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Abstract

The propagation of the mutual intensity function from an incoherent synchrotron source to the sample is discussed.

It is shown how coherency properties of the beam are changed by propagation through random optical elements, such

as Be windows and mirrors present in the beamline. The mutual intensity function in this case cannot be described by

one coherence length but will rather have several components with different coherence lengths. With computer simu-

lations it is shown how such multicomponent mutual intensity function can affect the reconstruction of nanoparticles in

coherent X-ray diffraction experiments.
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1. Introduction

Current advances in experimental facilities

(ESRF, APS, and SPRING-8) provide high-en-

ergy, high-brightness hard X-ray beams with rel-

atively high degrees of coherence. The X-ray

coherence lengths achievable with these latest
synchrotron radiation sources are in the range of a
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few microns. The unique properties of these

modern synchrotron sources have the potential to

open new fields in X-ray physics such as fluctua-

tion correlation dynamics [1–6], phase imaging [7–

10], and coherent X-ray diffraction (CXD) [11–14].

All these techniques utilize the coherency proper-

ties of the synchrotron radiation [15].
As was shown in recent CXD experiments [16],

it is possible to image crystals of nanometer size.

Illuminated by coherent beam with transverse and

longitudinal coherence lengths bigger than the size

of the particle they produce a continuous inter-

ference diffraction pattern. The diffraction from

such nanocrystals is no longer comprised of sharp

Bragg peaks and broad diffuse background as in
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conventional incoherent scattering but have a

complicated intensity distribution centered at each

reciprocal-lattice point.

It was shown in the same papers the possibility

to invert this continuous diffraction pattern into a

real space image. This new type of X-ray micro-
scope may have certain advantages compared with

commonly used techniques. In principle, it does not

need lenses; its resolution depends on the available

coherent flux from the synchrotron source (at the

moment a resolution better than 0.1 lm can be

achieved) and 3D image of the sample can be ob-

tained conveniently from several adjacent scans of

reciprocal space, without need of the 180� rotation
of the sample as in tomography [17]. What is most

important, due to the high penetration of X-rays,

this new X-ray microscope can image the inner

parts of the crystal (with all possible inhomogene-

ities and holes) and additionally with the potential

of imaging the strain field inside the crystal [18].

In the first reconstructed images we have seen

some additional regions of high intensity that can-
not be associated with the nanocrystal structure.

Computer simulations assuming partial coherence

rather than pure coherence of the incoming beam

have shown [19] that additional features observed

on the images can be attributed to this partial co-

herence of the incoming beam. In most previous

studies it was assumed that the partial coherence of

the incoming beam is associatedmainly with a finite
size of the source. The same approach was used in

our model calculations. However, simple estima-

tions show that for the parameters of the hard

X-ray beamline where CXD experiments were

performed (APS storage ring) the finite size of the

source is not the only origin of the coherence loss.

Optical elements present in the beamline can con-

tribute significantly to the possible degradation of
coherence of the beam. In addition, the transverse

coherence of the beam can change non-uniformly

and can contain sharp features on the more uni-

form background. From this preliminary analysis it

has become clear that more detailed analysis of the

coherency properties of the beam passing different

optical elements is necessary.

It was appreciated from the beginning that
partial coherence of the incoming beam can

change the apparent scattered intensity distribu-
tion from a sample. A comprehensive theoretical

study of partial coherence effects on the observed

intensity distribution in the far-field as well as in

the near-field X-ray scattering was made by Sinha

et al. [20]. In a recent paper [21] partial coherence

effects on the topography measurements were an-
alyzed. There were even proposals [22] to manip-

ulate with coherency properties of the beam in

order to obtain a diffraction pattern from just one

protein molecule in a crystal. These different ap-

plications of X-ray coherent scattering motivate

further theoretical and experimental attempts to

understand the coherency properties of the beam

on third generation storage rings.
During last decade several attempts were made

to measure the coherency properties of the X-ray

beams. It is not a trivial problem for X-ray wave-

lengths of the order of angstrom to measure co-

herence with a two-slit Young type experiment that

is routinely used for the visible light [23]. However,

in the soft X-ray region, an interferometric Young

type measurement of the spatial coherency prop-
erties of the beam was performed [24–26]. To

