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We have studied x-ray grazing incidence reflection from ultrathin layers that are embedded in thin film
systems. This technique can be applied to selectively probe the properties of stratified media as a function of
depth. A remarkable coherent enhancement of the reflected intensity renders this technique sensitive to ultrathin
layers in the monolayer range. We investigate this enhancement theoretically and show that the coherently
scattered signal is proportional to the square of the normalized field intensity at the position of the probe layer.
This is in contrast to incoherent scattering from such probe layers where the signal scales linearly with the
normalized field intensity at the position of the probe layer. The coherent enhancement is investigated experi-
mentally by nuclear resonant scattering of synchrotron radiation from ultrathin isotopic layers of57Fe. The
technique can be applied to all fields of coherent x-ray scattering from thin films.
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I. INTRODUCTION

X-ray standing waves have a longstanding history in the
field of x-ray analysis. This method has become an estab-
lished tool for the analysis of adsorbates and ultrathin films
on surfaces of single crystals.1,2 The standing wave has the
same periodicity as the diffracting lattice planes, and the
phase of the wave field can be tuned by variation of the
incidence angle within the Darwin width of the reflection. By
monitoring the atomic fluorescence yield from the adsorbed
species, their position relative to the diffracting lattice planes
can be determined. This method can be applied also in the
lowest-order Bragg-reflection, i.e., the(000) reflection which
corresponds to grazing-incidence geometry. In this geometry,
the period of the standing wave is given by 2p /qz whereqz
is the momentum transfer along the surface normal. There-
fore, x-ray standing waves can be used for the investigation
of thin films with a thickness of several nanometers. If the
film thickness matches an integer multiple of the period of
the standing-wave field, the intensity of the electric field in-
side the layer is resonantly enhanced. Then the partial waves
that are multiply reflected at the boundaries of the film, add
up constructively. The standing wave that forms as a result of
such multibeam interference between the incident and the
reflected wave can be used as the primary wave for structural
analysis of the guiding layer. First experiments of this kind
were reported by Wanget al.3 who used the standing waves
that formed in a macromolecular film on a metal substrate to
obtain structural information about the film. The strong en-
hancement of the field intensity in the guiding layer was used
to probe the vibrational properties of thin films via inelastic
nuclear resonant scattering.4,5 The intensity in the antinodes
of the wave field can be even more enhanced by sandwiching
the guiding layer between two layers of higher electron den-
sity, thus forming an x-ray waveguide structure.6 This ap-

proach was systematically investigated by Sinha and
coworkers.7,8 Moreover, it was shown that the strong en-
hancement of the fluorescence yield from ultrathin probe lay-
ers can be used for structural characterization of metallic
multilayers.9,10 In all of these studies the measured signal
was the fluorescence from individual atoms which is anin-
coherentscattering process. In this case the signal scales lin-
early with the integrated x-ray intensity within the layer un-
der study.

Recently, standing waves in thin films were used for the
analysis of liquid films,11–13biomolecular layers,14,15 and the
production of x-ray nanobeams.16,17 In all these cases the
signal resulted from acoherentscattering process like sur-
face diffraction14 or grazing incidence reflection. Due to the
formation of standing waves in the film, the intensity of the
radiation that is coherently scattered from any kind of matter
within the wave field can be strongly amplified. In this paper
we show that this coherent enhancement is qualitatively dif-
ferent from the intensity enhancement in the incoherent scat-
tering channels. In particular, one finds an intensity amplifi-
cation in the coherent scattering channels that is much
stronger than the relative enhancement in the incoherent
scattering channels. This can be exploited to investigate the
properties of thin film systems by placing probe layers in
selected depths of the system. The coherent enhancement of
the scattered signal renders this technique very sensitive to
smallest amounts of material like ultrathin films in the mono-
layer regime. Here we focus on coherent x-ray scattering
from such ultrathin probe layers that are located in standing
wave fields.

This paper is organized as follows: To establish a relation
between the field intensity inside a layer structure and the
specularly reflected signal, we first introduce a matrix for-
malism to calculate the amplitude of the electric field as
function of depth. This will be illustrated for the particular
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case of x-ray waveguide structures where a strong enhance-
ment of the normalized intensity inside the guiding layer is
observed. In the following section, this matrix formalism is
applied to express the reflectivity of an arbitrary layer system
in terms of the scattering amplitude of an ultrathin layer that
is embedded anyhere in the system. The remarkable result is
that the reflected intensity from the probe layer is propor-
tional to the square of the normalized field intensity at its
position in the layer system. In the next section this relation
is verified experimentally via nuclear resonant scattering
from isotopic probe layers of57Fe. A number of possible
applications for coherent x-ray scattering from ultrathin
probe layers will be discussed.

