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1. INTRODUCTION

Multilayer magnetic structures several nanometers
thick have been attracting considerable research atten-
tion since the discovery of giant magnetoresistance
(GMR) [1], which immediately found wide practical
application. This effect is used, in particular, in reading
heads for gigabyte hard disks in personal computers.
Such heads made it possible to increase the recording
density and, hence, the memory capacity of hard disks.
Multilayer magnetic structures are widely used as mag-
netic-field sensors and are still finding new areas of
application. They offer promise as a basis for nonvola-
tile magnetic random-access memory (MRAM), which
could be expected to take the place of both hard disks
and semiconductor-based RAM.

Multilayer magnetic nanostructures are also of con-
siderable interest from the fundamental point of view.
In the case of such thin layers (ranging in thickness
from several nanometers to several tens of nanometers),
the effect of interfaces is very significant and the prop-
erties of thin layers can differ radically from those of
the corresponding bulk materials. Furthermore, the
condition of the interfaces has been found to dictate the
physical and, in particular, magnetic properties of the
layers. The present review is devoted to this topic.

The review is organized as follows. In Section 2, we
discuss frustration in multilayer magnetic structures.
Section 3 deals with domain walls (DWs) due to frus-
tration and with a phase diagram for the ferromagnet–
nonmagnetic metal–ferromagnet three-layered struc-
ture. The ferromagnet–antiferromagnet two-layer sys-
tem is considered in Section 4, and the ferromagnet–
antiferromagnet–ferromagnet three-layered system is
treated in Section 5. Finally, in Section 6, the main con-

clusions are drawn and lines of further investigations
are proposed.

2. FRUSTRATION IN MULTILAYER 
MAGNETIC STRUCTURES

 

2.1. Giant Magnetoresistance

 

Let us briefly consider giant magnetoresistance on
the example of a ferromagnet–nonmagnetic metal–fer-
romagnet three-layer metallic system with ideally
smooth interfaces (Fig. 1). The exchange coupling
between the ferromagnetic (FM) layers is effected
through a paramagnetic spacer layer of thickness 

 

d 

 

via
the Ruderman–Kittel–Kasuya–Yosida (RKKY) inter-
action. The exchange integral 

 

J

 

⊥

 

(

 

d

 

) in the case of free
electrons has the form [2]

(1)

where 

 

J

 

0

 

 is a constant and 

 

k

 

F

 

 is the Fermi wave vector
of conduction electrons.

Expression (1) takes no account of the specific
shape of the Fermi surface of the nonmagnetic spacer

J ⊥ d( ) J0

2kFd( )sin

2kFd( )2
------------------------,=
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Fig. 1.

 

 Ferromagnet–nonmagnetic metal–ferromagnet
three-layered system (schematic).
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and the size effects due to finite transverse dimensions
of the layers. These effects have been considered in a
large number of papers (see, e.g., [3–7]). The 

 

J

 

⊥

 

(

 

d

 

)
dependence can also be strongly affected by the pres-
ence of several extremal cross-sectional dimensions of
the complicated Fermi surface resulting in a superposi-
tion of spatial oscillations with different periods. How-
ever, the factors indicated above do not change the

oscillatory character of the exchange coupling between
the FM layers.

It should also be noted that the thickness 

 

d

 

 takes on
discrete values, changing by one atomic layer. The
dependence of 

 

J

 

⊥

 

 on the number 

 

n

 

 of atomic layers is
shown in Fig. 2.

It can be seen from Fig. 2 that 

 

J

 

⊥

 

 is negative at cer-
tain values of 

 

n

 

. Therefore, the interaction energy 

 

E

 

int

 

between the FM layers

(2)

is minimal when the magnetizations 

 

M

 

1

 

 and 

 

M

 

2

 

 of the
layers are antiparallel. It is this magnetization orienta-
tion that is realized in the absence of an external mag-
netic field. When a magnetic field is applied, the mag-
netization of each layer tends to be oriented along the
magnetic field. Therefore, as the magnetic field is
increased, the mutual orientation of the magnetizations
changes from antiparallel to canted (Fig. 3) and then, as
the saturation field 

 

H

 

sat

 

 is reached, the magnetizations
become parallel. In the case where the two FM layers
are identical, the magnetizations behave in the same
way as the magnetizations of a mirror-symmetric anti-
ferromagnet in an external magnetic field.

When the mutual orientation of adjacent FM layers
of a three-layer structure (or of a multilayer structure
consisting of alternating FM and nonmagnetic layers)
changes from antiparallel to parallel, the resistance of
the structure decreases by several percent or several
tens of percent; that is, GMR takes place. The typical
dependence of the resistance 

 

R

 

0

 

(

 

H

 

) on magnetic field is
shown in Fig. 4.

Naturally, for the values of 

 

n

 

 at which 

 

J

 

⊥

 

 > 0, the
magnetizations of layers are parallel to each other even
in the absence of a magnetic field and GMR does not
occur.

Here, we do not discuss the mechanisms of GMR
and refer the reader to the recent review dedicated to
this subject [8]. It should be noted that many simple
explanations of GMR involve (explicitly or implicitly)
the assumption that the mean free path of charge carri-
ers is less than the layer thicknesses, which is not the
case even at room temperature in the range of layer
thicknesses in question in this review.

 

2.2. Frustration in a Three-Layered System
with a Nonmagnetic Spacer Layer

 

The simple pattern of magnetic ordering considered
above occurs in the case with ideally smooth interfaces
between layers. In actuality, the layer interfaces are
rough; i.e., the spacer is not uniform in thickness. In the
case of crystalline layers (to which we will restrict our
consideration), the roughness is due to atomic steps that
arise on the interfaces and change the layer thickness by
one monatomic layer (Fig. 5).

Eint J ⊥ M1 M2,( )–=

 

1 5 10

 

n

J

 

⊥

 

Fig. 2.

 

 Exchange integral of interlayer interaction as a func-
tion of the number of atomic planes in the nonmagnetic
spacer layer.
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 Orientation of the magnetization vectors of FM lay-
ers corresponding to different ranges of values of the exter-
nal magnetic field in the exchange approximation. (a) 

 

H

 

 =
0, (b) 
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 < 
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, and (c) 
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 > 
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Fig. 4.

 

 Resistance of a magnetic multilayer structure as a
function of external magnetic field.
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Let us consider how atomic steps affect the coupling
between FM layers, which is the sum of pairwise
RKKY interactions between atomic spins belonging to
different layers. For this purpose, we should determine
the region that contributes to the molecular field exerted
by one layer on the atomic spin of the other layer.