measure spatial coherence in the hard X-ray region

different approaches were proposed: to use dy-

namical diffraction effects to measure the visibility

ofPendell€oosung fringes [27], to measure interference

pattern from double reflecting mirrors in a kind of

two-slit Young experiment [28], to use gratings as a

phase object to measure coherence utilizing Talbot
effect [29], to make high precision measurements

of intensity distribution on well-defined objects as

slits in the far-field [30] and more recently slits and

fibers in the near-field [31]. Quite different approach

of the characterization of transverse coherence by

intensity interferometry technique was proposed in

[32]. First two-slit Young experiment to measure

spatial coherence of the synchrotron beam in hard
X-ray energy range was reported only recently [33]

(a specially prepared phase mask was used to

measure the coherence at APS storage ring [34]). It

is important to note here that coherency properties

can change essentially from one beamline to an-

other and even on the same beamline they depend

on the optics present in experiment.

When the first phase contrast images with co-
herent X-rays were obtained, it became clear that

the quality of the optic elements present in the
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beamline can be important for this imaging tech-

nique. The height profile of the mirror [35] and the

inhomogeneities of the Be window [36] illuminated

by coherent beam introduce additional distortion

of the wavefront and can produce unavoidable

artifact images in the form of speckle pattern and
as a result can distort the image of the object.

What is more important and was not investigated

in detail up to now is that all the optics in the

beamline can change the coherency properties of

the beam. So it will be desirable to have some

method to calculate or at least to estimate effects

introduced by an optical element on the coherency

properties of the X-ray beam. This is the main goal
of this paper.

In visible light optics it is well established that

coherency properties of the beam can be described

by the so-called mutual coherence function (MCF)

that measure correlation between two beams sep-

arated in space and time [23,37,38]. The propaga-

tion of this MCF in the free space is governed by

two wave equations similar to the wave propaga-
tion equation obtained directly from Maxwell

equations. This general approach can be in princi-

ple applied to propagation of any electromagnetic

radiation including hard X-rays. The theoretical

description is simplified if ‘‘quasi-monochromatic’’

conditions are fulfilled which means that the path

length difference between the two beams is less than

the longitudinal coherence length. The statistical
properties of the beam in the plane across its

propagation direction can then be well described by

the mutual intensity function (MIF) that gives

correlations of two field amplitudes at different

points in this plane and the same time. The general

propagation laws of this MIF in free space are

obtained directly from the corresponding equations

for MCF. These main definitions and equations are
briefly summarized in Section 2.

In this paper we will be interested in applying

this general theory of propagation of the MIF to

the special case of propagation of the hard X-rays

starting from a conventional ‘‘insertion device’’

(wiggler or undulator) on a third generation X-ray

storage ring. It is well known that such source can

be well described as an incoherent source of X-ray
radiation because each electron is an independent

radiator. Typical beamlines at high energy syn-
chrotron radiation sources are built from compo-

nents which contain optical elements. These are

either intended to adapt the qualities of the beam

to the needs of the experiment or can do so inad-

vertently. Important categories of components

would be slits, mirrors, monochromators, lenses,
and windows. Each of these elements can change

in a different way the coherency properties of the

beam. We will consider an idealized beamline

configuration with only one optic element on the

way from the source to the sample. The radiation

incoming on this element can be of any state of

coherence. Then by applying the general propa-

gation law for the MIF, the coherency properties
of the beam at the sample position will be calcu-

lated (Section 3). If the detailed structure (slit size,

microstructure of the window or height function of

the mirror) of the element is known this general

approach gives, in principle, the possibility to

calculate the MIF and consequently the coherency

properties of the beam at the sample position.

However, exact knowledge of the optical elements
microstructure is often limited. This makes it dif-

ficult to predict the coherency properties of the

beam at the sample position and different ap-

proaches have to be applied.