II. X RAYS IN STRATIFIED MEDIA

In this section we calculate the x-ray intensity inside ar-
bitrary layer systems. While there are a number of matrix-
based formalisms that treat purely electronic(isotropic)
scattering,18,19 the formalism presented here takes into ac-
count the full polarization dependence of the(anisotropic)
scattering process. This allows one to treat scattering pro-
cesses that exhibit strong polarization mixing effects and op-
tical activity like magnetic x-ray scattering or nuclear reso-
nant scattering. The formalism used here is a matrix version
of the dynamical theory of coherent x-ray scattering. The
matrix elements can be considered as transition amplitudes
between the open scattering channels, including the polariza-
tion states of the radiation. This formalism was extended to
the description of grazing incidence reflection from thin
films.20,21 In this geometry, two scattering channels are open,
i.e., forward transmissions+d and specular reflections−d.
The nomenclature of the layer system and the scattering ge-
ometry is introduced in Fig. 1. For a theoretical description,
the fields in the open scattering channels are combined into
one supervectorA=sA+,A−d. In a single layer, labeled by

indexn, the field amplitudeAszd in depthz is then related to
the field amplitudeAs0d at the surface by20,21

Aszd = eiFnzAs0d = :L nszdAs0d, s1d

with Fn being the so-called propagation matrix that is given
by

Fn = Sfn + k0z fn

− fn − fn − k0z
D , s2d

where

fn =
2p

k0z
o

j

r jM jsvd s3d

is the scattering matrix for grazing incidence reflection. The
matrix L nszd that was introduced in Eq.(1) is called the layer
matrix of layern. The sum in Eq.(3) runs over all atomic
species in the layer with number densitiesr j each and the
energy-dependent forward scattering lengthM jsvd which is
a 232 matrix to account for the polarization dependence of
the scattering process, as explained in the following section.
k0z=k0z 1, wherek0z<k0w is the z component of the wave
vector and1 is the 232 unit matrix.

In the general case of multiple layers(N−1 layers with
thicknessesdn on a substrate), the field amplitudes in depthz
of the sample is simply given by the matrix product of the
corresponding layer matrices

Aszd = L szdAs0d, s4d

with

L szd = L nsz− Dn−1d . . .L 2sd2dL 1sd1d. s5d

This formalism can be applied to a variety of phenomena
like Bragg and Laue diffraction from single crystals, diffrac-
tion from planar gratings and grazing-incidence reflection
from thin-film systems. It allows, in a natural way, to acco-
modate the polarization dependence of the scattering as it
arises in magnetic x-ray scattering or nuclear resonant scat-
tering. The mathematical problem in any of these cases is the
calculation of the exponential of the propagation matrixF.
Since there is no analytic solution in general, this problem
has to be solved numerically in most cases. However, in
special situations a closed solution can be found that reduces
the computational effort and provides physical insight. This
applies for scattering in grazing incidence geometry which
shall be considered in the following.

The formalism is considerably simplified in the system of
eigenpolarizations of the system. Those are obtained by di-
agonalization off:

fn,D = gfng
−1, s6d

with the diagonalizing matrixg, the eigenvaluesfn,msvd of
the matrixfn, andffn,Dgmn=dmn fn,m. In this case the problem
can be solved for each eigenpolarization separately. Thus, for
better readability, we drop the polarization indexm in the
following paragraph.