A simple analysis shows that this region lies oppo-
site the atom and that its size is typically of the order of
the thickness of the nonmagnetic spacer 

 

d

 

 (Fig. 5). In
other words, the thickness 

 

d

 

 characterizes nonlocality
of interaction between the layers. Thus, the exchange
interaction between the layers at a given point of the
layer plane is determined not by the local thickness of
the spacer but rather by its thickness in a region whose
dimensions in the spacer layer plane are of the order
of 

 

d

 

.
We assume that 

 

d

 

 is much smaller than the other
length scales characterizing the magnetic ordering in
the structure in question. In other words, we neglect
nonlocality and assume that 

 

J

 

⊥

 

(

 

x

 

, 

 

y

 

) 

 

≡

 

 

 

J

 

⊥

 

(

 

d

 

(

 

x

 

, 

 

y

 

)), where
the 

 

x

 

 and 

 

y

 

 axes of the Cartesian coordinate system lie
in the layer plane and the 

 

z

 

 axis is normal to it. The edge
of a step is taken to be parallel to the 

 

y

 

 axis.
On one side of the step, we have 

 

J

 

⊥

 

 = 

 

J

 

⊥

 

(

 

n

 

), and on
the other side, 

 

J

 

⊥

 

 = 

 

J

 

⊥

 

(

 

n

 

 – 1). If 

 

J

 

⊥

 

(

 

n

 

)

 

J

 

⊥

 

(

 

n

 

 – 1) < 0, frus-
tration occurs in the system. This term is widely used in
describing the properties of spin glasses. In the pres-
ence of frustration, there is no orientation of spins for
which all their pairwise exchange interaction energies
are simultaneously minimal. As the simplest example
of a frustrated system, we can cite three spins situated
at the vertices of a triangle, with all their pairwise inter-
actions being antiferromagnetic (AFM).

In the case considered above, we have a similar sit-
uation. A uniform distribution of order parameters
(magnetizations in our case) over the layers, which
minimizes the exchange energy in each layer, does not
minimize the interaction energy between the layers.

The state that arises in this frustrated system will be
considered in Section 3.

 

2.3. Frustration 
in the Ferromagnet–Antiferromagnet System

 

In this system, the short-range Heisenberg exchange
interaction between spins is dominant. In a ferromag-
net–antiferromagnet–ferromagnet three-layered struc-
ture, the FM layers interact via the spins of the antifer-
romagnet; this interaction is much stronger than the
RKKY interaction. Therefore, in treating such systems,
it will suffice to take into account the nearest neighbor
interaction alone. Let us consider the frustration occur-
ring at the interface between an FM and an AFM layer.

The magnetic moment of an antiferromagnet atomic
plane parallel to the interface can be either nonzero or
zero. In the former case, the antiferromagnet surface is
called uncompensated, and in the latter, compensated.
For example, for a cubic mirror-symmetric antiferro-

magnet, the (111) surface is uncompensated, while the
(100) and (110) surfaces are compensated. In this
review, we consider only the case of an uncompensated
antiferromagnet surface, whose roughness causes frus-
tration, as will be shown below. The system consisting
of an antiferromagnet with a compensated surface and
a ferromagnet is frustrated even if the interface between
them is ideally smooth; therefore, the roughness of this
interface is of no importance in this respect.

Let us consider the perfectly smooth planar inter-
face between a ferromagnet and an uncompensated
antiferromagnet (Fig. 6a). In the ground state and in the
absence of an external magnetic field, the spins in the
ferromagnet are parallel or antiparallel to the spins
located on the top atomic plane of the antiferromagnet
depending on the sign of the exchange integral 

 

J

 

f

 

, 

 

af

 

between neighboring spins belonging to different lay-
ers (

 

J

 

f

 

, 

 

af

 

 > 0 corresponds to the parallel orientation).

Now, we consider an atomic step on the interface
between a ferromagnet and an uncompensated antifer-
romagnet (Fig. 6b). The spins of the ferromagnet
located on different sides of the step are in contact with
antiferromagnet spins belonging to different atomic
planes. If the collinear orientation of the FM and AFM
order parameters on one side of the step corresponds to
a minimum of the interface energy, then this energy on
the other side of the step is maximal; therefore, a frus-
tration occurs that is caused by the step.

3. DOMAIN WALLS AND A PHASE DIAGRAM 
OF A FERROMAGNET–NONMAGNETIC 

METAL–FERROMAGNET THREE-LAYERED 
SYSTEM

 

3.1. A Domain Wall due to Frustration

 

Let us consider an isolated straight step on one of
the interfaces of the three-layered system (Fig. 5). For
the sake of definiteness, we assume that

(3)

It is clear that far from the step the mutual orientation
of the layer magnetizations must be such that their

J ⊥ x( )
J1 0, x 0<>
J2 0, x 0.><




=

A

d

d

Fig. 5. Atomic step on the interface between layers. The
dot-and-dash curve is the boundary of the region making the
main contribution to the molecular field at point A.
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interaction energy is minimal; that is, the magnetiza-
tions are parallel to each other for x  –∞ and are
antiparallel for x  +∞.

In other words, near the edge of the step a DW arises
that runs through all layers and separates the half-space
where the layer magnetizations are parallel (x < 0) from
the half-space of the antiparallel mutual orientation of
the magnetizations (x > 0).

In this review, we assume that the atomic spins lie in
the layer plane; therefore, no stray demagnetizing fields
arise in the case of perfectly smooth interfaces. The
position of the ith spin is defined by the angle θi

between the spin and the x axis. The order parameter is
assumed not to change in magnitude.

Furthermore, we restrict our consideration to the
exchange approximation neglecting anisotropy in the
layer plane. This approximation is valid if the exchange
energy causing the formation of the DW is much higher
than the anisotropy energy and the DW is much thinner

than the conventional DW, whose thickness is dictated
by the balance between the exchange and anisotropy
energies.

The thickness of such a DW of a new type was esti-
mated in [9], and its characteristics were calculated
analytically in [10].

The analytical calculation was performed within a
continuum approximation. As shown below, the charac-
teristic DW thickness is much larger than the thick-
nesses of the layers of the nanostructure at hand. There-
fore, we can assume that the DW thickness does not
vary along the z axis (which is perpendicular to the
layer plane). Thus, the problem becomes one-dimen-
sional in the case of a step with a straight edge.

According to [11], the addition to the exchange
energy between spins in the layers due to nonunifor-
mity of the order parameter (magnetization) is

(4)

where θi is the tilt angle of the order parameter in the ith
FM layer (i = 1, 2), the prime denotes differentiation
with respect to x, and integration is performed over the
surface of the multilayer structure. In order of magni-
tude, the exchange stiffnesses of the layers αi are

(5)

where Ji is the exchange integral between neighboring
spins in the ith layer; Si is the average value of the
atomic spin in this layer; li is the thickness of the ith
layer; and b is the interatomic distance, which we
assume to be the same for all layers.