The following situation is often realized on the

beamline: because of the divergence of the beam,

the illuminated area on an optical element is much

bigger than the coherence length of the incoming
radiation. That is especially true for the last ele-

ment that is usually an exit Be window. The in-

coming beam is rescattered and refracted due to all

inhomogeneities present in the window that cause

an unpredictable change of an optical pathlength

of X-rays transmitted through that window. In this

situation an optical element can be modeled as a

random object and its structure can be character-
ized by statistical parameters such as roughness of

the surface and correlation length of the height–

height fluctuations. It will be shown (Section 4)

that in this case MIF will split into two parts. The

first one will describe the propagation of radiation

from the source to the sample without rescattering

on the optics and will preserve high coherence. The

second one takes into consideration the effects
of rescattering on the optics and has reduced co-

herence lengths. The detailed calculation of this
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additional contribution is given in Section 5. The

short coherence lengths can be explained to a first

approximation in the far-field limit by a large ef-

fective source size on the window due to diver-

gence of X-ray beam. However, as was discussed

in detail in [20], the far-field conditions are easily
violated in the case of hard X-rays. It will be

shown in the same section, that for the typical

parameters of the CXD beamline, the �sharp�
contribution to MIF has to be calculated in the

near-field rather then far-field limit.

In the last section such a two-component MIF,

calculated for elements with various statistical

properties, will be applied to calculate the intensity
distribution from a small crystalline particle in a

CXD experiment. This intensity distribution is

similar to one observed in experiment [16]. Then

applying reconstruction procedure discussed in

[19] this intensity distribution will be used to ob-

tain the real image of the particle. Additional

features that can appear in the image of a nano-

particle due to a reduced coherence of the incom-
ing beam will be discussed.
2. Laws of propagation of the mutual coherence

function. Basic equations

The central concept in the theory of partial

coherency is the so-called mutual coherence func-
tion (MCF) CðP1; P2; sÞ that defines the correla-

tions between two complex scalar 2 values of the

electric field at different points P1 and P2 and dif-

ferent times. It is defined as

CðP1; P2; sÞ ¼ hEðP1; t þ sÞE�ðP2; tÞiT ; ð1Þ
where EðP1; t þ sÞ and EðP2; tÞ are the field values

at the points P1 and P2 and brackets h� � �iT mean an

averaging over times T much longer than the

fluctuation time of the X-ray field. It is also as-
sumed that the radiation is ergodic and stationary.

According to the laws of propagation of partially

coherent narrowband radiation (Dx 	 x) defined

by the Huygens–Fresnel principle [37,38], the
2 In the following, for simplicity, we will consider only one

polarization of the X-ray field.
MCF propagates from the surface R1 to the sur-

face R2, as shown in Fig. 1, according to

CðQ1;Q2; sÞ ¼
Z

R1

Z
R1

C P1; P2; s
�

þ R2 
 R1

c

�
� dS1

kR1

dS2
kR2

: ð2Þ

Here, R1 and R2 are the distances between the

points P1 and P2 on the surface R1 and the points

Q1 and Q2 on the surface R2, k is an average
wavelength and c is the speed of light. It is as-

sumed in this expression for the narrow divergent

X-ray field that the obliquity factor vðhÞ � 1.

The experiment is defined as ‘‘quasi-mono-

chromatic’’ when it satisfies the condition that the

maximum pathlength difference is much smaller

than the longitudinal coherence length R2 
 R1 	
lcoh ¼ scohc. Then, according to Goodman [37], the
MCF can be written as

CðQ1;Q2; sÞ ¼ JðQ1;Q2Þe
i-s; ð3Þ
where

JðQ1;Q2Þ ¼ CðQ1;Q2; 0Þ ¼ hEðQ1; tÞE�ðQ2; tÞiT
ð4Þ

is called the mutual intensity function (MIF) and

- is the mean frequency. The MIF specifies the

correlations of the fields at different points and

the same time. The propagation law for the MIF

follows from (2):

JðQ1;Q2Þ ¼
1

ðkRÞ2
Z

R1

Z
R1

JðP1; P2Þe
ikðR2
R1Þ dS1 dS2;

ð5Þ
Fig. 1. Propagation of mutual coherence function from surface

R1 to surface R2. Vectors n1 and n2 are the normal vectors to the

surface R1 at points P1 and P2.
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where k ¼ 2p=k. Here, it has been assumed that,

for large distances between the surfaces R1 and R2,

the approximation 1=R1 � 1=R2 � 1=R is valid. It

is usual to normalize the MIF as

lðQ1;Q2Þ ¼
JðQ1;Q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JðQ1;Q1ÞJðQ2;Q2Þ
p ; ð6Þ

which is known as complex coherence factor

(CCF).