Due to the symmetry of the propagation matrixF, the
layer matrix of a freestanding single layer can now be written
in a very compact form

FIG. 1. Scheme of the layer system used here to describe x-ray
propagation in stratified media. The incident wave is divided into
two scattering channels, corresponding to specular reflections−d
and forward transmissions+d. The layers labeled by 0 andN denote
vacuum and substrate, respectively. The layer system contains an
ultrathin probe layer(dashed line) in depthzp within the nth layer.
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L 1szd = eiF1z =
1

t01
S 1 r01

r01 1
DSeik1zz 0

0 e−ik1zz
DS 1 r10

r10 1
D 1

t10
.

s7d

k1z is thez component of the wave vector in the film, which
is through Snell’s law related to thez component of the in-
cident wave vector by

k1z = k0zb1 with b1 =Î1 +
2f1

k0z
. s8d

r ij =sbi −b jd / sbi +b jd andtij =2bi / sbi +b jd are the Fresnel re-
flection and transmission coefficients of the boundary be-
tween the mediai and j , respectively. Equation(7) represents
a very intuitive description of the scattering process that can
be read from right to left: The right matrix describes the
transition of the wavefield at the boundary from the vacuum
(0) into the medium(1), the middle matrix describes the free
propagation of the eigenpolarizations in the medium ins+d
ands−d directions, and the left matrix describes the transition
of the wave field back into vacuum.

The matrix product for the whole layer system shown in
Fig. 1 is then given by

L sDd = L NL N−1sdN−1d . . .L 2sd2dL 1sd1d. s9d

Due to its very large thickness, the layer matrixL N of the
substrate requires a special treatment, resulting in

L N = S0 0

0 1
DS 1 rN0

rN0 1
D 1

tN0
. s10d

The left matrix reflects the fact that the wave propagating
into the substrate vanishes with increasing depth so that only
waves in the specular direction remain.

To solve for the specularly reflected and forward transmit-
ted fields, we decompose Eq.(4) into its components in the
two scattering channels

SA+szd
A−szd

D = SL++ L+−

L−+ L−−
DSA+s0d

A−s0d
D . s11d

For a unique solution of the fields in the scattering channels,
the boundary conditions have to be supplied

A+s0d = A0, A−sDd = 0. s12d

Now one can solve this equation for the specularly reflected
field A−s0d and the forward transmitted fieldA+sDd:

A−s0d = − FL−+sDd
L−−sDdGA0 = :RA0, s13d

A+sDd = FL++sDd −
L+−sDdL−+sDd

L−−sDd GA0. s14d

With this solution, Eq.(11) can now be used to calculate the
amplitudeAszd of the electric field in depthz of the layer
system. This amplitude is given by the superposition of the
waves in depthz traveling in s+d and s−d directions, i.e.:

Aszd = A+szd + A−szd. s15d

Inserting Eq.(13) into Eq.(11), we obtain for the normalized
field amplitudeaszd in depthz of the layer system

aszd =
Aszd
A0

= L++szd + L−+szd − fL+−szd + L−−szdg
L−+sDd
L−−sDd

.

s16d

Using this formula, the field intensity in arbitrary layer sys-
tems can be calculated. An example is shown in Fig. 2 for a
trilayer system consisting of Ag/Fe/FePt on Si that was in-
vestigated in this study. Due to the electron density profile of
this layer stack, the radiation that is evanescently coupled
into the Fe layer will be multiply reflected at the layer
boundaries. Since the energy transport takes place parallel to
the boundaries, such layer systems can be regarded as x-ray
waveguides.7 Depending on the film thickness, a certain
number of guided modes can be excited, which show up as
minima in the reflectivity of the layer system between the
critical angles of the layer and the substrate material. The
layer system shown here is a single-mode waveguide where
the guided TE0 mode is excited at an angle of incidence of
w=4.3 mrad. In the center of the guiding layer a six-fold
enhancement of the x-ray intensity is observed. That effect
was employed to image the magnetic structure of such layer
systems via nuclear resonant x-ray scattering.22 In this ex-
periment, an ultrathin probe layer of57Fe was embedded in
various depths of the Fe layer. Due to its placement in the
standing wave field of the x-ray waveguide, the resonant
signal from this probe layer was strongly enhanced. This will
be investigated quantitatively in the following.

III. COHERENT REFLECTION FROM ULTRATHIN
PROBE LAYERS

In this section we calculate the reflectivity from an ultra-
thin probe layer that is embedded in an arbitrary layer sys-
tem. Such an ultrathin film can be used as a probe layer to
investigate the internal magnetic, electronic, or structural
properties of stratified media with very high spatial resolu-
tion. We assume this probe layer of thicknessd being located
in depthzp of the layer system within thenth layer of the

FIG. 2. Grazing incidence x-ray reflection from a waveguide
structure consisting of two exchange-coupled magnetic layers
sFe/FePtd covered with Ag(left). This forms an x-ray waveguide,
resulting in a sixfold enhancement of the intensity in the center of
the Fe guiding layer(right).
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system, as sketched in Fig. 1. To calculate the reflectivity of
this system, we write the field amplitude in depthD of the
layer system as follows:

AsDd = L sD − zpdL nsddL szpdA0. s17d

This equation expresses the fact that the probe layer is sand-
wiched between two layer stacks of total thicknesszp and
D−zp. It follows from the definition in Eq.(5) that

L sD − zpd = L sDdL −1szpd. s18d

Then Eq.(17) can be written as

AsDd = L sDdL −1szpdL nsddL szpdA0. s19d

For an ultrathin layer, the matrixL nsdd=eiFnd can be approxi-
mated by

L nsdd < 1 + iFnd, s20d

with the propagation matrix being the following 232 matrix

Fn = S fn + k0z fn

− fn − fn − k0z
D , s21d

wherefn is the scattering amplitude of the probe layer mate-
rial for one of the eigenpolarizations. Equation(19) then
turns into

AsDd = fL sDdL −1szpds1 + iFnddL szpdgA0

= L sDdf1 + idL −1szpdFnL szpdgA0, s22d

with L szpd as defined in Eq.(11) andL sDd written as

L sDd = SD++ D+−

D−+ D−−
D . s23d

The inverse of the matrixL szpd is given by

L −1szpd = S L−− − L+−

− L−+ L++
D , s24d

where we have already used the fact that detsL nd=1, as can
be easily verified via Eq.(7). This implies that also the de-
terminant ofL szd, i.e., any product of matricesL n equals 1.
Performing the matrix multiplications in Eq.(22), the reflec-
tivity according to Eq.(13) is given by

R= −
D−+s1 + idE++d + idD−−E−+

D−−s1 + idE−−d + idD−+E+−
, s25d

with

E++ = − E−−

= sL++ + L−+dsL−− + L+−dfn + sL++L−− + L+−L−+dk0z

s26d

E+− = sL−− + L+−d2f + 2L−−L+−k0z s27d

E−+ = − sL++ + L−+d2f − 2L++L−+k0z. s28d

Expanding Eq.(25) up to first order insidd leads to

R< R0 + ids2R0E++ + E−+ − R0
2E+−d, s29d

with R0=−sD−+/D−−d being the reflectivity of the layer sys-
tem without the probe layer. Inserting Eqs.(26)–(28) into Eq.
(29), one obtains

R= R0 + id fnfsL++ + L−+d + sL+− + L−−dR0g2

− 2id k0zsR0L−− + L−+dsR0L+− + L++d. s30d

By comparison with Eq.(11) and taking into account that
A−s0d=RA0, this equation can be written as

Rsvd = R0 + id fnsvdfA+szpd + A−szpdg2/A0
2

+ 2id k0z A+szpdA−szpd/A0
2. s31d

To indicate the energy dependence of this equation, it is writ-
ten as function of frequencyv. The expression in the square
brackets is exactly the normalized field amplitudeaszpd at the
positionzp of the probe layer, as given by Eq.(16). The last
term in Eq. (31) is a geometric contribution that does not
depend on energy. Thus, the energy dependent contribution
Rnsvd of the probe layer to the reflectivity is given by the
term that is proportional tofnsvd. Performing the transfor-
mation back into the original polarization basis, we obtain

Rnsvd = id aszpd2fnsvd, s32d

whereRn andfn appear as 232 matrices. As has been shown
here, this relation results from a perturbation expansion that
is valid as long as the modulus of the second-order term in
Eq. (20) is smaller than, say, 0.1. This leads to the condition
sk0zdd2,0.1, from which one derivesd,1.0 nm at a photon
energy of 14.4 keV and an angle of incidence of 4 mrad. In
any case, however, the layer thickness should be sufficiently
small to keep the averaging over the depth dependent prop-
erties to a minimum. In this sense the earlier limit may be too
coarse in special cases, in particular when the total thickness
of the layer under study is not significantly larger than the
probe layer thickness.

Equation(32) is the central result of this paper. A similar
relation was suggested recently by Andreevaet al., for the
special case of an ultrathin film on the surface of a layer
system.23 Here we have derived rigorously the contribution
of an ultrathin film to the total reflectivity of the layer system
where it is embedded in. For an experimental verification of
this relation, we have performed nuclear resonant scattering
from ultrathin isotopic layers consisting of57Fe, as described
in the following section.