The interaction energy between the layers in the
mean-field approximation is

(6)

where

(7)

By varying the sum W1 + W2 with respect to θ1 and θ2,
we obtain a set of equations

(8)

with the boundary conditions   0 as x  ±∞,
θi  0 as x  –∞, and |θ1 – θ2 |  π as x  +∞.
The solution to this set of equations is θ2 = –α1θ/(α1 +

W1

α1

2
----- θ1'( )

2 α2

2
----- θ2'( )

2
+ d

2r,∫=

α i JiSi
2
li/b,∼

W2 β x( ) θ1 θ2–( )d
2r,cos∫–=

β x( )
β1 0, x 0<>
β2– 0, x 0,><




~J ⊥ x( )S1S2b
2–
.=

α1θ1'' β θ1 θ2–( )sin– 0,=

α2θ2'' β θ1 θ2–( )sin+ 0=

θi'

(a)

(b)

Fig. 6. Interfaces between a ferromagnet and an uncompen-
sated antiferromagnet. (a) Perfectly smooth planar interface
and (b) an interface containing an atomic step.
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α2) and θ1 = α2θ/(α1 + α2), where θ(x) can be found
from the equations

(9)

Here, α* = α1α2/(α1 + α2) and the constants x1 and x2
can be found from the conditions of continuity of θ(x)
and its derivative θ'(x) at x = 0, which reduces to the
equation

(10)

It is easy to see that, for β1 � β2, the DW is almost
entirely located in the region x > 0 and, for β1 � β2, the
DW is in the region x < 0. In the case of α1 = α2, the
spins of different layers rotate in opposite directions
through an angle of 90°. If one of the values of α is
much larger than the other (which corresponds to the
case where one of the FM layers is much thicker than
the other), then the rotation of spins occurs virtually
entirely in the thinner layer, whereas in the thicker layer
the spins deviate only slightly.

The characteristic DW thickness δ is

(11)

where lmin is the thickness of the thinner FM layer. For
l/b ~ 3–5, Ji/J0 ~ 1–10, and d ~ 10 Å, we have δ ~
100 Å, which is much smaller than the DW thickness in
iron (800 Å).

If the thickness of this unusual DW is comparable to
or larger than the thickness of the conventional DW,

then we should include the anisotropy energy  =
−liKicos2θi (for the easy magnetization axis lying in

the layer plane) or  = –liKicos4θi (for the case of a
fourfold axis perpendicular to the layer plane). In this
case, an order-of-magnitude estimation of the DW
thickness gives

(12)

Substituting solution (8) into the functional W1 +
W2, we can find the DW energy integrated over the layer
thicknesses, i.e., the energy per unit length of the DW
line on the layer surfaces. This energy is equal to the
difference between the above-mentioned functional

θ
2
---cos

β1

α*
------- 

 
1/2

x x1+( ) , xtanh– 0,<=

θ
2
---sin

β2

α*
------- 

 
1/2

x x2+( ) , xtanh 0.>=

θ
2
---tan

x 0=

β2

β1
----- 

 
1/2

.=

δ π α*
min β1 β2,( )
---------------------------- 

  1/2

=

∼ π b
Jilmin

J ⊥ b
------------ 

 
1/2

πd
Jilmin

J0b
------------ 

 
1/2

 � d ,∼

Ea
i

Ea
i

δ πb
1/2– Ji

K J0/d
2
lmin+

------------------------------- 
  1/2

.∼

and the sum of the energies of the uniform states with
θ = 0 for x < 0 and θ = π for x > 0 and is found to be

(13)

Thus, we have calculated the characteristics of an iso-
lated DW in the ferromagnet–nonmagnetic metal–fer-
romagnet structure.

3.2. Phase Diagram

Now, we investigate the phase diagram for variable
interface roughness [12]. If the characteristic distance R
between atomic steps on the interface between the lay-
ers (giving rise to frustration) is much larger than the
DW thickness δ (R � δ), then it is energetically favored
for the magnetic layers to break up into domains. The
domains with parallel and antiparallel mutual orienta-
tion of the magnetizations of the FM layers are sepa-
rated by DWs. The structure pattern of the domain is
shown in Fig. 7.

In the opposite extreme case where the characteris-
tic roughness scale is such that R � δ, domains cannot
form. We restrict our consideration to the case of R �
d, which allows us to use, as before, the local approxi-
mation to J⊥ (r). If R � d, then J⊥ (r) is effectively aver-
aged over the region of nonlocality to give J⊥ (r) ≈
const.

The transition from the state with R � δ to the state
with R � δ can occur as the thickness of the spacer
layer increases, because δ ∝  d. In the case of R � δ, the
deviations ψi(r) = θi(r) – 〈θi 〉  of the angles θi from
their average values 〈θi 〉  are small, |ψi | � 1 (i = 1, 2).

Now, we show that these deviations are energeti-
cally unfavorable in the case of 〈θ1〉  = 〈θ2〉 . Indeed, by

σ 4 α*( )1/2 β1
1/2 β2

1/2 β1 β2+( )1/2
–+[ ]=

∼ d
1–
S

2
JiJ0lmin/b[ ] 1/2

b
1–
S

2
JiJ ⊥ lmin/b[ ] 1/2

.∼

Fig. 7. Domains with parallel and the antiparallel mutual
orientation of the magnetizations of FM layers in a three-
layered structure.
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varying the total energy W1 + W2 with respect to ψi, it is
easy to show (following [10]) that ψ1 and ψ2 are
expressed in terms of the variable ψ = ψ1 – ψ2 as

(14)

(15)

When an inhomogeneity occurs with a characteristic
maximal magnetization deviation through an angle ψ0,
the specific energy w1 = W1/σ (σ is the area of the lay-
ers) increases by

(16)

because |∇ψ|  ≈ ψ0/R.
The specific exchange energy between the layers

w2 = W2/σ changes by

(17)

If R � δ, this gain in energy W2 is lower than the cost in
energy W1; therefore, in the case of 〈θ1 〉  = 〈θ2〉 , we have
ψ1(r) = ψ2(r) = 0.

If 〈θ1 〉  ≠ 〈θ2〉 , then the decrease in W2 is linear in ψ0
and is equal to

(18)

ψ1
α*
α1
-------ψ, ψ2

α*
α2
-------ψ,–= =

W1
α*
2

------- ∇ψ( )2
d

2r.∫=

∆w1 α*
ψ0

R
------ 

 
2

,≈

∆w2 J ⊥ S1S2b
2–

1 ψ0cos–( )–≈

≈ – J ⊥ S1S2b
2– ψ0

2 α*
ψ0

2

δ2
------.–≈

δw2 J ⊥ S1S2b
2– θ1〈 〉 θ 2〈 〉–( )cos[–≈

– θ1〈 〉 θ 2〈 〉– ψ0+( )cos ]

≈ –J ⊥ S1S2b
2– θ ψ0sinsin α*

θsin

δ2
-----------ψ0,–≈

where θ = 〈θ1 〉  – 〈θ2〉 .
By minimizing the total energy, we find the charac-

teristic value ψ0 to be

(19)

and the decrease in the total energy to be

(20)

where lmin is the smallest of the thicknesses l1 and l2 of
the FM layers.