The intensity distribution is obtained directly

from (5) by letting Q2 ! Q1 to give the expression

IðQ1Þ ¼ JðQ1;Q1Þ: ð7Þ
3. Propagation of the mutual intensity function

through the optical element

We will consider now an idealized situation of

the beamline when on the way from the synchro-

tron source to the sample the X-ray beam passes

through one optical element (Fig. 2). It can be pair
of slits, lens, Be window or a mirror. In the most

general way these elements can be characterized by

their complex valued amplitude transmittance

function T ðuÞ. The actual form of the transmit-

tance function may differ from one element to

another and will be defined more explicitly below.

We will also assume a ‘‘conventional’’ source of

synchrotron radiation (bending magnet, wiggler
or undulator) which can be considered to be a

planar incoherent source at distance L1 from the

element. The sample is at a distance L2 behind it
Fig. 2. Beamline with one optical element on the way of propagation o

element, and the sample are described in their ‘‘local’’ 2D coordinate fr

their coordinates s, u, and r, respectively.
(Fig. 2). The source, optical element, and the

sample will be described in their ‘‘local’’ 2D co-

ordinate frames perpendicular to the direction of

the beam propagation by its coordinates s; u, and
r, respectively. Below, we will tacitly assume that a

monochromator is also present in the beamline to
provide narrow bandwidth of the X-ray beam and

hence provide with high degree of longitudinal

coherence length. It will be also considered that

the incoming radiation on the element can be

partially coherent.

The amplitude of the transmitted beam Atðu; tÞ
can be written in terms of the amplitude Ainðu; tÞ of
the incoming beam as

Atðu; tÞ ¼ T ðuÞAinðu; t 
 s0Þ; ð8Þ
where T ðuÞ is an amplitude transmittance function

and s0 is an average time delay associated with the
structure of the element. In further calculations it

will be assumed that the amplitude transmittance

function T ðuÞ is independent of wavelength within

the narrowbandwidth of the incident radiation. The

MIF transmitted through the structure can be easily

obtained from (4), (8) (see, for e.g., textbook [37])

Jtðu1; u2Þ ¼ T ðu1ÞT �ðu2ÞJinðu1; u2Þ: ð9Þ
The MIF propagating from such an element to

the sample at distance L2 (Fig. 2) can be obtained

according to the general law of propagation of
MIF (5)

Jðr1; r2Þ ¼
1

ðkL2Þ2
Z

R

Z
R
T ðu1ÞT �ðu2ÞJinðu1; u2Þ

� e
ikðR2
R1Þ du1 du2: ð10Þ
f X-rays from the synchrotron source to the sample. The source,

ames perpendicular to the direction of the beam propagation by
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In the paraxial approximation, when the
distance from the element to the sample is

much bigger than the effective size of intensity

distribution on the element and the size of the

sample,

R2 
 R1 � 1=2L2½ðr2 
 u2Þ2 
 ðr1 
 u1Þ2�

and expression for the MIF (10) can be written in
the following form:

Jðr1; r2Þ ¼
Z Z

T ðu1ÞT �ðu2ÞJinðu1; u2ÞPL2ðr1 
 u1Þ

� P �
L2
ðr2 
 u2Þdu1 du2; ð11Þ

where the Green�s function (or propagator)