IV. NUCLEAR RESONANT X-RAY SCATTERING

Up to here the formalism was quite general and can be
applied to any case of coherent x-ray scattering process. Due
to its pronounced energy dependence, nuclear resonant scat-
tering is an ideal technique to verify the dependence of the
reflected amplitudeRnsvd on the field amplitudeaszpd as
described by Eq.(32).

Coherent nuclear resonant scattering from thin films and
multilayers became a routine technique after the advent of
high-brilliance synchrotron radiation sources.24–28A particu-
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lar application in this field is the use of ultrathin isotopic
probe layers with a thickness of a few angstroms to study
depth dependent properties in layered systems. This method
has been applied in conventional Mössbauer spectroscopy
for a long time.29–33 It is the virtue of this technique that
isotopic probe layers do not disturb the chemical integrity of
the system under study. Compared to the conventional tech-
nique, data acquisition times at modern synchrotron radiation
sources are reduced by orders of magnitude, triggering new
applications in this field.22,34,35

The time response from ultrathin isotopic probe layers is
obtained by Fourier transformation of Eq.(32):

R̃nstd = id aszpd2 f̃nstd. s33d

The 14.4 keV resonance of57Fe is a magnetic dipole transi-
tion with spinsIg=1/2 andIe=3/2 of theground and excited
state, respectively, and a natural lifetime oft0=141 ns. A
purely magnetic hyperfine interaction lifts the degeneracy of
the magnetic sublevels, resulting in six dipole-allowed tran-
sitions where the level splittings of the ground and excited
state are given byDg andDe, respectively. For calculation of
the scattered intensity,Istd, we take into account the scatter-
ing geometry shown in Fig. 3, assuming the standard experi-
mental situation with incidents polarization and no polar-
ization analysis in the detection process. This leads to

Istd = d2Ip
2Instd, s34d

where Ip= uaszpdu2 is the normalized intensity of the electric
field at the position of the probe layer. If we assume that the
magnetization is confined to the plane of the sample, the
delayed intensityInstd can be written as21

Instd = e−xt/t0fGs0,0,V1ds1 + cos2 fd

+ GsV1 + V2,V1 − V2,V2ds1 − cos2 fdg, s35d

where the functionG is given by

Gsc1,c2,c3d = cosc1t + 1
9 cosc2t + 2

3 cosc3t, s36d

and "V1=De+Dg, "V2=2De. The anglef is the azimuthal
angle of the in-plane magnetization, as defined in Fig. 3.x is
a parameter that describes the speedup of the nuclear decay
due to multiple scattering events.36 For small values,x,2,

this effect can be described simply by an additional exponen-
tial that can be factored out. For significantly larger values,
the time response is significantly perturbed by an additional
beat phenomenon, the so-called dynamical beat.37

V. EXPERIMENTS

The samples used in this experiment were the follow-
ing layer systems: s3 nm Pdd / s11 nm Fed / s3 nm Pdd /
s28 nm FePt in theL10 phased, further denoted assample 1,
and s3 nm Agd / s11 nm Fed / s28 nm FePt in theL10 phased,
further denoted assample 2. In the Fe layers in both samples,
a 0.7-nm-thick probe layer of57Fe was embedded, as
sketched in Figs. 4(a) and 6. Both layer systems were pro-
duced by radio frequency magnetron sputtering in Ar atmo-
sphere at a pressure of 1.0310−2 mbar on superpolished Si
wafers with a roughness below 0.5 nm root-mean-square.
Details about the sample preparation are given in Ref. 22.
The preparation of these layer systems was motivated by the
investigation of the in-depth spin structure in a soft-magnetic
layer (Fe) that is exchange-coupled to a hard-magnetic layer
sFePtd. Such systems are well known as so-called exchange-
spring magnets.38,39 They are interesting candidates for the
development of new materials for permanent magnets40 and

FIG. 3. Scattering geometry used in the experiments described
here. The sketch shows the relative orientation of the incident wave

vectork̂0 to the direction of a unidirectional magnetizationm̂ in the
plane of the sample.sŝ ,p̂d are the linear polarization basis vectors.