Thus, weak nonuniformities of the magnetization
distributions over the FM layers become energetically
favored in a noncollinear state with θ ≠ 0. However, the
formation of such a state occurs at a cost in energy of
the uniform state because of the term

(21)

Phenomenologically, this term is interpreted as
bilinear exchange. Replacing sin2θ in Eq. (20) by 1 –
cos2θ, we obtain a term proportional to cos2θ, which is
interpreted as the specific biquadratic-exchange energy

(22)

For the case of periodically arranged steps, the form
of the exchange integral JBQ was found in [13]. Note
that the exchange integral JBQ is always negative; that
is, biquadratic exchange favors the occurrence of a non-
collinear state. An order-of-magnitude estimation gives

(23)

A necessary condition for a noncollinear ordered
state with θ ≠ 0 to arise is

(24)

Since |J1| ≈ |J2 | ≈ , we can conclude that, to
within numerical factors of order unity, inequality (24)
is equivalent to the condition

(25)

It is unlikely that the values of J1 and J2 and the total
area occupied by regions corresponding to spacer thick-
nesses d1 and d2, respectively, satisfy the inequality

Therefore, only collinear ordering must occur in
multilayer structures with R � δ.

ψ0
R

2

δ2
------ θ,sin≈

∆w1 ∆w2
J ⊥

2〈 〉 S1
2
S2

2
R

2 θsin
2

α*b
4

------------------------------------------–
J ⊥

2〈 〉 R
2 θsin

2

J0lminb
3

------------------------------,–≈ ≈+

w2
0( )

J ⊥〈 〉 S1S2b
2– θ.cos–=

wBQ JBQS1
2
S2

2
b

2– θ.cos
2

–=

JBQ

J ⊥
2〈 〉 R

2

JiS
2
lminb

---------------------.–≈

J ⊥〈 〉 2 JBQ S1S2.<

J ⊥
2〈 〉

1/2

J ⊥〈 〉

J ⊥
2〈 〉

1/2
---------------- R

2

δ2
------.<

J ⊥〈 〉

J ⊥
2〈 〉

1/2
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2–
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Fig. 8. Exchange–roughness phase diagram for a three-lay-
ered system with a nonmagnetic spacer. The region of exist-
ence of the noncollinear state is shown by hatching. The
dotted line is the boundary of the region of existence of
domains.
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The corresponding exchange–roughness phase dia-
gram is shown in Fig. 8. The crosshatched region cor-
responds to a noncollinear phase in which the layer
magnetizations are practically uniform. It is easy to see
that the region of parameter values for which this
approximation (frequently used in the literature) is ade-
quate is very narrow. As the size R increases (i.e.,
roughness decreases), the angle ψ0 of deviation of the
magnetization vector from its average direction
increases and a continuous transition occurs to a micro-
domain state.

3.3. The Behavior in a Magnetic Field

Let us consider the behavior of the different phases
in a magnetic field applied parallel to the layer plane.
The anisotropy in the layer plane is assumed to be neg-
ligible.

For the phase in which the magnetizations of the FM
layers are parallel to each other, narrow square hystere-
sis loops will be observed (Fig. 9a).

In the phase with antiparallel mutual orientation of
the magnetizations of the two identical FM layers, the
total magnetization will increase smoothly with the
magnetic field (Fig. 9b). This behavior is identical to
that of a mirror-symmetric two-sublattice antiferro-
magnet with intersublattice exchange energy β. The
angle between the magnetization vectors of the FM lay-
ers can be found by minimizing the energy:

(26)

where M0 is the magnetization of the FM layers, l is
their thickness, β < 0, and θ is the angle between the
magnetic induction and the magnetic moment of an FM
layer (Fig. 3b).

It is easy to see that saturation occurs in a magnetic
field

(27)

In the region where a microdomain state exists, the
magnetization curve, in a first approximation, will be a
superposition of the curves described above with the
weights corresponding to the volume fractions of the
domains with parallel and antiparallel mutual orienta-
tions of the layer magnetizations (Fig. 9c).

If the structure under study exhibits a magnetization
curve of this type, there is a good probability that this
structure is in a microdomain state. The small cross-
hatched region in Fig. 8 corresponds to another possible
state.

3.4. Experimental Observations

Hysteresis loops similar to that shown in Fig. 9c
have been observed in many studies (see, e.g., [14, 15]).
However, such curves were interpreted in terms of
biquadratic exchange and the magnetic microstructure,

W̃ –2M0lB θcos β 2θ,cos–=

Bsat
2 β
M0l
---------.=

as a rule, was not examined. Microdomains with paral-
lel and antiparallel mutual magnetization orientations
were observed using spin-polarized low-energy elec-
tron microscopy (SPLEEM) [16]. It was found that the
boundaries between microdomains coincide with the
boundaries of atomic terraces on interfaces. Micro-
domains can also be observed using transmission elec-
tron microscopy [17], spin-polarizing scanning tunnel-
ing microscopy [18], and magnetic-force microscopy.

It is of considerable interest to make in situ measure-
ments of the relief of the layer surface before sputtering
the next layer and then to investigate the magnetic
microstructure, magnetization curves, and magnetore-
sistance.

4. FERROMAGNET–ANTIFERROMAGNET
TWO-LAYER SYSTEM

In contrast to the case considered above, the spins of
the AFM layer in this system are ordered and are char-
acterized by their own exchange stiffness. The type of
DWs caused by frustration essentially depends on the
relationship between the exchange stiffnesses of the
ferromagnet and antiferromagnet (see below).

4.1. Model

We assume that the AFM order parameter L, which
is the difference between the magnetizations of the sub-
lattices, lies in the layer plane and, as before, is speci-
fied by the angle that the vector L makes with the x axis
(|L | = const).

In this case, the contribution to the exchange energy
of each layer coming from nonuniformities in the dis-
tribution of the order parameter over the layer can be
represented in the form [11]

(28)

where integration is performed over the volume of the
layer.

Here, in contrast to the preceding section, the prob-
lem is not one-dimensional. Indeed, the DW thick-

Wi

JiSi
2

2b
---------- ∇θ i( )2

V ,d∫=

(a) (b) (c)

M

H

M M

H H

Fig. 9. Hysteresis loops in the regions of the phase diagram
corresponding (a) to the parallel and (b) antiparallel mutual
orientation of the magnetizations of the FM layers and
(c) to the microdomain state.
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nesses, as shown below, are comparable to atomic-scale
lengths in this case and significantly vary with the dis-
tance from the interface. Therefore, even in the case of
an atomic step with an infinite edge, the problem is two-
dimensional.