PL2ðr
 uÞ is introduced. It describes the propaga-

tion of radiation in free space and is defined

as

PL2ðr
 uÞ ¼ 1

ikL2
exp i

k
2L2

ðr
�


 uÞ2
�
: ð12Þ

The intensity distribution at the sample position is

obtained according to (7) from Eq. (11) by putting

r1 ¼ r2 ¼ r giving

IðrÞ ¼
Z Z

T ðu1ÞT �ðu2ÞJinðu1; u2ÞPL2ðr
 u1Þ

� P �
L2
ðr
 u2Þdu1 du2: ð13Þ

Expressions (11) and (13) are quite general (their

detailed discussion can be found in the textbooks
of Goodman [37] and Mandel and Wolf [38]) and

relate the coherency properties of the beam inci-

dent on the optical element and the coherency

properties and intensity distribution reaching the

sample. In some sense this element can be regarded

as a secondary source defining the coherency

properties of the beam on the sample position with

MIF Jðr1; r2Þ. Of course different elements modify
the coherency properties of the beam in different

ways through their specific transmittance function

T ðuÞ. Below we will analyze in more detail the

special case of Be windows or mirrors considered

as optical elements on the way from the source to

the sample.

A window will be considered as a thin object in

the sense that X-rays incoming at point u exit the
window essentially at the same transverse coordi-

nate (small refraction effects are neglected). We
will also assume that the aperture of the window is

essentially bigger than the intensity distribution of

the incoming beam. Such element can be charac-

terized by a complex transmittance function

T ðuÞ ¼ BðuÞeiUðuÞ; ð14Þ
where the amplitude BðuÞ is responsible for atten-

uation (absorption) and the phase shift UðuÞ ¼
xds is determined by the time delay ds introduced

at point u by the element. For X-rays propagating

through a window characterized by its thickness

function dðuÞ and refractive index n ’ 1
 d þ ib,
where d is the refractive index decrement and b is
the absorption index, this time delay introduced at

point u is equal to ds ¼ 
ddðuÞ=c. If absorption

effects are taken into account, then following

Goodman [37], it easy to show that the amplitude

BWðuÞ and the phase shift UWðuÞ at point u on the

window are equal to

BWðuÞ ¼ exp½
kbdðuÞ�; UWðuÞ ¼ 
kddðuÞ;
ð15Þ

where b and d can be also position-dependent.
Hypothetically two different types of optics can

be considered: purely absorbing (with the phase

shift UðuÞ ¼ 0) and purely refractive (phase ob-

jects, with the amplitude function BðuÞ ¼ 1). In the

case of hard X-rays propagating through a Be

window, the transmittance function is well ap-
proximated by a pure phase function.

Reflecting mirrors are often used on the beam-

lines as optical elements. Strictly speaking we

cannot introduce amplitude transmittance func-

tion for the mirrors as it was defined in (8) due to

the inversion property (for ideally flat mirror

Atð
uÞ ¼ AinðuÞ). However, it is well known [20,39]

that in the case of reflecting rough surface in the
first Born approximation the influence of the sur-

face on the incoming amplitude can be associated

with the phase factor

UMðuÞ ¼ qzhðuÞ: ð16Þ

Here, qz is the scattering vector perpendicular to

the surface and hðuÞ is the height function of the

surface converted to the coordinate system u

across the beam at the position of the sample. Due

to the grazing incident angle conditions, the illu-

minated area is substantially elongated along the
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beam direction. Therefore, coordinate system

along the mirror surface itself can be defined as

ðu0x; u0y ¼ ux; uy= sin hÞ, where 2h is the scattering

angle. For an ideally flat surface UMðuÞ ¼ const:
and does not change the wave front of the in-
coming amplitude. However, roughness of the

surface will change the phase of the scattered

amplitude. So, with some restrictions, a mirror

also can be described as a pure phase object by its

transmittance function (14) with amplitude

BMðuÞ ¼ 1 and phase UMðuÞ (16).
It is useful to examine several limiting cases of

the general expression (11) relating coherency
properties of the beam on the sample position with

its properties before passing an optical element.

Equation (11) was obtained in the paraxial

approximation for big distances L2 between an

optical element and the sample. However it gives

the correct result even for very small distances.

Indeed for L2 ! 0 we have PL2ðr
 uÞ ! dðr
 uÞ.
Substituting this expression in (11) and performing
integrations we obtain that mutual intensity

function just after an optical element Jðr1; r2Þ ¼
T ðr1ÞT �ðr2ÞJinðr1; r2Þ that is exactly the same as

defined in (9).

Now we will consider two limits of coherent and

incoherent illumination of the optical element de-

scribed by the transmittance function T ðuÞ (14).

