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X-ray rocking-curve pro®les for a perfect crystal are calculated using the mutual

coherence function of the incident wave. The derived result is that the rocking

curve to be measured should be a convolution of the intrinsic pro®le of the

crystal re¯ection with the Fourier transform of the complex degree of coherence

of the incident wave. This allows experimental evaluation of the complex degree

of coherence from measured rocking-curve pro®les with the help of the

calculated intrinsic pro®le. The mutual coherence function of synchrotron X-

rays prepared with a conventional Si double-crystal monochromator was

mapped as a function of both spatial separation and time delay.

1. Introduction
Coherence in the hard X-ray region is becoming increasingly

important with the recent development of third-generation

synchrotron light sources. The improved coherence has

allowed the introduction of new techniques that take advan-

tage of phase relations. Typical examples include shearing

interferometry (Kohmura et al., 2003), phase tomography

(Cloetens et al., 1999) and non-crystalline diffraction micro-

scopy (Miao et al., 2003). However, at the third-generation

sources, it is spatial or transverse coherence that bene®ts most,

since this is enhanced by a smaller source size and a longer

source±observer distance. The temporal or longitudinal

coherence, basically determined by the bandwidth of the

monochromator, remains unchanged if we use a common Si

111 monochromator. Up to now, the spatial and temporal

components of the coherence have usually been treated

separately. The spatial coherence is assumed to be preserved

by the crystal monochromator, as this does not change the

angular divergence if the Bragg re¯ection is symmetric. The

temporal coherence, on the other hand, is enlarged as the

bandpass of the monochromator is reduced. Spatial coherence

lengths estimated by the van Cittert±Zernike theorem in the

above-described treatment are almost always longer than

those determined from measurements (Salditt et al., 1994;

Baron et al., 1996; Fezzaa et al., 1997; Kohn et al., 2000, 2001;

Leitenberger et al., 2001; Yabashi, Tamasaku & Ishikawa,

2001).

More rigorously, the ®rst-order coherence of a light beam is

characterized by a mutual coherence function (Born & Wolf,

1999) that is de®ned as a cross-correlation function of the

wave®elds at two points with a time delay. Since diffraction by

crystals mixes the temporal and spatial coherence when the

incident wave has a moderate degree of coherence (Yamazaki

& Ishikawa, 2002), separate consideration of spatial and

temporal coherence cannot be justi®ed for most X-ray

beamlines of synchrotron radiation facilities with various

optical components. Therefore, the detailed design of

advanced applications of X-ray coherence requires a reliable

means of characterization of the mutual coherence function of

the beam produced by the optical components.

A rocking-curve pro®le for a perfect crystal is related to

both the angular and the energy spreads of the incident beam

(Compton & Allison, 1935). Conventionally, rocking-curve

pro®les are given as convolutions of pro®le functions of the

incident beam with intrinsic pro®les of the crystal re¯ection,

which assume an incident plane wave. The crystal re¯ection

pro®le functions are sometimes referred to as resolution

functions (Cooper & Nathans, 1967). In the pro®le functions

of the incident beam, energy spreads are converted to effec-

tive angular spreads as predicted by Bragg's law. Furthermore,

according to classical optics, the mutual coherence function is

also related to both the angular and the energy spreads of the

beam. Accordingly, there should be some connection between

the measured rocking-curve pro®le for a perfect crystal and

the mutual coherence function of the incident beam.

In this paper, we have calculated the rocking-curve pro®le

taking into account the mutual coherence function of the

incident X-ray wave. The result is that the rocking-curve

pro®le of a perfect crystal is given as a convolution of the

intrinsic pro®le of the crystal re¯ection with the Fourier

transform of the mutual coherence function of the incident

wave. Accordingly, we can extract some aspects of the mutual

coherence function from the measured rocking-curve pro®le

by solving an inverse problem with the help of a calculated

intrinsic pro®le. The space and time dependence of the mutual

coherence function of a monochromatic X-ray beam prepared

with a conventional Si double-crystal monochromator in an

X-ray undulator beamline has been analysed from the

measured rocking-curve pro®les of a perfect Si crystal using

several collinear reciprocal-lattice vectors.