By varying expression (28) with respect to the
parameter θi, we obtain an equation for the order
parameter in the interior of the ith layer [19],

(29)

In order to find the boundary conditions, one should
write the interaction energy between spins situated near
the interface in the discrete representation and differen-
tiate this energy with respect to the rotation angle of the
particular spin. After passing to the continuum repre-
sentation, we thus obtain

(30)

where  is the two-dimensional Laplacian in the layer

plane,  is the derivative along the outward normal to

the layer, and Jf, af is the exchange constant characteriz-
ing the interaction between spins belonging to different
layers; all distances are measured in units of the inter-
atomic distance b. The plus and minus signs on the
right-hand side of Eq. (30) correspond to spins lying on
different sides of the atomic step at the interface,
respectively. For the free surface, the right-hand side of
Eq. (30) vanishes.

If we vary the interaction energy between the layers
with respect to θi in the continuum representation, we
will arrive at an equation that does not contain the first
term on the left-hand side of Eq. (30) and, therefore,
does not reduce to Eq. (29) in the case where the adja-
cent layers are identical.

∆θi 0.=

∆̃θi

∂θi

∂n
-------–

J f af, Si 1+

JiSi

--------------------- θi θi 1+–( ),sin±=

∆̃
∂

∂n
------

The exchange interaction energy between the adja-
cent layers is

(31)

where integration is performed over the interface
between the layers. The plus and minus signs on the
right-hand side of Eq. (31) correspond to those in
Eq. (30).

4.2. Domain Wall in a Ferromagnetic Film
on an Antiferromagnetic Substrate

Let us consider a thin FM film deposited on a much
thicker AFM substrate (or a thin AFM film deposited on
a thick FM substrate). In the exchange approximation,
the latter problem will reduce to the former, in which
we replace the indices f  af. A DW that arises in this
case is described by the following three dimensionless
parameters: the film thickness a = lf/b; the quantity

(32)

which characterizes the ratio of the exchange interac-
tion energy between neighboring spins belonging to
different layers to the exchange interaction energy
between adjacent spins belonging to the FM layer; and
the quantity

(33)

which is the ratio between the exchange energies in the
film and in the substrate.

Equations (29) and (30) form a set of Laplace equa-
tions with nonlinear boundary conditions. These equa-
tions were solved numerically in [20, 21] using a
method similar to integral transformation.

The orientation of the coordinate system is similar
to that chosen in Subsection 2.2; namely, the y axis
coincides with the edge of a step and the z axis is per-
pendicular to the film plane. The plane z = 0 coincides
with the film–substrate interface, and the plane z = a is
the free surface of the film. In the region x � –δf (δf is
the DW thickness), we have θaf = θf = 0, and in the
region x � δf, we have θaf = 0 and θf = π. From the sym-
metry of the problem, it follows that θaf = 0 and θf = π/2
at x = 0.

First, let us consider the case where γ � 1 and, there-
fore, the exchange stiffness of the substrate is much
higher than that of the film [20]. In this case, the distri-
bution of the order parameter over the substrate is vir-
tually uniform. The typical θ(x) dependence in the
region 0 < z < a is shown in Fig. 10. Note that at x = z =

0 the derivative  is discontinuous, while  remains
continuous. The DW thickness δf(z) is defined as the

Wi i 1+,
J f af, SiSi 1+

b
2
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Fig. 10. Typical variation in the tilt angle of the order
parameter through the DW thickness.
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distance between the points with coordinates (x1, z) and
(x2, z) corresponding to the values θ1 = π/4 and θ2 =
3π/4, respectively.

The main feature of the DWs under study is that
their thickness increases with distance from the inter-
face. The δf(z) dependence for αf a � 1 is shown in
Fig. 11. It can be seen that this dependence is linear
near the substrate, whereas near the free surface the
DW thickness δf virtually does not vary. In the opposite
case of αf a � 1, the variation of the DW in thickness is
insignificant.

The dimensionless DW thickness  = δf (z = 0) and

the thickness-averaged value of , which we

denote as  in what follows, can be estimated using
simple energy arguments. Indeed, let us approximate
θ(x, z) by the function

(34)

where

(35)

The contribution to the energy (per unit length of the
DW along the y axis) from nonuniformities of the order
parameter in the DW is

(36)

Due to the step, the interaction energy between the film
and substrate increases by the quantity

(37)

Minimizing the energy w1 with respect to the parameter

 and then minimizing the total DW energy  = w1 +

w2 with respect to the parameter , we can find these
parameters. The result is

(38)

(39)

δ0
f

δ f( )z
'

β̃

θ x z,( )

π, x δ f z( ),≥
π
2
--- 1 x/δ f z( )+( ), –δ f z( ) x δ f z( )< <

0, x δ f z( ),–≤







=

δ f z( ) δ0
f β̃z, 0 z a.≤ ≤+=

w1

J f S f
2

2b
----------- z x θx'( )

2
θz'( )

2
+[ ]d

∞–

∞

∫d

0

a

∫=

≈ 
π2

J f S f
2

4b
----------------- 1

β̃
--- β̃

3
---+ 

  β̃a δ0
f

+

δ0
f

------------------.ln

w2

2J f af, S f Saf

b
--------------------------- x 1 θ x 0,( )cos–[ ]d

0

∞

∫=

≈ 
2J f af, S f Saf

b
---------------------------δ0

f
.

β̃ w̃

δ0
f

β̃ α f a,∼

δ0
f

a/α f∼

in the case of αfa � 1 and

(40)

(41)

for αfa � 1. The continuum approximation is valid if

 � 1.

The characteristic DW thickness δf(a/2) is found
to be

(42)

It is significant that for a ~ 10–100 Å the DW thick-
ness δf is much smaller than the thickness of a conven-
tional DW, because the value of δf is determined by the
balance between the exchange energies rather than
between the exchange and anisotropy energies.

The DW energy per unit length is estimated to be

(43)

Due to the DW broadening, the DW energy
increases with the thickness of the film only logarithmi-
cally for αfa � 1.

Now, we consider the case where γ � 1 and, there-
fore, the exchange stiffness of the film is much higher
than that of the substrate. If γ2aαf � 1, then the order
parameter of the substrate is affected only slightly and
the DW parameters are similar to those found in the
case of αfa � 1.
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Fig. 11. Typical variation in the DW thickness with distance
from the interface for αf a � 1 (αf = 1, a = 64).
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In the opposite case of γ2aαf � 1, the order parame-
ter of the substrate is distorted and two characteristic
lengths arise. One of them is the DW thickness in the
FM layer

(44)

Since δf � a, the DW broadening in the ferromagnet
can be neglected. The other characteristic length is the

thickness  of the region near the film–substrate
interface in which the quantity θf – θaf differs from its
optimum value (0 for x < 0 and π for x > 0):

(45)

In the region |x | < δf and |z | < δf, vortical distortions
of the AFM order parameter arise in the substrate
(Fig. 12). The DW energy per unit length in this case is

(46)

with the dominant contribution to it coming from the
order parameter distortions in the substrate.

If the substrate thickness daf < γa, then the DW runs
through it; therefore, the AFM layer breaks up into
domains, while the FM layer remains virtually uniform.
In other words, the pattern is the same as that in the case
of γ � 1 but the layers exchange places.