The CCF linðu1; u2Þ defined in (6) being a complex
function can be written as linðu1; u2Þ ¼ jlinðu1; u2Þj
exp½iaðu1Þ 
 iaðu2Þ�, where aðu1Þ and aðu2Þ are the

phases corresponding to points u1 and u2 on the

optical element. In the coherent limit [37,38],

jlinðu1; u2Þj ¼ 1 which gives for the MIF of

the incoming beam Jinðu1; u2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iinðu1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iinðu2Þ

p
exp½iaðu1Þ 
 iaðu2Þ�. In the case of the infinitely far

source the phases aðu1Þ ¼ aðu2Þ ¼ const: and can
be taken equal to zero. Substituting this expression

in Eqs. (11) and (13) gives for the MIF

Jcoherðr1; r2Þ ¼ Aðr1ÞA�ðr2Þ ð17Þ

and for the intensity distribution

IcoherðrÞ ¼ jAðrÞj2; ð18Þ

where

AðrÞ ¼
Z
T ðuÞ

ffiffiffiffiffiffiffiffiffiffiffi
IinðuÞ

p
eiaðuÞPL2ðr
 uÞdu: ð19Þ
This is the general expression for the intensity and

amplitude of the coherently scattered radiation

that takes into account the intensity distribution of

the incoming beam and is valid both in the near-

and far-field limits. In the case of the non-uniform

element described by the transmittance function

T ðuÞ (14) expressions (18) and (19) will result in
high contrast background speckle patterns on the

CCD detector after diffraction from the sample.

This effect was observed experimentally for hard

X-rays coherently illuminating mirrors [35] and Be

windows [36]. Of course this speckle pattern can be

significantly reduced by using a uniform window

(for example specially polished) with constant

amplitude BW and phase shift UW across the beam.
However, this represents a difficult technical

problem for X-ray wavelengths [40].

In the incoherent limit of the incoming beam

the CCF linðu1; u2Þ can be taken to be a delta

function [37,38] linðu1; u2Þ ¼ jdðu2 
 u1Þ, where j
is the numerical constant with the dimension of

the length squared. In this limit, the MIF of the

incoming beam reduces to Jinðu1; u2Þ ¼ jIinðu1Þ�
dðDuÞ, where Iinðu1Þ is the intensity distribution

of the incoming beam. Substituting this MIF in

Eq. (11) we obtain for the MIF at the sample

position

Jincoherðr1; r2Þ ¼ j
Z

jT ðuÞj2IinðuÞPL2ðr1 
 uÞ

� P �
L2
ðr2 
 uÞdu

¼ je
iw

ðkL2Þ2
Z

jT ðuÞj2IinðuÞ

� exp i
k
L2

ðr2
�


 r1Þu
�
du; ð20Þ

where w ¼ ðk=2L2Þðr22 
 r21Þ and the explicit form

of the propagator function PL2ðr
 uÞ (12) was

used. This expression is in fact the generalization

of the well-known van Cittert–Zernike theorem

[37,38] for incoherent illumination of an optical
element. It is interesting to note here that in the

case of pure phase object (BWðuÞ ¼ 1) the coher-

ency properties of the beam passing this optical

element will depend only on the intensity distri-

bution of the incoming beam IinðuÞ and will not

depend on the phase shift UWðuÞ, because the
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phase distribution in the incoming beams is al-

ready spatially random.

Below we will be interested in the situation in

between these two limiting cases when the incom-

ing radiation is partially coherent.
4. Propagation of the mutual intensity function

through a random optical element

For the perfect Be window the partial coher-

ence of the beam incoming on the sample can be

attributed entirely to the final size of the inco-
herent source. The wavefront of the beam passing

such ideal optical element will not be affected and

will propagate further to the sample position.

However, such ideal conditions can be rarely met

in practice. It is well known from the previous

experiments [36] that Be windows due to tech-

nological problems are highly nonuniform in its

internal structure and thickness. The average size
of the particles in the window can be about 1 lm
[41] and give rise to rescattering and diffraction of

the incoming beam. It is clear that the detailed

structure of the optical imperfections in the

window is unknown a priori. As a consequence

we will treat the optical distortions on the way of

the beam as a random process and we will see

how this may affect coherency properties of the
beam.