2. Calculation of a rocking-curve profile

We consider X-ray diffraction in Bragg geometry with a

perfect crystal in a single scattering plane including a reci-

procal-lattice vector h. We will use two distinct oblique coor-

dinate systems, sozo for incident and shzh for re¯ected waves

(Fig. 1), in which the so and sh axes, which intersect at a point

Oc on the crystal surface, are respectively parallel to the

incident and re¯ected wavevectors, satisfying the exact Bragg

condition in a kinematic sense. At a distance lo from Oc back

along the so axis, a point Oo is located where the so axis

intersects with the zo axis, which is antiparallel to h. Similarly,

at a distance lh from Oc along the sh axis, a point Oh is located

where the sh axis intersects with the zh axis, which is also

antiparallel to h. Suppose that the diffraction modi®es an

incident quasi-monochromatic X-ray wave Vo(P, t) into an

emerging quasi-monochromatic wave Vh(Q, t), where P and Q

are points on the zo and zh axes, respectively. We denote the

position vectors of P and Q as rP and rQ, and the zo and zh

components of P and Q as zP and zQ, respectively. Each wave

may be represented as a product of a complex envelope

function and a periodic factor related to the central wave-

number K by

Vo�P; t� � Ao�P; t� exp�i�Ko � rP ÿ Kc t�� �1�
and

Vh�Q; t� � Ah�Q; t� exp�i�Kh � rQ ÿ Kc t��; �2�
where Ko and Kh, the central wavevectors, are related to the

deviation �o ÿ �B of the incident wave from the Bragg

condition:

Ko � Kŝo � K��o ÿ �B�x̂o; Kh � Kŝh � Kjbj��o ÿ �B�x̂h:

�3�
The unit vectors ŝo and ŝh are along the so and sh axes,

respectively, and x̂o and x̂h are shown in Fig. 1. Then, the

following relation holds between the two envelope functions

(Yamazaki & Ishikawa, 2002):

Ah�Q; t� � �iKC�h=4 sin �B�
R�1
ÿ1

dzP Ao�P; t ÿ �lo � lh�=c�

� exp�i�W�zP � jbjzQ��!���zP � jbjzQ��: �4�
A dimensionless complex parameter W representing the

deviation from the exact Bragg condition is given by

W � jbj1=2

2jCj��h� �h�1=2
�2��o ÿ �B� sin�2�B� � �o�1� 1=jbj��; �5�

where b is an asymmetry factor and �g is the gth Fourier

component of the polarizability. A complex parameter � is

given by KjCj��h� �h�1=2=�2jbj1=2 sin �B�. A propagator function

!��z� is then represented using the zeroth- and second-order

Bessel functions as

!��z� � J0��z� � J2��z� �z> 0�,
0 �z � 0�.

�
�6�

The re¯ected intensity as a function of W is written as

Ih�W� �
D R�1
ÿ1

dzQ jAh�Q; t�j2
E

� jbjj�h=� �hj����=4�

� R�1
ÿ1

dzQ

R�1
ÿ1

dzP

R�1
ÿ1

dz0P ÿo�zP; z0P�

� exp�i�W�zP � jbjzQ� ÿ i��W��z0P � jbjzQ��
� !���zP � jbjzQ��!����z0P � jbjzQ��; �7�

where the angle brackets denote the time average and z0P is the

zo coordinate of the point P0 on the zo axis. A correlation

function appearing in equation (7), ÿo�zP; z0P� =

hAo�P; t�A�o�P 0; t�i, is related to the mutual coherence function

hVo�P; t�V�o �P0; t�i introduced by Wolf (Born & Wolf, 1999) as

hVo�P; t�V�o �P0; t�i � ÿo�zP; z0P� exp�iK�zP ÿ z0P� sin �B�: �8�
We de®ne the Fourier transform of !��z� and its inversion as

~!�W� � �i�=2� R�1
ÿ1

dz!��z� exp�i�Wz�; �9�

and

!��z� � �1=�i� R dW ~!�W� exp�ÿi�Wz�: �10�
Integration over W is performed by changing the variable into

�o, which has a range from minus in®nity to in®nity, by the use

of equation (5). The analytical expression of the Fourier

transform is given by

~!�W� �
ÿW ÿ �W2 ÿ 1�1=2 �jWj> 1;RefWg< 0�,
ÿW � i�1ÿW2�1=2 �jWj � 1�,
ÿW � �W2 ÿ 1�1=2 �jWj> 1;RefWg> 0�.