Thus, we have found the critical thickness above
which the substrate can be considered thick. If the dis-
tance between the steps is large, we have  = γa.

4.3. Phase Diagram

Atomic steps break up the film–substrate interface
into regions of two types. In the first type of region, the
interface energy is minimal when the FM and AFM
order parameters are parallel to each other, and in the
second type, the interface energy is minimal when these
order parameters are antiparallel.

If the characteristic spacing between the steps is
much larger than its critical value, R � δf(a/2), then the
film breaks up into microdomains, with their bound-
aries coinciding with the edges of the atomic steps [22,
23]. The magnetizations in adjacent domains are oppo-
sitely directed, and their direction corresponds to a
minimum value of the interface energy.

In the case of R � δf(a/2), DWs overlap; therefore,
domains cannot form and the film passes into a single-
domain state. For γ � 1 and aαf � 1 or for γ � 1 and
γ2aαf � 1, order-parameter distortions are small in both
the film and the substrate.

If γ � 1, aαf � 1, and  � R � a, then specific
static spin vortices arise near the substrate (Fig. 13).
These vortices penetrate a distance of the order of R
into the film, while in the other part of the film the uni-
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Fig. 12. Distribution of the order parameters over a DW.
The ordinate is equal to zero at the film–substrate interface.
All distances are reduced to the lattice parameter. The cor-
respondence between the hatching and the value of θi (mea-
sured in radians) is shown in the inset.
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form distribution of the order parameter remains unper-

turbed. In the case of γ � 1, γ2aαf � 1, and  � R �
δf, the film remains uniform and analogous spin vorti-
ces arise in the substrate near the interface (Fig. 14).
Each vortex is confined by the edges of steps and
becomes progressively wider as the distance from the
steps increases. The vortex size in the direction perpen-
dicular to the interface is of the order of R.

For smaller values of R, the state of the system cor-
responds to the region of weak distortions in the phase
diagram.

Let us consider the mutual orientation of the FM and
AFM order parameters in the vortex phase. As men-
tioned above, steps break up the entire interface into
regions of two types. We denote their total areas by σ1
and σ2, respectively. Let ψ be the angle between the
average magnetization of the FM film and the AFM
order parameter in the substrate bulk. The difference
θf – θaf varies from zero to ψ in a vortex occupying a
region of the first type and from ψ to π in a vortex occu-
pying a region of the second type.

By analogy with the “magnetic proximity” model
proposed by Slonczewski [24], we represent the energy
of the system in the form

(47)

where, according to [19, 25, 26],

(48)

In the case of σ1 = σ2, the equilibrium film magneti-
zation must be perpendicular to the AFM order param-
eter in both the vortex phase and the weak-distortion
region if the external magnetic field is zero and the
anisotropy energy due to steps is ignored.

The thickness–roughness phase diagram for the
film–substrate system is shown in Fig. 15. It should be
noted that the transition from the multidomain to the
single-domain state that occurs in the film as the param-
eter R decreases is continuous and, strictly speaking, is
not a phase transition. If γ � 1 and, therefore, the Curie
temperature of the ferromagnet is higher than the Néel
temperature of the antiferromagnet, this transition can
be initiated by heating the sample. As the Néel temper-
ature is approached, the DW thickness δf ∝ γ ∝
TN/(TN – T) increases indefinitely and the transition to
the single-domain state occurs.

4.4. The Behavior in a Magnetic Field

Now, we consider the behavior of the phases in an
external magnetic field.

When the FM film is in the single-domain state, the
application of an external magnetic field directed at an
angle to the spontaneous magnetization causes the
magnetization vector to rotate everywhere in the film

δ0
af

W C1ψ
2

C2 π ψ–( )2
,+=

C j Cσ j

min J f S f
2

Jaf Saf
2,( )σ j

Rb
-------------------------------------------------.≈≡

plane. We restrict ourselves to the case where the film
thickness is fairly small and, therefore, the magnetiza-
tion rotation is accompanied by the formation of a con-
ventional DW, which is parallel to the film–substrate
interface and positioned in the AFM substrate near the
interface. In the case of a thick film, a conventional DW
can initially arise, for certain relationships between the
model parameters, in the film itself near the interface
with the substrate. The situation is fully analyzed in our
papers [25, 26].

Since the gain in the Zeeman energy of the film in
an external magnetic field must compensate for the cost
of producing a DW, the magnetization rotation will
begin in a magnetic field that is equal, in order of mag-
nitude, to [27, 28]

(49)

where σaf is the surface energy density of a conven-
tional DW in the antiferromagnet and M is the magne-
tization of the film. Therefore, the magnetization curve
is biased to the range of negative fields (with respect to
the magnetization direction in the absence of a mag-

netic field) by the quantity . This effect of an AFM
substrate is called unidirectional anisotropy. A great
number of papers have been dedicated to this phenom-
enon (see, e.g., review [29]). However, it is beyond the
scope of the present review to discuss this effect. The
width of the field range within which the magnetization

reversal occurs is also of the order of .

The unidirectional anisotropy does not arise in the
multidomain phase. In an external magnetic field
aligned with or opposed to the magnetization of
domains (we call them domains of the first and second
types, respectively), the magnetization in domains of
the first type remains unchanged, while the magnetiza-
tion of the second-type domains rotates through an
angle of 180°. If the domain size R is larger than the
thickness ∆af of a conventional DW in the antiferromag-
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Fig. 15. Thickness–roughness phase diagram for the film–
substrate system.
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net, then this rotation is accompanied by the formation
of such a DW in the substrate near the interface with the
film; the characteristic field of the magnetization rever-

sal is of the order of .

In the case of R � ∆af, the magnetization rotation in
a domain is accompanied by the formation of a static
spin vortex in the AFM substrate; the characteristic

magnetization reversal field is of the order of ∆af /R.
In addition to the vortex, a 90° DW arises in the sub-
strate. The reason for its formation is analogous to that
for the film magnetization in the single-domain state
being perpendicular to the order parameter in the sub-
strate bulk in the absence of an external magnetic field;
namely, the formation of a DW reduces the energy of
the vortex system.

Indeed, in the absence of a DW, no vortices arise in
domains in which the magnetization is parallel to the
external magnetic field, whereas in domains with the
initial antiparallel orientation of the magnetization with
respect to the magnetic field a 180° vortex forms when

the field becomes equal to ∆af /R. In the presence of
a 90° DW, vortices arise in both types of domain, with
the AFM order parameter twisting in opposite direc-
tions in domains of different types. Since the energy of
a vortex is proportional to the twist angle, the formation
of a DW decreases the vortex energy, and this decrease
in energy due to the DW is larger than the energy
required for the DW formation [26].

If a magnetic field is applied in the film plane at right
angles to the magnetization of domains, the character-
istic magnetization reversal field is of the same order of
magnitude as in the case of a magnetic field applied
along the domain magnetizations; however, in the
former case, a 90° DW does not form, because static
90° vortices with the AFM order parameter twisting in
opposite directions arise in both types of domains.

