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Vortex pinning has been studied for the superconducting Nb film covering ferromagnetic Co/Pt
multilayer with perpendicular magnetic anisotropy, in which the magnetization reversal proceeds via
domain-wall motion. Large enhancement of pinning in the Nb film has been observed in the final
stages of the reversal process, and we demonstrate that it is caused by residual uninverted
dendrite-shaped magnetic domains. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1839631]

The pinning of vortices in structures consisting of a
superconducting(SC) layer on the top of magnetic dots
or holes,1–3 or in ferromagnet-superconductor bilayers
(FSBs)4–8 attracts much attention. The interest is generated
by the technological promise of devices in which magnetic
field can tune the magnitude of the critical current by adjust-
ing the flux pinning. There are theoretical predictions that the
magnetic flux of the vortex in the SC layer may be pinned by
the stripe domains of the ferromagnetic(FM) layer.4 Recent
magnetic5–7 and transport8 studies of the FSB’s confirm that
the enhancement of pinning occurs. However, the origins of
the enhancement are not evaluated in detail in most of these
studies, except for the case of 50 nm Pb film[weak type II
superconductor with the Ginzburg–Landau parameterk<1],
deposited on the top of Co/Pt multilayer with perpendicular
magnetic anisotropy.7 In this case, the enhancement is found
to be caused not by the stripe domains but by the isolated
bubble domains nucleated in the FM layer during the rever-
sal of magnetization. The question arises if similar origins
are behind the pinning enhancement in the FSBs consisting
of typical type II superconductors withk well above 1,
which are the materials for applications.

We study the FSB consisting of Nb film grown on a top
of Co/Pt multilayer. We use the magnetic force microscopy
(MFM) to image the domain structure of the FM layer, and
the superconducting quantum interference device magneto-
meter to measure the magnetization in the superconducting
state. Our results indicate a large, 2.5 times, enhancement of
pinning which occurs exclusively in the final stage of the
magnetic reversal process of the FM layer, and we show that
it is caused by residual uninverted dendrite-shaped magnetic
domains. While the details of this behavior differ from the
effect reported for Pb film,7 the origins are similar, in both
cases related to pinning on isolated domains, suggesting that
this type of pinning may be generally the most effective pin-
ning in the FSB structures.

The FSBs were made by sputtering in a high-vacuum
chamber on a Si substrate covered with amorphous Si[Fig.
1(a)]. A 10 nm Pt layer was grown first, followed by five
repeats of Cos0.4 nmd /Pts1 nmd multilayer structure, and
topped by a 3 nm Si buffer layer to avoid proximity effect
between the SC and the FM layers. Some of the samples
were reserved for the MFM measurements, and on others a
78 nm Nb film was grown next, topped again by about 3 nm
of Si for protection. The Nb film has a superconducting tran-
sition temperatureTc of 8.8 K. From the measurements of
the upper and lower critical fields versus temperature(all
measurements described in this article are for sample ori-
ented perpendicular to the magnetic field,H), we estimate
the penetration depthls0d<95 nm, and the coherence length
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FIG. 1. (a) Schematic cross section of the FSB structure.(b) Hysteresis loop
of the Co/Pt multilayer atT=10 K. The right scale defines the parameters.
Open points show four magnetization states at which data in Fig. 2 are
taken.(c) and (d) MFM images taken fors equal to 0.43 and 0.2, respec-
tively. The image size is 1003100 mm.
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js0d<35 nm, which indicatek<2.7 and good quality of the
Nb film.

Figure 1(b) shows the hysteresis loop measured for the
Co/Pt multilayer atT=10 K. The loop is characteristic for
the FM film with perpendicular magnetic anisotropy, with
the coercive and saturation fields equal toHc=630 Oe and
Hs=1500 Oe, respectively. We describe the magnetic rever-
sal process by the parameters, which is equal to 1(0) when
all the magnetic moments of the FM layer are “up”(“down”)
and the magnetization at saturation is equalMs s−Msd. At
any other state with the magnetizationM, s=1/2sM /Ms

+1d. We introduce also subscripts tos to distinguish pro-
cesses of reversal, that iss+ ss−d process is the one starting
from s=1 ss=0d.

The magnetic reversal process has a sharp onset, it is
very rapid at the beginning, and more gradual asHs is ap-
proached. Such a process has been shown to proceed via the
domain-wall motion, leaving behind some uninverted do-
mains which contribute to the gradual approach to
saturation.9 The domain wall may be directly observed in
MFM images taken for variouss in samples without Nb
topping, as shown by the examples in Figs. 1(c) and 1(d).
Prior to imagining the sample is magnetized in a magneto-
meter at room temperature, first to saturation, and then to a
specific value ofs, while the magnetization is monitored.
The image of Fig. 1(c) is for the magnetization close to zero
ss+=0.43d, when about one-half of the magnetic moments
are reversed from the original up direction. We see that a
domain wall runs diagonally across the image. The top-left
part of the image is the sample with the original saturated up
magnetization. At bottom right is the reversed part. It con-
tains a maze of uninverted dendrite-shaped domains, ran-
domly distributed and narrow, with the width of about
0.5 mm. The image of Fig. 1(d) is for s+=0.2. A domain wall
is absent and there is only the reversed part of the sample,
with the maze of uninverted domains. This domain structure
remains stable after removingH. From the MFM images, we
estimate the average surface area with inverted magnetic mo-
ments, and it agrees very well with the magnetization mea-
sured with the magnetometer.