8<:
�11�

Using equation (10), equation (7) becomes

Ih�W� � ��=2�� R dW 0 Ri�W 0�
R�1
ÿ1

dzP

R�1
ÿ1

dz0P

� ÿo�zP; z0P� exp�i��W ÿW 0��zP ÿ z0P��; �12�
where

Ri�W� � j�h=� �hj j ~!�W�j2: �13�
The correlation function of an incident beam with a

moderate degree of coherence may be represented as

ÿo�zP; z0P� ' Io��zo� go��zo�; �14�
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Figure 1
Geometry and coordinate system for representation of Bragg re¯ection.
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using the average location of two points, �zo = �zP � z 0P�=2, and

their separation, �zo = zP ÿ z 0P. This is justi®ed when the

normalized correlation function go(�zo), or the complex

degree of coherence (Born & Wolf, 1999), varies much more

rapidly with �zo than the intensity distribution Io��zo� varies

with �zo. Then, the measured rocking-curve pro®le, or the

re¯ected intensity pro®le normalized by the incident intensityR �1
ÿ1 d�zo Io��zo�, becomes

R�W� � R dW 0 Ri�W 0� ~go�W ÿW 0�; �15�
using the Fourier transform of the complex degree of coher-

ence:

~go�W ÿW 0� � ��=2�� R�1
ÿ1

d�zo go��zo� exp�i��W ÿW 0��zo�:

�16�
The intrinsic pro®le for the crystal is given by Ri(W), since a

monochromatic plane incident wave is characterized as

go(�zo) = 1. Therefore, ~go�W ÿW 0� is equivalent to the pro®le

function of the incident beam in the conventional treatment

for the rocking-curve pro®le (Compton & Allison, 1935).

Application of the convolution theorem for Fourier trans-

forms to equation (15) givesR
dW R�W� exp�ÿi�W�zo�
� go��zo�

R
dW Ri�W� exp�ÿi�W�zo�; �17�

which is reduced to the following equation that connects the

complex degree of coherence of the incident beam to the

measured and intrinsic rocking-curve pro®les:

go��zo� �
R �1
ÿ1 d�o R��o ÿ �B� exp�ÿiK��o ÿ �B��zo cos �B�R �1
ÿ1 d�o Ri��o ÿ �B� exp�ÿiK��o ÿ �B��zo cos �B�

:

�18�
The above complex degree of coherence is taken at two

different points on a line parallel to a certain reciprocal-lattice

vector at the same time. Measured rocking-curve pro®les for

various re¯ections give go(�zo) values corresponding to the

respective Bragg angles, and consequently we can obtain the

two-dimensional distribution of the complex degree of

coherence as a function of spatial separation in the scattering

plane.

When the angular spread of the incident wave is suf®ciently

small, we can assume that the complex envelope function

Ao�P; t� may propagate along Ko with little change in form

over time. This approximation enables us to convert the

complex degree of coherence at the same time into the

complex degree of coherence at arbitrary time differences for

a given spatial separation along an isochronous wavefront

perpendicular to Ko. This is because a spatial separation �zo

appearing in equation (18) is divided into an effective spatial

separation, �x = �zo cos �B, and an effective temporal

separation, c�t = ÿ�zo sin �B, by projecting it onto the x̂o and

ÿŝo directions, since the direction of the spatial separation is

inclined from the isochronous wavefront by the Bragg angle.

The angular spread ' of the incident wave for which this

treatment is valid is estimated roughly as follows. The wave-

®eld starting from P at a time t increases in width by about

cj�tj' after a time interval �t. The quasi-invariance of the

complex envelope function is justi®ed when the length is much

shorter than a spatial coherence length �=', � being the

average wavelength of the incident beam. The complex degree

of coherence taken at two separate times t and t + �t has high

values only when cj�tj is shorter than a temporal coherence

length �2=��, �� being the bandwidth. Therefore, the above

assumption is valid for the incident beam if �2=��� �='2, or

' � ���=��1=2. For X-rays prepared with various optical

components, including an Si 111 monochromator (��=� '
10ÿ4), the condition ' � ���=��1=2 ' 10ÿ2 rad is certainly

satis®ed.