4.5. Experimental Data

The magnetization pattern discussed in Subsection 4.3
agrees with the data from [30], where the thickness–
vicinal angle β' phase diagram was investigated for an
iron film deposited on Cr(001). For β' close to zero, the
multidomain phase was observed at film thicknesses
a < ac = 3.5 nm. In a film with critical thickness ac, the
characteristic distance R between the edges of ran-
domly arranged steps is equal to γa. For large values of
a, a single-domain phase was observed in which the
magnetization was perpendicular to the edges of steps.
According to the theory described above, the antiferro-
magnetism vector must be parallel to steps. It is of
interest to determine its orientation experimentally.

If β' ≠ 0, there are not only randomly arranged
atomic steps but also regularly arranged parallel steps.
When the concentration of the latter steps becomes
dominant (at β' ≥ 1°), the value of ac begins to decrease.

Baf
0

Baf
0

Baf
0

According to the theory described above, ac ≈ R/γ ∝
 ∝  (β')–1.

At large values of β', an orientational phase transition
to a phase in which the magnetization was parallel to
steps was observed [30]. This transition was due to the
anisotropy induced by steps through relativistic effects,
e.g., through dipole–dipole interaction [31].

5. FERROMAGNET–ANTIFERROMAGNET–
FERROMAGNET THREE-LAYERED SYSTEM

In this section, we restrict ourselves to the case of
γ � 1, where the exchange stiffness of the AFM spacer
layer is lower than that of the FM layers. In the opposite
extreme case (for approximately equal layer thick-
nesses), the problem for each interface between the lay-
ers reduces to that for a two-layer system. To reduce the
number of model parameters, we assume the thick-
nesses of all layers to be equal.

5.1. Domain Walls

DWs run through each of the three layers, and their
coordinates in the layer plane coincide with those of the
edges of atomic steps at any of the two interfaces. The
magnetization vector in a DW rotates in opposite direc-
tions in different FM layers. The AFM order parameter
rotates together with the magnetization of that FM layer
at whose interface with the AFM spacer there is no step
at the given site.

The structure and energy of a DW depend on the
parameter γαf a [21]. In the case of γαf a � 1, the
θf(af)(z) dependence (i.e., the DW broadening) can be
neglected and the problem becomes one-dimensional.

The quantity |∇θ f | in a DW is of the order of .
Using Eq. (28), the energy per unit DW length w1 can
be found to be

(50)

The angle between spins belonging to different layers
differs significantly from its value corresponding to the
minimum interaction energy between the layers in the
region |x | < δf. The increase in the interaction energy
between the layers (per unit DW length) is equal to

. (51)

Minimizing the sum w1 + w2, we find

(52)

In the AFM spacer layer, the DW thickness is δaf ≈
 = δf /  � δf. The distribution of the order
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parameters over the DW is shown in Fig. 16a. The DW
energy per unit length is

(53)

Exact numerical calculations of δf and w performed
in a wide range of values of αf and a lend support to the
validity of the estimates presented above (and of the
results discussed below).

w
J f S f

2

b
----------- aα f

S f

b
----- aJ f J f af, S f Saf .∼≈

In the opposite extreme case of γαf a � 1, the DW
thickness in the AFM spacer increases significantly
with distance from the interface containing an atomic
step. The distribution of the order parameters over the
DW in this case is shown in Fig. 16b. The characteristic
parameters of this distribution can be estimated in the
same way as in the case of γαf a � 1. The dominant
contribution to the DW energy comes from order
parameter distortions in the antiferromagnet. In the
region |x | ≤ a, the quantity |∇θ af | varies inversely with
the distance from the step, whereas in the region a �

|x | �  (  is the DW thickness in the FM layers) the
lines of constant values of θaf are almost parallel to the
interfaces (Fig. 16c). In this region, we have |∇θ af | ≈ a–1.

The minimum value of the DW thickness in the anti-

ferromagnet is  = (1 + γαf )/γαf, the derivative is

∂δaf /∂z ≈ 1 near the step, and the quantity  is given by

(54)

The DW energy per unit length is

(55)

It is easy to see that  is of the order of the inter-
atomic distance and that the average DW thickness is of
the order of tens of angstroms; therefore, the DWs due
to frustration are much thinner than conventional DWs
in a ferromagnet, where the DW thickness is dictated by
the balance between the exchange and anisotropy ener-
gies.
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dashed lines correspond to R = a and R = , respectively.

The hatched region corresponds to weak order parameter
distortions.

δ f'



408

PHYSICS OF THE SOLID STATE      Vol. 46      No. 3      2004

 MOROSOV, SIGOV

5.2. Phase Diagram

The three-layered system can be in the following
three different phases (Fig. 17).

5.2.1. Phase A. At large values of the parameter R >
δf ( ), all layers break up into domains with parallel
and antiparallel mutual orientations of the magnetiza-
tions of the FM layers. Note that, in the case of an AFM
spacer, the domains can be much smaller in size than in
the case of a nonmagnetic spacer, where the domain
size is of the order of tenths of a micrometer.

For a ~ 10 Å and γ ~ 3, the condition R > δf ( ) is
satisfied even for domain sizes as small as several hun-
dreds of angstroms. Therefore, the system is in a nan-
odomain rather than microdomain state in this case;
significantly subtler techniques are required to examine
such states. This fact can be the reason why such
domain structures have not been observed in three-lay-
ered systems with an AFM spacer layer.

5.2.2. Phase B. As the parameter R decreases, DWs
begin to overlap and, at the critical value Rc = δf ( ), a
continuous transition occurs to a state in which the FM
layers are almost uniformly magnetized. In this state
(we refer to it as phase B), the additional energy relative
to the energy of the state without frustration is associ-
ated either with order parameter distortions in the AFM
spacer or with the interaction energy between the lay-
ers. Near the Néel temperature of the spacer TN (which
is lower than the Curie temperature of the ferromagnet),
we have γ ∝  TN/(TN – T); therefore, the A  B transi-
tion can be initiated by heating the system from a tem-
perature T0 < TN.

Note that the Slonczewski magnetic-proximity
model is applicable in the range of values of R where
phase B exists [24].

In the range max(a, ) � R � Rc, the dependence
of the energy of the system on the angle ψ between the
magnetization vectors of the FM layers is described by
Eq. (47) in the case of γαf a � 1. The constants C1 and
C2 can be estimated to be [32]

(56)

where σ1 and σ2 are the total areas of the regions of the
first and second types, respectively, on the surface of
the spacer layer.

In the opposite extreme case of γαf a � 1, the inter-
action energy between the layers is

(57)

If σ1 = σ2, the energy reaches its minimum at ψ =
π/2; therefore, in the absence of an external magnetic

δ f'
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field, the magnetizations of the FM layers are perpen-
dicular to each other.