To measure the hysteresis loop in the superconducting
state, we first magnetize the FM layer to some value ofs at
temperature slightly aboveTc. Next,H is brought to zero, the
magnet is quenched to remove any residual magnetic flux,
the temperature is lowered belowTc, and the hysteresis loop
is measured between −100 and +100 Oe. Finally, the tem-
perature is increased aboveTc, and the magnetization is mea-
sured again to check if the cycling belowTc has any effect on
the magnetic state of the FM layer. The results indicate that
there is no effect. Figure 2 shows hysteresis loops measured
at T=8 K for four s values marked in Fig. 1(b) by open
points. The black symbols are for a uniformly magnetized
FM layer with s+=1 ands−=0. Two anomalies are seen, a
sudden jump whenH crosses the zero value[shown by the
grey arrow in Fig. 2(a)], and a small shift of the central
magnetization peak(CMP) away fromH=0 (black arrow).
The measurements of the local magnetic induction using an
array of Hall sensors placed on the top of the sample, which
will be described in detail elsewhere, show that both effects

are absent in the sample center. The jump in the magnetiza-
tion is most likely caused by the thermomagnetic flux insta-
bility, possibly triggered by the electronics of the commercial
magnetometer, and we ignore this effect in the following
discussion. On the other hand, Hall results show that the
CMP shift is a real effect. It is absent in the sample center but
has substantial values at other positions, reflecting compli-
cated spacial distribution of the flux. The magnetometer
measures the CMP shift averaged over the sample area.

The open symbols in Fig. 2 show hysteresis loops mea-
sured fors+=0.25, ands−=0.77, when the FM layer contains
a maze of dendrite-shaped domains as in Fig. 1(d). We see
that the magnitude of magnetization for both the positive
sM+d, and the negativesM−d branches of the hysteresis loop
is about 2.5 times larger than for uniformly magnetized FM
layer. The enhancement of magnetization is strongly asym-
metric with respect to the relative orientation between the
residual domains and the external magnetic field. That is, for
the s+ ss−d reversal process, the enhancement is the largest
for the positive(negative) magnetic field. This may be ex-
plained by the vortex pinning on the residual uninverted do-
mains. The domain dipole momentm interacts with the vor-
tex magnetic fieldB, introducing a contribution to the vortex
energy, E=−mB. Therefore, the positive domainssm.0d
which appear in thes+ reversal process, induce the pinning
for positive external field and negative domainssm,0d in
the s− process produce pinning for negative magnetic field.
This asymmetric pinning resembles the behaviors observed
both in the FSB with the Pb film,7 and in the niobium film
with the embedded array of magnetic dipoles.3

We denote the magnitude of the magnetization at the
maximum byMmax, and the magnetic field at which magne-
tization reaches a maximum byHm. In Fig. 3, we plot the
dependence ofMmax andHm on s± for two branchessM±d of
the hysteresis. The largest increase ofMmax is seen when the
reversal process is 3/4 advanced, i.e. whens+<0.25, ors−

<0.75. This may be explained if we assume that the en-
hancement of pinning is directly related to the amount of
isolated uninverted domains, which becomes the largest in
the second half of the reversal process just after the domain
wall sweeps across the whole sample. This is correlated with

FIG. 2. Hysteresis loops of Nb atT=8 K measured for four stages of the
reversal process:(a) s+=1 ands+=0.25 and(b) s−=0 ands−=0.77.
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the behavior ofHm. Hm is symmetrically shifted away from
zero for both branches of the hysteresis when the FM layer is
uniformly magnetized to saturation(this is the CMP shift).
However, ats+<0.25 ss−<0.75d, the Hm shifts to positive
(negative) values for both branches as a result of the asym-
metric enhancement of pinning.

This result differs from the one described for the FSB
with Pb film,7 mainly because the magnetic reversal pro-
ceeded in that case by nucleation so that the isolated bubble
domains appeared both at the beginning, and at the end of
the reversal process. The pinning enhancement is also larger
in the present experiment when the SC layer is a type II
superconductor withk substantially larger than 1. In addi-
tion, the observation of both branches of the hysteresis loop
allows us to extract the magnetization induced by the pinning
on dendrite-shaped domains,Md, from the total magnetiza-
tion, M =Md+M0. Here,M0 is the contribution from intrinsic

pinning, which exists in the absence of isolated domains.
WhenM =M0, the two branches of the hysteresis are coupled
by antisymmetric relation:M0

+sHd=−M0
−s−Hd. A different re-

lation is expected for the dendrite-induced magnetization:
Md

+sHd=−Md
−sHd. Therefore, we can extractMd by comput-

ing the sumM+sHd+M−s−Hd, in which the contribution from
intrinsic pinning is subtracted away. Figure 3 showsMd at its
maximum value as a function ofs± (grey crosses). Next,
assuming thatM0 is constant, we calculate the total magne-
tization at maximum for two branches of the hysteresis,
Mmax

± = ± sMd+M0d (black crosses). While this assumption is
probably not exact, our estimate describes the experimental
data quite well and clearly demonstrates that the dendrite-
induced pinning is responsible for most of the pinning
enhancement.

In conclusion, our study shows that the magnetic domain
reversal induces strong enhancement of vortex pinning in the
FSB structures which contain typical type II superconductor.
The effect may be attributed almost entirely to the pinning by
the isolated uninverted dendrite-shaped domains which are
created during the reversal process. It would be interesting to
investigate if the enhancement of pinning by isolated do-
mains is a universal feature present in different FSB
structures.
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FIG. 3. (a) Mmaxss+d, (b) Mmaxss−d, (c) Hmss+d, and (d) Hmss−d for M±

branches of the hysteresis. In(a) and(b) triangles are experimental data and
crosses show the calculated quantities; grey crosses: the dendrite-induced
magnetizationMd; and black crosses: the total magnetizationMmax

± = ± sMd

+M0d, whereM0 is a the contribution from intrinsic pinning. All lines are
guides for the eyes.
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