FIG. 4. (a) Measured electronic reflectivity from the layer sys-
tem shown in the inset(sample 1). In the center of the guiding layer
sFed, an ultrathin film of 0.7 nm57Fe is embedded. At the minimum
at wm 5 4.3 mrad, the radiation couples into the first-order guided
mode. The solid line is the calculated reflectivity of the layer system
sketched here with an average interface roughness of 0.5 nm.(b)
Time-integrated delayed intensity from the layer system, recorded
within a time window from 20 to 160 ns after excitation. The inset
shows the same data on a logarithmic scale. The dashed line is the
normalized intensity of the electric field at the position of the57Fe
layer. The solid lines are the square of this curve, scaled to the
measured data.
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serve as model systems for the study of spin-dependent elec-
tronic transport properties.41 In external magnetic fields, a
spiral magnetic spin structure in the soft-magnetic layer
develops.39 This spin structure has been studied via polarized
neutron scattering and the application of a specially devel-
oped reconstruction algorithm.42 Recently, this spin structure
was measured directly by nuclear resonant scattering of syn-
chrotron radiation from ultrathin isotopic probe layers.22

These measurements significantly benefitted from the inten-
sity enhancement due to the formation of standing waves in
the soft-magnetic layer. Due to their electron density profile,
the earlier mentioned layer systems constitute x-ray
waveguides with the guiding layer consisting of Fe, sand-
wiched between highly reflective PdsAgd and FePt layers.

The experiments were performed at the Nuclear Reso-
nance beamline(ID18) of the ESRF43 in the scattering ge-
ometry shown in Fig. 3. In the first experiment, we used
sample 1to study the dependence of the coherent intensity
enhancement as a function of the angle of incidence. At the
sample position, the beam cross section was
150 mm sverticald3200 mm shorizontald. In this experi-
ment, the sample was mounted in a cryomagnet system,
cooled to 4 K and subjected to a transverse magnetic field of
B=40 mT, as shown in Fig. 3. Figure 4(a) displays the an-
gular dependence of the electronic(charge scattering) reflec-
tivity. The first-order guided mode shows up at 4.3 mrad as a
pronounced dip in the electronic reflectivity. The solid line is
a fit according to Eq.(13), assuming the layer structure
shown in the inset. Figure 4(b) shows the resonant signal
from the 57Fe probe layer as obtained by taking the time-
ingrated delayed signal within a time window ranging from
12 to 160 ns after excitation. Its angular dependence shows a
strong peak at the angular position where the waveguide
mode is excited. One observes a 36-fold enhancement of the
intensity relative to the value obtained at large angles of
incidence. For a better illustration of the relative intensities,
the same data are shown in the inset on a logarithmic scale.
The dashed line displays the normalized intensity of the elec-
tric field at the position of the57Fe layer. In the antinode of
this TE0 mode the intensity exhibits a sixfold enhancement
relative to the intensity of the incident beam. Correspond-
ingly, the coherently scattered signal displays a 36-fold en-
hancement. The solid line in both graphs is obtained by
squaring the values of the dashed curve and scaling them to
the measured data. The very good agreement verifies the
quadratic dependence on the normalized intensity at the
probe layer position as established in Eq.(34). To demon-
strate the applicability of this method for magnetic measure-
ments, we have recorded a time spectrum with the sample
aligned to the maximum of the delayed intensity. This is
shown in Fig. 5. The average delayed count rate in this ge-
ometry was about 220 s−1, so that time spectra with very
good statistical quality could be obtained within less than
10 min. The solid line is a fit to the data according to Eq.
(35) from which an azimuthal angle off=45s2d° was de-
rived for the orientation of the probe-layer magnetizationm̂

relative to the incident wave vectork̂0.
44 In contrast, data

acquisition times in conventional Mössbauer spectroscopy
with a radioactive source of 50 mCi activity that lead to a

comparable statistical quality are in the range of 3–4 days.
In another experiment the quadratic intensity dependence

was verified in a different way. For this purpose,sample 2
was mounted in the cryomagnet system, cooled to 4 K and
subjected to an external field of 160 mT. The layer structure
of this sample is illustrated in the top part of Fig. 6. The
central element is a 0.7-nm-thick probe layer of57Fe that is
embedded in the Fe layer with a slope between the two
boundaries. Due to this slope, a linear relation between the
transverse displacement of the sample relative to the beam
and the depth of the probe layer is established. This was
applied recently to measure the depth dependence of the
magnetization rotation for such exchange-spring bilayers in
external fields.22 Figure 6 shows the time-integrated delayed
intensity recorded as a function of depth of the probe layer.