In contrast to phase A, where the energy of the sys-
tem is independent of the direction of order parameter
rotation in a DW, the situation is quite different in phase
B. Indeed, as DWs begin to overlap, the degeneracy
with respect to the direction of rotation is lifted and a
large number of metastable states arise that differ in the
direction and angle of rotation of the AFM order param-
eter in certain regions confined by atomic steps.

As the parameter R is decreased further in the case
of γαf a � 1, the system transforms into a state with
weak distortions in the range a � R � δaf. In this state,
the order parameters are almost uniform, the magneti-
zations of the FM layers remain perpendicular to each
other, and the energy W decreases by a factor of (R/δaf )2

with respect to its value given by Eq. (57).
5.2.3. Phase C. Now, we consider the range R � a.

In this case, all distortions are concentrated near the
interfaces, the interaction between the FM layers
becomes weak, and the interaction energy between
adjacent layers is of primary importance. This energy is
considered in [15] for a two-layer system.

If σ1 = σ2, the AFM order parameter is directed at
right angles to the (collinear) magnetizations of the FM
layers (phase C).

In the case of γαf a � 1, static vortices form in the

AFM spacer layer near the interfaces if  � R � a
(Fig. 14). For smaller values of R, the system trans-
forms into a state with weak distortions.

In the case of γαf a � 1, the transition from phase B
to phase C occurs when the system is in a state with
weak distortions. Both phases B and C are character-
ized by a large number of metastable states. The com-
puter simulation performed in [21] showed that the
transition from phase B to phase C is a first-order phase
transformation. These phases coexist in a certain range
of values of R, and their energies become equal at a cer-
tain value R* ~ a. This value is independent of temper-
ature; therefore, the B  C phase transition cannot be
initiated by varying the temperature of the system.

5.3. The Behavior in a Magnetic Field

The magnetization reversal occurs almost indepen-
dently in the FM layers in phase C. Therefore, the hys-
teresis loop must coincide with that for a two-layer sys-
tem consisting of an FM and an AFM layer. Here and
henceforth, we assume that the maximum magnetic
field is much lower than the exchange field in an anti-
ferromagnet. Therefore, the magnetization of AFM lay-
ers can be ignored.

If the applied magnetic field is weak but higher than
the anisotropy field in the plane of the FM layers, then
the magnetization vectors of the FM layers in phase B
make an angle of 45° with the external field and remain

δ0
af
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virtually perpendicular to each other. The magnetiza-

tion of the system is equal to Mmax/ , where Mmax is
the maximum magnetization of the FM layers. The fur-
ther evolution of the system can be studied by minimiz-
ing the sum of the interaction energies of the FM layers
with each other [Eq. (47) or (57)] and with the external
magnetic field. The energy of the FM layers in an exter-
nal magnetic field B is

(58)

In the case of σ1 = σ2, R � , and γaαf � 1, the
angle ψ between the magnetizations of the FM layers
can be found from the transcendent equation

(59)

The characteristic field B*, in which the magnetiza-
tion changes significantly, is

(60)

This field is much lower than the exchange field of the
antiferromagnet if the temperature is not in the imme-
diate vicinity of TN.

If γaαf � 1, then we have

(61)

and the characteristic field B* is given by

(62)

In phase A, in a weak magnetic field, domains of the
first type (with their magnetizations parallel to each
other) are aligned with the field and the magnetization
of the system is Mmax/2. The magnetizations of the FM
layers in second-type domains (with their magnetiza-
tions antiparallel to each other in a zero magnetic field)
behave in the same way as sublattice magnetizations in
a bulk antiferromagnet; namely, they are directed
almost at right angles to the external field.

As the field B increases, the angle ψ between the
magnetizations decreases. The characteristic value B*
of the external magnetic field for which the angle ψ
changes significantly can be found in the case of R > Rc

in the same way as that for phase B, and its order-of-
magnitude estimate can be made using Eqs. (60) and
(62). Therefore, the hysteresis loops for phases A and B
differ only in the value of the magnetization in weak
fields.
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5.4. Experimental Data

There are many papers devoted to studying the rela-
tion between the interface roughness and the value of
magnetoresistance. However, their discussion is
beyond the scope of this review. We consider only the
experimental data on the mutual orientation of the order
parameters and on the domain structure. Such data have
been obtained for the most part for Fe/Cr multilayer
structures.

According to experimental neutron diffraction data
[33, 34], Fe/Cr multilayers are ferromagnet–uncom-
pensated-antiferromagnet structures. For thickness a <
45 Å, chromium layers consist of ferromagnetic atomic
planes with antiparallel orientation of spins in adjacent
planes. The spins of chromium atoms lie in these
planes, which, in turn, are parallel (on the average) to
the interfaces between the layers. An analogous mag-
netic structure has also been observed in manganese
layers in Fe/Mn multilayers [35, 36]. Therefore, the
theory described above is applicable to Fe/Cr and
Fe/Mn structures, and experiments on these structures
can be performed to verify this theory.

In [37], domain structures in Fe/Cr multilayers were
reported to be detected using polarized neutrons. How-
ever, the experimental data were not interpreted in [37]
as those corresponding to the partition of a multilayer
into regions with parallel and antiparallel mutual orien-
tations of the magnetizations of adjacent FM layers.
Instead, it was concluded that the magnetizations of
adjacent layers are antiparallel to each other and that a
multilayer breaks up into 180° domains running
through the structure. The reason for the occurrence of
this state, which is not favored energetically (because
there is no gain in energy compensating for the energy
that is required for the formation of a DW), was not dis-
cussed in [37].

In [38], an Fe/Cr multilayer was investigated in
which the average thickness of AFM layers corre-
sponded to the antiparallel mutual orientation of the
magnetizations of adjacent FM layers. It was found
that, as the roughness of the interfaces increases, the
volume fraction of regions with parallel mutual orienta-
tion of the magnetizations of adjacent FM layers
increases and can be as high as 50%.

6. CONCLUSIONS

(1) Due to the frustration caused by the roughness of
the interfaces, DWs of a new type arise in magnetic
multilayer structures.

(2) The thickness of these DWs is dictated by the
balance of the exchange interactions in the interior of
the layers and between them. The DW thickness in mul-
tilayers with a nonmagnetic spacer and in multilayers
with an AFM spacer is smaller and much smaller,
respectively, than the thickness of a conventional DW.

(3) The magnetic phase diagram and, therefore, the
magnetic and galvanomagnetic characteristics of a
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magnetic multilayer structure depend critically on the
roughness of the interfaces between the layers.

It is desirable to perform complex studies, including
the determination of the characteristics of the surface of
layers during their deposition in a wide range of tech-
nological parameters, and to study the micromagnetic
state of layers, magnetization curves, the dynamics of
magnetization reversal, ferromagnetic resonance, and
galvanomagnetic characteristics.

The determination of the relationship between the
structure and properties of multilayers will make it pos-
sible to vary the technological parameters in such a way
as to optimize the characteristics of magnetic multi-
layer structures for various practical applications.
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