�iðq�rÞ; ð6Þ

where R(q,r) includes resolution-dependent factors

and possible Fresnel corrections [33]. If we split
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the density into a time-dependent and a time-inde-

pendent part q(r,t) = q0(r) + Dq(r,t), we can

decompose the scattered field E(q,t) into two com-

ponents. The first part is defined by the average

distribution of the scatterers and thus will be
time-independent. The second term accounts for

the deviation of the scatterers from their average

positions, resulting in the time-dependent compo-

nent. Obviously the two components interfere with

each other thus fulfilling the requirements for het-

erodyne detection. The consequences for the

geometries chosen in the experiments on smectic

membranes (for example at the quasi-Bragg posi-
tion and off-specular) will be discussed in Section

4.3.

A more rigorous description of the scattering of

partially coherent light can be given using the mu-

tual coherence function l(r1,r2) = ÆE(r1,t)E*(r2,t)æ
that can be represented in the following form [33]:

lðr1; r2Þ ¼ hEðr1; tÞE�ðr2; tÞi
¼ Wðr1ÞWðr2Þgðr1 � r2ÞI=A: ð7Þ

Here, A is the scattering area to be integrated

over, W(r) is an amplitude factor and g(r1 � r2) a

coherence factor. The latter can be related to the

transverse coherence lengths nx and ny according to

gðr1 � r2Þ ¼ exp �ðx1 � x2Þ2

2n2x

 !
exp �ðy1 � y2Þ

2

2n2y

 !
:

ð8Þ

Using Eq. (7) we can write the structure factor

St(q) at time t in the following form:

StðqÞ ¼
Z

dr1 dr2e
�iqðr1�r2ÞWðr1ÞWðr2Þgðr1 � r2Þ

� F ðr1; r2Þhqðr1Þqðr2Þi; ð9Þ

where F(r1,r2) contains the Fresnel phase factors

[33]. Note that this is not a time-averaged expres-

sion but refers to the scattered intensity I(t) at a

particular time t. In order to include the finite res-

olution of the setup, we must convolute St(q) with
the resolution function R(q) that defines the range

of scattering vectors (Dqx,Dqy) probed at momen-

tum transfer q.

The Fourier transform eRðr1 � r2Þ of the resolu-
tion function can be expressed in a Gaussian form

as [34],
eRðr1 � r2Þ ¼ exp � 1

2
Dq2xðx1 � x2Þ2

� �
� exp � 1

2
Dq2yðy1 � y2Þ

2

� �
ð10Þ

and this form can be incorporated into the expres-

sion for St(q):

StðqÞ ¼
Z

dr1 dr2e
�iqðr1�r2ÞWðr1ÞWðr2Þgðr1 � r2Þ

� eRðr1 � r2ÞF ðr1; r2Þhqðr1Þqðr2Þi: ð11Þ

The coherence volume is defined through

g(r1 � r2) and eRðr1 � r2Þ by the transverse �inci-
dent� coherence lengths nx and ny. Note that the

coherence of the radiation at some point r is de-

fined by the whole optical system [20]. From Eqs.

(8), (10) and (11), we note that the coherence prop-

erties of the incident beam and the resolution of
the setup have a similar influence on the scattering

function. Hence, we can combine in an heuristic

way g(r1�r2) and eRðr1 � r2Þ into an �effective� reso-
lution of the setup given by

D0q2x ¼ Dq2x þ 1=n2x ;

D0q2y ¼ Dq2y þ 1=n2y :
ð12Þ

In Section 4.1, we will present experiments dis-

playing the effects of resolution changes and mod-

ifications of the coherence volume on the XPCS

data.
2.2. Dynamics of fluctuations in smectic membranes

A smectic liquid crystal membrane can be repre-

sented as a stack of liquid layers at an average po-

sition z + nd. The density distribution in such a

stack can be written as a convolution of the single

layer density profile qz(z) with the actual layer

position [28]:

qðR; tÞ ¼
Z

dz0qsðz0Þ
XN
n¼0

dðz0 � ðzþ ndÞ � unðr; tÞÞ;

ð13Þ
where R = (r,z). Using this form we can translate

density fluctuations in terms of the correlator of

the layer displacements, which can be expressed
in a Fourier form as [35]:
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membrane; q^ is the wave vector of the fluctuations.
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h½uðr1; 0Þ � uðr2; tÞ�2i ¼
1