FIG. 5. Time spectrum of the Pd/Fe/Pd sample recorded at the
angular position where the first-order guided mode is excited. Due
to the intensity enhancement, a count rate of 220 s−1 was achieved
in the time window displayed here, so that this spectrum could be
recorded within 8 min. The solid line is a theoretical simulation
from which an in-plane anglef=45° of the magnetization relative
to the incident wavevector was derived.

FIG. 6. Time-integrated signal as function of the transverse dis-
placementDx of sample 2 relativeto the beam. Due to a tilted57Fe
probe layer in the Fe layer, as sketched in the upper part, the trans-
verse displacement maps the depth dependence of the reflected sig-
nal. The dashed line is the normalized field intensity as function of
depth, the solid line is the square of this function, scaled to the
measured data.
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The sample was adjusted to the first-order waveguide mode
at an angle of incidence of 4.4 mrad. The solid line is a fit to
the data based on the square of the normalized field intensity
at the probe layer position that is shown as dashed line. As
can be seen already in Fig. 2, the field intensity in the guid-
ing layer varies by a factor of 2 from the layer boundaries to
the center of the layer. Due to the quadratic dependence on
the field intensity, one expects the resonant signal to vary by
a factor of 4. This is confirmed to a very good accuracy in
this experiment.

VI. CONCLUSION

The experiments shown here have demonstrated the re-
markable intensity enhancement that results from coherent
x-ray scattering by ultrathin proble layers. This was verified
experimentally by nuclear resonant scattering of synchrotron
radiation from ultrathin isotopic probe layers of57Fe.

The central result of this paper, Eq.(32), can be compared
with the description of nuclear resonant specular reflection in
the distorted-wave Born approximation,45 where the reflec-
tivity of a surface is given by

Rsvd = R0 + TskidTskfdRnsvd. s37d

Tskid and Tskfd are the Fresnel coefficients for transmission
into the material(wave vectorki) and transmission backout
(wave vectorkf), respectively. These coefficients can be re-
lated to the reflection coefficients viaT=1+R. This equation
expresses the superposition of the incident amplitudea0 and
the reflected amplitudeRa0, resulting in the field amplitude
a=s1+Rda0 at the boundary between the two media. Thus, in
a more general approach,T should be replaced by the ampli-
tude of the electric field at the layer boundary. In the special
case ofki =kf (specular reflection), the productTskidTskfd
merges intoaszd2 as in Eq.(32).

This quadratic dependence on the normalized intensity at
the probe layer position leads to a very strong enhancement
of the signal in the coherent scattering channels. In combi-
nation with x-ray waveguide structures this technique can be

employed for signal amplification from smallest amounts of
material. Thus, probe layers of monolayer thickness can be
used to investigate the in-depth properties of thin films with
unprecedented spatial resolution. It is obvious that this
method can be applied to other Mössbauer isotopes as well.
Moreover, this coherent enhancement effect is of course not
restricted to nuclear resonant x-ray scattering. In can be ex-
ploited in many other areas where coherent reflection from
stratified media is used. This is the case for magnetic x-ray
scattering as well as polarized neutron scattering, for ex-
ample.

While ultrathin layers can be used as probes to study se-
lected parts of the sample, they may be the subject of inves-
tigation itself. An example could be a thin layer of clusters or
nanoparticles that is embedded in the center of the guiding
layer of an x-ray waveguide. If the photoabsorption in the
guiding layer material is sufficiently low, as for elements like
B, C, Al, coherent enhancement factors greater than 103 can
be expected. This technique leads to a very strong signal
enhancement in every kind of coherent x-ray scattering.
Therefore, it also very attractive for off-specular methods
that probe the in-plane structure of thin films and surfaces
like grazing-incidence small-angle x-ray scattering. More-
over, it can be very beneficial also for spectroscopic methods
that probe dynamical properties of condensed matter like in-
elastic x-ray spectroscopy and x-ray photon correlation spec-
troscopy. The enormous brilliance of modern synchrotron ra-
diation sources allows for the application of focusing
techniques to couple the incident radiation very efficiently
into the waveguide modes. Extremely high signal-to-noise
ratio can be expected, if this technique is used in combina-
tion with element-specific scattering techniques like coherent
resonant x-ray scattering.
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