Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:  Password:    
 Athens/Institution Login 
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information. 
Results List Previous  33 of 81  Next
Physica B: Condensed Matter
Volume 343, Issues 1-4 , 1 January 2004, Pages 177-183

Proceedings of the Fourth Intional Conference on Hysteresis and Micromagnetic Modeling

This Document
SummaryPlus
Full Text + Links
PDF (147 K)
External Links
Abstract + References in Scopus
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation

doi:10.1016/j.physb.2003.08.090    How to Cite or Link Using DOI (Opens New Window)  
Published by Elsevier Science B.V.

Exchange energy formulations for 3D micromagnetics

M. J. DonahueCorresponding Author Contact Information, E-mail The Corresponding Author and D. G. Porter

National Institute of Standards and Technology, 100 Bureau Drive Stop 8910, Gaithersburg, MD 20899-8910, USA

Available online 21 October 2003.


Abstract

Exchange energy is especially sensitive to the numerical representation selected. We compare three discretized exchange energy formulations for 3D numerical micromagnetics on rectangular grids. Explicit formulae are provided for both Neumann and Dirichlet boundary conditions. Results illustrate the convergence order of these methods as a function of discretization cell size and the effect of cell size on vortex pinning.

Author Keywords: Micromagnetics; Exchange; Convergence

PACS classification codes: 75.40.Mg; 75.30.Et; 75.75.ta


Article Outline

1. Introduction
2. Theory
2.1. Integration techniques
2.2. Six- and 12-neighbor methods
2.3. Twenty-six-neighbor exchange energy
3. Simulation results
4. Conclusions
References



Enlarge Image
(6K)
Fig. 1. Exchange energy error for a two-period uniform magnetization spiral. The fitted lines are, top to bottom, 10−3γ, 3×10−5γ2, and 10−9γ4.

Enlarge Image
(5K)
Fig. 2. Total energy error for μMAG standard problem No. 3. The fitted lines are, top to bottom, 0.02Δ2, 0.01Δ2, and 5.5×10−3Δ2, where Δ=h/lex. The reference energy is obtained by extrapolating to h=0.

Enlarge Image
(5K)
Fig. 3. Applied field required to unpin a vortex as a function of discretization cell size.



Table 1. Corner coefficients for O(h4) interaction matrices, for ∂m/∂Not-found=0 Neumann and Dirichlet boundary conditions with constant exchange coefficient A Full Size Table

Table 2. Coefficients for the 26-neighbor exchange energy formulation, Eq. (20) Full Size Table
Here Not-found=i±1, Not-found=j±1, Not-found=i±1, and cijkijk=0 otherwise.


References

1. M.J. Donahue and R.D. McMichael. Physica B 233 (1997), p. 272. Abstract | Abstract + References | PDF (386 K) | Abstract + References in Scopus | Cited By in Scopus

2. P.J. Davis and P. Rabinowitz. Methods of Numerical Integration, Academic Press, Orlando (1984).

3. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, Springer, New York (1993).

4. W.F. Brown, Jr.. Micromagnetics, Wiley/Interscience, New York (1963).

5. M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, U.S. NBS, Washington, DC, 1970.

6. P. Trouilloud and J. Miltat. J. Magn. Magn. Mater. 66 (1987), p. 194. Abstract | Abstract + References | PDF (1205 K) | Abstract + References in Scopus | Cited By in Scopus

7. D.V. Berkov, K. Ramstöck and A. Hubert. Phys. Stat. Sol. A 137 (1993), p. 207. Abstract-INSPEC   | $Order Document

8. M. Labrune and J. Miltat. J. Magn. Magn. Mater. 151 (1995), p. 231. SummaryPlus | Full Text + Links | PDF (1050 K) | Abstract + References in Scopus | Cited By in Scopus

9. M.J. Donahue, D.G. Porter, R.D. McMichael and J. Eicke. J. Appl. Phys. 87 (2000), p. 5520. Abstract-INSPEC   | $Order Document | OJPS full text | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

10. J.M. Marin and T. Dhorne. Statistics 37 (2003), p. 85. Abstract + References in Scopus | Cited By in Scopus

11. W.J. Chen, D.R. Fredkin and T.R. Koehler. IEEE Trans. Magn. 29 (1993), p. 2124. Abstract-INSPEC | Abstract-Compendex   | $Order Document | Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus

12. J. Fidler and T. Schrefl. J. Phys. D 33 (2000), p. R135. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

13. M.J. Donahue, D.G. Porter, OOMMF User's Guide, NISTIR 6376, NIST, Gaithersburg, MD, 1999.

14. R.D. McMichael, M.J. Donahue, left angle bracketURL: http://www.ctcms.nist.gov/~rdm/mumag.htmlright-pointing angle bracket.

15. M.J. Donahue. J. Appl. Phys. 83 (1998), p. 6491. Abstract-INSPEC   | $Order Document | OJPS full text | Full Text via CrossRef


Corresponding Author Contact InformationCorresponding author. Fax: +301-990-4127



This Document
SummaryPlus
Full Text + Links
PDF (147 K)
External Links
Abstract + References in Scopus
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation
Physica B: Condensed Matter
Volume 343, Issues 1-4 , 1 January 2004, Pages 177-183
Proceedings of the Fourth Intional Conference on Hysteresis and Micromagnetic Modeling


Results ListPrevious 33 of 81 Next
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)

Contact Us  |  Terms & Conditions  |  Privacy Policy

Copyright © 2005 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.