ð2pÞ2
Z 2p=b

2p=K
dq?ðGðq?; 0Þ

� Jðq?jr1 � r2jÞGðq?; tÞÞ:
ð14Þ

Now G(q^,t) = Æu*(�q^,0)u(q^,t)æ is the correlator

of a single Fourier component of the layer dis-

placement fluctuations with wave vector q^. The

upper integration limit is given by the intermolec-
ular distance b. On this scale the continuum

theory used to describe the fluctuations of the

smectic layers breaks down. The presence of the

lower limit in the integral is related to the Lan-

dau–Peierls instability. The divergence of the fluc-

tuations is restricted by the finite size of the

sample. In the present case, the cut-off parameter

K is related to the lateral size of the smectic
membrane.

In the high-compressibility limit all the layers

in a membrane undulate �unisono� and the layer

displacement u(r,t) depends only on the lateral

coordinates. In this case G(q^,t) can be written

as

Gðq?; tÞ ¼
kBT s1s2

Lq0ðs1 � s2Þ
s1 exp � jtj

s1

� ��
� s2 exp � jtj

s2

� ��
; ð15Þ

where kBT is the Boltzman factor, L the thick-

ness of the membrane and q0 the density. The

times s1 and s2 are determined by the dispersion

relation,

1

s1;2
� g3q

2
?

2q0

1� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8q0c
q2?g

2
3L

� 1

s !
	 aðq?Þð1� if ðq?ÞÞ: ð16Þ

Here, g3 is the layer shear viscosity coefficient and

c the surface tension. Introducing relaxation times

in the form given in Eq. (16) into Eq. (15) in case

of the small q^ we find that f(q^) is real and Eq.

(15) can be rewritten as

Gðq?; tÞ ¼
e�aðq?Þt

a4ðq?Þf ðq?Þ 1þ f 2ðq?Þ½ �
3
2

� sinfaðq?Þf ðq?Þt þ arctan½f ðq?Þ�g:
ð17Þ
In this situation the relaxation behavior shows a

combination of exponential decay and oscillations.

For large q^, f(q^) becomes imaginary and we can

express G(q^,t) as

Gðq?; tÞ ¼
e�aðq?Þt

a4ðq?Þjf ðq?Þj 1� jf ðq?Þj
2

h i3
2

� sinhfaðq?Þjf ðq?Þjt þ arctanh½jf ðq?Þj�g:
ð18Þ

In the situation described by this equation the fluc-
tuations exhibit a pure exponential damping.

Fig. 2 summarizes the dependence of the relax-

ation time on the wave vector of the fluctuation

according to Eq. (16) for typical smectic parame-

ters [22]. For fluctuations with a small wave vector

the effect of inertia results in an oscillatory damp-

ing and the relaxation times s1,2 are complex con-

jugate values. The transition point is defined by the
cross-over value q^,c where the relaxation times

s1,2 become real. Above this value the fluctuations

show an overdamped relaxation. Depending on

the experimental situation the intensity correlation

function is dominated by either oscillatory or over-

damped fluctuations, resulting in oscillatory or

exponential decay of the intensity correlation func-

tion, respectively [25].
In actual experiments the parameter K intro-

duced in Eq. (14) has been found to represent

the largest relevant wavelength from the full fluc-
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tuation spectrum [25]. It has a direct influence on

the time profile of the intensity correlation func-

tion. According to Fig. 2, in the complex mode

the relaxation time of a specific fluctuation in-

creases with the wavelength. Hence a larger value
of K leads to the shift of the correlation function

to the longer times. As we shall see the choice of

the relevant value of K is of major importance in

the interpretation of the XPCS data on smectic

membranes.
Membrane surface

Scattering plane

x

y

z

Fig. 3. Scattering geometry.
3. Experimental

XPCS experiments have been performed at the

undulator beamline ID10A (Troı̈ka I) of the

European Synchrotron Radiation Facility

(ESRF, Grenoble). The measurements have been

carried out in the uniform filling mode of the

storage ring (992 bunches at intervals of 2.8

ns). Time interval between bunches in the storage
ring give a fundamental time limit for XPCS

measurements. Preliminary collimation is done

by a set of preliminary slits of 300 · 300 lm2

and 200 · 200 lm2 at 33 and 43 m from the

source, respectively. A single-bounce Si(111)