3. Experimental and results

The crystal arrangement shown schematically in Fig. 2 was set

up at a long undulator beamline at SPring-8, BL19LXU

(Yabashi, Mochizuki et al., 2001). The ®rst harmonic from a

planar undulator through a front-end slit was further mono-

chromated at a wavelength of 0.661 AÊ with a double-crystal

monochromator (DCM) (Yabashi et al., 1999). The mono-

chromatic X-rays impinged on an analyser crystal that

measured the rocking-curve pro®les. A calibrated ionization

chamber and an Si-PIN detector were placed before and after

the analyser crystal, respectively. The crystals in the DCM and

the analyser were (111) Si plates. The crystals were aligned to

the (+n, ÿn, �m) setting, with 111 and 333 re¯ections for n,

and 111, 333, 444, 555, 777, 888 and 999 re¯ections for m. The

analyser crystal was mounted on a high-precision goniometer

for the rocking-curve measurements (Ishikawa et al., 1992),

with a coarse rotation stage attached to make the re¯ection

indices easy to change. A series of rocking-curve pro®les were

measured by stepping the analyser crystal. From each pro®le,

we calculated go(�zo) of equation (18) using the atomic

scattering factors reported by Sasaki (1984).

Fig. 3 shows some of the absolute values of the simultaneous

complex degrees of coherence analysed for n = 111 as func-

tions of the spatial separation �zo. The spatial separations

were inclined from the isochronous wavefront by 6.05, ÿ6.05

and 71.64� for the 111, �1�1�1 and 999 re¯ections of the analyser

crystal, respectively. The peak values of the analysed functions

were close to unity. The small differences from unity were

caused both by the errors of the base lines of the detectors and

by the ®nite angular ranges of the rocking-curve measure-

Figure 2
Experimental setup (front view). The aperture of the front-end (FE) slit
was set at 1� 1 mm. DCM: double-crystal monochromator; IC: ionization
chamber; PIN: Si-PIN detector.



ments. The width of the complex degree of coherence analysed

for m = 111 agreed with the experimental result found by using

a wavefront-dividing interferometer (Yamazaki & Ishikawa,

2003).

Fig. 4 shows the space±time distributions for the absolute

values of the complex degrees of coherence for �t 6� 0,

analysed for (a) n = 111 and (b) n = 333. The vertical and

horizontal axes indicate the effective spatial separation �x

and the effective temporal separation c�t, respectively. The

contours show the positions where the absolute values of the

functions are 0.8, 0.6, 0.4 and 0.2, going from the inside

outwards. The areas with a high degree of coherence were

inclined toward the directions of the reciprocal-lattice vectors

of the crystals in the DCM. These results con®rm the theo-

retical consideration that coherence is modi®ed in the direc-

tion of the reciprocal-lattice vector of a crystal (Yamazaki &

Ishikawa, 2002). The temporal coherence length of the X-rays

monochromated with the 333 crystals was longer than that

with the 111 crystals.

4. Summary and conclusions

We have calculated the X-ray rocking-curve pro®les for a

perfect crystal taking into account the mutual coherence

function of the incident wave. The rocking-curve pro®le to be

measured is represented as the convolution of the intrinsic

pro®le of the crystal re¯ection with the Fourier transform of

the complex degree of coherence of the incident wave. This

allows experimental evaluation of the complex degree of

coherence from measured rocking-curve pro®les with the help

of the calculated intrinsic pro®le. We mapped the complex

degree of coherence of synchrotron X-rays produced with an

Si double-crystal monochromator as a function of both the

effective spatial separation and the temporal separation.

The analysed space±time distributions do not allow the

separate consideration of the spatial and temporal coherence

for the monochromated X-ray beams. Generally, the coher-

ence of an X-ray beam produced by optical components has to

be characterized by its space±time distribution. Quanti®cation

of the mutual coherence will facilitate design of advanced

applications, especially in using X-rays with full spatial

coherence emitted from forthcoming X-ray free-electron

lasers (Arthur, 2002; Wagner, 1999; Shintake et al., 2001).

We are grateful to Dr J. Sutter for his critical reading of the

manuscript.
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Figure 3
The simultaneous complex degrees of coherence analysed for n = 111.

Figure 4
The space±time distributions for the complex degrees of coherence for �t
6� 0 analysed for (a) n = 111 and (b) n = 333.
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