monochromator operating in a horizontal scatter-

ing geometry selects energies of 8 or 13.4 keV,

corresponding to the third and fifth harmonic
of the undulatior radiation, leading to a wave-

length k of 0.155 or 0.925 nm, respectively. Sub-

sequently, the beam is reflected by a Si mirror to

suppress higher order harmonics. The sample po-

sition is at a distance of 45 m from the source

with full-width-at-half-maximum (FWHM)

dimensions of 928 · 23 lm2 (H · V). The trans-

verse coherence length, taken as kR/s, in which
R the distance between the source and the sample

and s the size of the source, is ~10 lm in the

horizontal direction (nH) and ’100 lm in the

vertical direction (nV). A compound refractive

beryllium lens is used to increase the incident

intensity by focusing the beam in the vertical

direction. Focusing reduces nV, matching it to

the coherence length nH in the horizontal direc-
tion. The longitudinal coherence length nl of

about 1.5 lm is determined by the bandpass of

the monochromator Dk/k � 10�4.
We used 10 and 100 lm pinholes in front of the

sample to select the spatially coherent part of the

beam. The beam incident on the sample was ob-

served to be structured. These distortions are

attributed to speckles occurring from imperfec-
tions in the windows and other optical elements

in the beam path, and cause some uncertainty in

the spatial coherence lengths of the beam. Guard

slits were placed after the pinhole to remove para-

sitic scattering. The coherent photon flux at the

sample was for a 10 lm pinhole about 1 · 109

counts s�1/100 mA at 8 keV and about 3 · 107

counts s�1/100 mA at 13.4 keV. Fig. 3 gives the
scattering geometry.

A fast avalanche photodiode (Perkin Elmer

C30703) [36] with an intrinsic time resolution [4

ns was used as detector at a distance of 1.5 m from

the sample, with pre-detector slit gaps varying

from 0.01 to 0.2 mm. The resolution of the setup

was estimated as Dqx � 10�4 nm�1 and

Dqy = Dqz � 10�3 nm�1. The intensity–intensity
time auto-correlation function was measured in

real time using a hardware multiple-tau digital

autocorrelator FLEX01-8D (correlator.com, sam-

pling time down to 8 ns). Thanks to the perfect

match between the millidegree mosaicity of the

smectic membranes and the high resolution of

the setup we could reach count rates in the range

of tens of MHz.
We have studied membranes of three smectic-A

compounds: 4-octyl-4 0-cyanobiphenyl (abbrevi-

ated as 8CB), N-(4-n-butoxybenzilidene)-4-n-octy-
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laniline (4O.8) and 4-heptyl-2-[4-(2-perfluorhexyl-

ethyl)phenyl]-pyrimidin (FPP). Structural formu-

las and transition temperatures have been given

in [25,26]. The measurements were done at temper-

atures at the lower end of the smectic-A range, at
T = 27 �C for 8CB, at T = 50 �C for 4O.8 and at

T = 100 �C for FPP. Membranes were stretched

to about 5–10 mm using 15 and 25 mm wide

frames with movable blades. For the XPCS mea-

surements they were placed inside a two-stage

oven with thin kapton windows. The oven was

pumped down to 103 Pa to prevent parasitic

X-ray scattering from air and possible sample deg-
radation. Membrane thicknesses in the range of

0.5–20 lm were determined by optical reflectome-

try [37,38] and up to 3 lm from the interference

fringes measured by specular X-ray reflectivity.
4. Results and discussion

4.1. Resolution effects from the pre-detector slits

In this section, we illustrate the influence of the

resolution of the setup on the time dependence of

the intensity relaxation function at the quasi-

Bragg peak of FPP (q0 = 2.14 nm�1) by changing

the detector slit in either the horizontal or the

vertical direction. A first set of measurement
was made with a 10-lm pinhole and a horizontal

scattering plane (vertical membrane). The results

are displayed in Fig. 4. Opening of the horizontal
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Fig. 4. Correlation functions from a 1.7-lm vertical FPP membrane (1
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mm. Fit parameters in Table 1.
detector slit results in a strong loss of contrast

and a shift of the correlation function towards

longer relaxation times. On the other hand open-

ing the vertical (out-of-plane) detector slit leads

only to minor changes. Similar results are found
in the case of a horizontal membrane (vertical

scattering plane), in which the horizontal and ver-

tical slits switch over their roles. In Fig. 5, we

give results for a 100-lm pinhole (vertical mem-

brane). In this case both the vertical and the hor-

izontal slit influences the correlation function,

slowing down the correlation time while also

the contrast diminishes.
In order to quantify the observed changes one

could attempt a direct fit to Eq. (17) for G(q^,t).

However, because of the complicated intrinsic q-

dependence, which has to be integrated out, we

started with a more empirical approach based on

a similar functional dependence (oscillatory

relaxation):

hIðq; 0ÞIðq; tÞi ¼ A expð�t=sÞ sinðxt þ /Þ: ð19Þ
Here A, s, x and / are fitting parameters repre-

senting contrast, relaxation time, frequency and

phase. The results for the curves from Fig. 4 and

Fig. 5 are given in Table 1 and Table 2, respec-

tively. The frequency of the oscillatory part is con-

stant for vertical membranes. On the other hand
the phase factor remains overall constant within

the experimental accuracy. The results for contrast

and relaxation times can be summarized as

follows:
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slit (from top to bottom): 0.01, 0.03, 0.06, 0.1, 0.2 mm. Right: horizontal slit fixed at 0.02 mm, vertical slit (from top to bottom): 0.01,

0.03, 0.06, 0.1, 0.2 mm. Fit parameters in Table 2.

Table 1

Fitting parameters to Eq. (19) for the correlation functions of the vertical FPP membrane of Fig. 4 (10 lm pinhole)

In-plane slit/mm A ± 0.01 (s ± 0.1)/ls Out-of-plane slit/mm A ± 0.01 (s ± 0.1)/ls

0.03 0.29 3.8 0.01 0.33 3.9

0.06 0.22 4.6 0.03 0.31 3.9

0.1 0.16 5.2 0.06 0.29 3.9

0.2 0.08 5.7 0.1 0.26 4.0

0.2 0.24 4.0

Left: vertical slit fixed at 0.02 mm. Right: horizontal slit fixed at 0.02 mm; x = 0.30 ± 0.02 ls�1, / = 1.9 ± 0.1.

Table 2

Fitting parameters to Eq. (19) for the correlation functions of the vertical FPP membrane of Fig. 5 (100 lm pinhole)

In-plane slit/mm A ± 0.01 (s ± 0.1)/ls Out-of-plane slit/mm A ± 0.01 (s ± 0.1)/ls

0.01 0.16 4.6 0.01 0.22 4.3

0.03 0.14 5.3 0.03 0.13 5.3

0.06 0.1 6.5 0.06 0.08 6.0

0.1 0.07 7.1 0.1 0.05 6.1

0.2 0.04 7.8 0.2 0.04 6.5

Left: vertical slit fixed at 0.02 mm. Right: horizontal slit fixed at 0.02 mm; x = 0.29 ± 0.02 ls�1, / = 1.8 ± 0.1.
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 For the 10-lm pinhole increasing the in-plane

pre-detector slit leads to: (i) an important loss

of contrast, and (ii) an increase of the relaxation

time. Increasing the out-of-plane detector slits
gives: (i) a small but significant decrease of con-

trast and (ii) no change of the relaxation time.

These results are independent on whether the

scattering plane is horizontal or vertical. Note

that a decrease of contrast is not necessarily

connected with a variation of the correlation

time.

 For the 100-lm pinhole the initial contrast is

less than in the previous case. Upon increasing

the width of a pre-detector slit (either in-plane

or out-of-plane) the contrast is strongly reduced
and the relaxation time increases.

The size of the 10-lm pinhole is less or about

equal to the vertical and horizontal coherence

length, respectively. Hence the radiation passed

through has approximately symmetric coherence.

For in-plane scattering the projection of the
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coherence length nx on the surface of the mem-

brane is at the quasi-Bragg angle about 300 lm
(the size of the footprint of the beam). In the out-

of plane direction it is still about the size of the pin-

hole. In the latter direction one or just a few speck-
les are accepted by the detector and further opening

of the vertical slit leads to a moderate decrease in

contrast. However, in the scattering plane at least

ten times more speckles will be received by the

detector, and further opening will strongly reduce

the contrast which in fact almost disappears. The

�effective� resolution Dq0x Eq. (12) is determined by

the largest of the two values 1/nx 6 10�5 nm�1

and Dqx . 10�4 nm�1. Hence for in-plane scatter-

ing Dq0x is mainly determined by the resolution of

the setup. When we open the detector slits we in-

crease the resolution, and thus the cut-off wave-

length K, leading to a larger relaxation time.

For in-plane scattering, in the case of a 100-lm
pinhole we have factor 10 larger footprint than for

a 10-lm pinhole. However, the projection of the
coherence length nx on the surface of the mem-

brane is still about the same. Hence we can apply

essentially the same arguments as in the 10-lm
case. For the out-of-plane scattering the beam size

is now about 100 lm while the coherence length is

of the same order. This brings the out-of-plane

behavior to the same scale as discussed for the

in-plane scattering, resulting in the similar behav-
ior observed experimentally. In conclusion, these

results illustrate that in the present coherent exper-

iments the whole set-up after the pinhole should be

considered as �sample�.

4.2. Dependence of the relaxation on qz

So far we have been working exclusively at the
quasi-Bragg peak corresponding to the layer struc-

ture of the smectic membranes. Moving along the

specular ridge provides a means of varying the

projection of the beam (and thus of the coherence

length) on the surface of the membrane. To

achieve a high enough count rate at different spec-

ular positions, we measured a relatively thin 13-

layer 4O.8 membrane, giving broad Kiessig fringes
(see Fig. 6(a)). Correlation functions taken at the

maxima of the Kiessig fringes and at the quasi-

Bragg position are shown in Fig. 6(b). The results
of fitting the data to Eq. (19) are displayed in Fig.

6(c), and indicate shorter relaxation times as we

move towards larger scattering angles. Finally

Fig. 6(d) shows an increase in contrast parallel to

the variation of the relaxation time with qz.
The results can easily be understood within the

framework of our model given in the previous sec-

tion. For in-plane scattering now the projection on

the membrane surface of both nx and 1/Dqx varies
inversely proportional to qz. Hence it does not

matter which quantity is dominant. This projec-

tion directly determines the cut-off parameter K
which decreases with increasing scattering angle
leading to the observed shift of the correlation

function towards faster times. Comparing Figs.

6(a) and (d) we note that the contrast increases

with decreasing intensity of the Kiessig fringe (or

quasi-Bragg peak). We shall return to this point

in Section 4.3.

Another potential possibility to vary qz is to

work at the position of the second-order quasi-
Bragg peak. In FPP the presence of fluorine leads

to an increased intensity ratio of the second and

first quasi-Bragg peak of about 10�4, which is

for other liquid crystals usually about 10�6–10�7.

This allowed us to measure correlation functions

at both the first- and the second-order Bragg posi-

tion of a thick FPP membrane, shown in Fig. 7. At

these positions both the illuminated footprint and
the coherence volume differ by a factor two. The

same applies to K and at the second quasi-Bragg

position we should probe maximum fluctuations

with a twice shorter wavelength than at the first

one. The data show at the first Bragg peak oscilla-

tory relaxation (complex mode, see Fig. 2), and at

the second Bragg peak a pure exponential relaxa-

tion. As the latter slow-mode relaxation time does
not depend on the wavelength of the fluctuations,

we cannot decide on an exact factor of two differ-

ence in K. However, the change in mode is impor-

tant, as this is the only example of FPP showing

exponential relaxation on the specular ridge.

4.3. Homodyne/heterodyne detection

As mentioned in Section 2.1 the density of a

fluctuating smectic membrane can be decomposed

into a time-independent (average) part and a time-



0.5 1.0 1.5 2.0 2.5
0.00

0.02

0.04

0.06

C
on

tra
st

qz / nm-1

0.5 1.0 1.5 2.0 2.5
100

101

102

103

104

105

106

In
te

ns
ity

 / 
ar

b.
un

its

qz / nm-1

(d)

1.48 nm-1

1.28 nm-1

1.12 nm-1

0.96 nm-1

0.68 nm-1

0.54 nm-1

0.1 1 10 100
Time / s

1.0

1.04

1.08

1.12

1.16

1.2

1.24

C
or

re
la

tio
n 

fu
nc

tio
n

0.5 1.0 1.5 2.0
1.5

2.0

2.5

3.0

3.5

4.0

qz / nm-1

0.3

0.4

0.5

0.6

0.7
/

s-1

(c)

(a)

2.20 nm-1

1.98 nm-1

1.62 nm-1

(b)

Fig. 6. Results for a 13-layer 4O.8 membrane at different specular positions: (a) reflectivity curve; (b) correlation functions (10-lm
pinhole) taken at the maxima of the Kiessig fringes (shifted along the vertical axis with values of qz indicated); (c) dependence of the

fitting parameters s (triangles) and x (circles) on the position along the specular ridge; (d) ibid for the contrast.

0.1 1 10 100 1000

1.0

1.1

1.2

1.3

1.4

1.5

C
or

re
la

tio
n 

fu
nc

tio
n

2nd order

1st order

Fig. 7. Correlation functions of a 13.2-lm FPP membrane (10-

lm pinhole) at the first and the second Bragg position.

I. Sikharulidze et al. / Optics Communications 247 (2005) 111–124 121
dependent one. This is reflected in the scattered field

that can be written as E(q,t) = Eref(q) + Es(q,t). The

last termEs accounts for the deviation of the scatter-
ers from their average positions reflected in Eref,

resulting in the time-dependent component. At the

quasi-Bragg position (or more general at the specu-

lar ridge) a strong elastic component is present and

the dominant term in the correlator is the cross
product of the elastic and the quasi-elastic compo-

nent. As a result, the intensity correlator ÆI(t)I(t + s)
depends linearly on g1(t).Hence, we have in this case

a heterodyne detection scheme and the relaxation

time s obtained from fitting the intensity correlation

function by Eq. (19) defines the relaxation time of

g1(t). In contrast, at far off-specular positions we

do not catch the static component and we are deal-
ingwith homodynedetection. In this casewe can ap-

ply the Siegert relation, in which the intensity

correlator is proportional to g21ðtÞ. In the exponen-

tial relaxation model of Eq. (19), taking the square

of g1(t) results in a decrease of the relaxation time
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by a factor 2. As a result the measured relaxation

time for g1(t) and for the density fluctuations

becomes equal to s/2. As discussed elsewhere [39]

similar considerations can be applied to the oscillat-

ing part of the correlation function. This results

for the heterodyne situation in the sin-dependence

of Eq. (19) and Figs. 4 and 5, while for the homo-

dyne case a sin2-behavior of the oscillations is
expected.

Fig. 8(a) shows some typical experimental re-

sults. Around the quasi-Bragg position we ob-

serve a specular relaxation time of 6.2 ls. After

passing a threshold the correlation function trans-

forms into another form with a different relaxa-

tion time. This transition manifests the switch

from heterodyne to homodyne detection as the
contribution of Iref disappears. The threshold is

determined by the angle for which the specular

reflection falls on the edge of the detector area.

The results given in Fig. 8(b) indicate a final

off-specular relaxation time of 3.3 ls. The differ-

ence of approximately a factor 2 nicely confirms

the transition from heterodyne to homodyne

detection. In Fig. 8(a), we note at the transition
a difference in contrast, which is larger for the

heterodyne regime.

Heterodyne detection is more sensitive, as the

weak quasi-elastic intensity is not modulated by

itself but by the strong elastic signal. In classical

dynamic light scattering, one cannot measure at
the specular position, and, to take advantage of

the heterodyne scheme, an artificial secondary

source must be created at off-specular positions.

The above discussion suggests that for X-rays

the elastic intensity at the Bragg reflection or at

any other specular position with enough intensity,

can act as a �natural� secondary source. This

opens up new opportunities for probing the
dynamics of a variety of systems that produce in-

tense X-ray diffraction patterns, by performing

XPCS measurements at Bragg reflections.
5. Conclusions

Smectic membranes can be made with an

extraordinary uniformity while in addition they

are very stable in the X-ray beam. In combina-

tion with the existence of low-dimensional fluctu-

ations these properties make them very suitable
for XPCS, allowing in-depth investigations of

the technique. We have discussed how in XPCS

experiments the coherence properties of the beam

influence the time dependence of the measured

intensity correlations. The basic assumption is

that the coherence volume acts like a filter, select-

ing fluctuations of the smectic membrane with

matching wavelength. Measurements at different
scattering angles fully support this model. Chang-

ing the resolution of the setup by variation of the
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detector slits also influences the time behavior of

the correlation function. This indicates a relation

with the size of the scattering volume. Both ef-

fects can be incorporated in an �effective� resolu-
tion of the setup that accounts for both the
resolution and the coherence of the beam. Clear

evidence has been provided for a transition be-

tween heterodyne detection at the specular ridge

and homodyne detection for off-specular scatter-

ing geometries.
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