We will show in this section that even if the

detailed structure of the transmittance function of

an optical element is not known but it rather can

be characterized by its averaged statistical prop-

erties still the MIF passing such element can be

calculated in a straightforward way. We will show

that this is the common situation for a beamline
optics and that in this case the MIF (11) splits into

two components. The first component can be

considered ‘‘unscattered’’, propagating through

the optics without distortions. The second part

represents the scattering by inhomogeneities of the

window or roughness of the mirror.

One more important consideration for the le-

gitimacy of the statistical approach is that the
transverse coherence length nin of the beam in-

coming on the window must be much smaller than

the effective size of the intensity distribution reff of
the beam: nin 	 reff . In this limit the incoming

radiation consists of a large number of coherent

volumes that propagate through the optics and do

not interfere with each other. This means that in-

tensities rather then amplitudes corresponding to

different coherent volumes have to be summed up.
We will also assume that the transverse coherence

length of the incoming radiation is macroscopic

and is bigger than (or of the order of) the corre-

lation length s of the spatial fluctuations in the

element: nin%s. If s were bigger than nin, then the

transverse coherence length would simply ‘‘cut off’’

the spatial fluctuations.

Considering Be window as a random optical
elementwewill describe it by transmittance function

T ðuÞ (14) that will now be treated as a function of

randomly changing amplitude BðuÞ and (or) phase

UðuÞ.Wecan considernow thepropagation through

such an optical element to be a random process

as well. Now statistical properties of the beam

passing such an optical element can be obtained by

averaging over some random variable (amplitude
or phase) in the expression for the MIF (11).

Performing this kind of averaging we obtain [42]

Jðr1; r2Þ ¼
Z Z

Cðu1; u2ÞJinðu1; u2ÞPL2ðr1 
 u1Þ

� P �
L2
ðr2 
 u2Þdu1 du2; ð21Þ

where

Cðu1; u2Þ ¼ T ðu1ÞT �ðu2Þ ð22Þ
is the spatial autocorrelation of the amplitude

transmittance function. The notation TT � means

the averaging according to the following rules:

if zðxÞ is a complex random process then
zðx1Þz�ðx2Þ ¼

R R
z1z�2p2ðy2; x2; y1; x1Þd

2z1 d
2z2, where

p2ðz2; x2; z1; x1Þ is a joint probability density [38].

We want to note here that for the stationary and

ergodic process this averaging is equivalent to a

spatial averaging whereas h iT implies time aver-

aging of the field amplitudes in (1).

According to Eq. (21) the effect on the coher-

ency properties of the beam passing such random
optic element is contained in the autocorrelation

function Cðu1; u2Þ (22) which characterizes it. Be-

low, we will calculate this autocorrelation function

for the special cases of random phase and random

absorbing optical element.
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For the random phase object, the phase UðuÞ in
the transmittance function (14) can be regarded as

a random phase shift introduced at point u. For

such object the phase of the transmitted X-ray

beam can change from point to point in the ran-

dom way but we neglect absorption processes in
the window. We believe that for high energy X-

rays passing low Z material such as Be window this

is the most appropriate model. We will now as-

sume that this random phase can be modeled as

zero-mean Uðu1Þ ¼ Uðu2Þ ¼ 0 Gaussian random

process. Since both Uðu1Þ and Uðu2Þ are Gaussian,

so is the phase difference DUðu1; u2Þ ¼ Uðu1Þ

Uðu2Þ. The autocorrelation function for such
Gaussian random process can be easily calculated

using some results of the theory of probability of

the random processes [42],

Cðu1; u2Þ ¼ exp½iDUðu1; u2Þ�

¼ exp

"

 ½DUðu1; u2Þ�2

2

#
: ð23Þ

Here, ½DUðu1; u2Þ�2 ¼ ½Uðu1Þ 
 Uðu2Þ�2 is the so-

called structure function of the random process

UðuÞ. For a wide-sense stationary random process

this structure function ½DUðDuÞ�2 ¼ 2U2ð0Þ

2UðuÞUðuþ DuÞ and depends only on the coordi-

nate difference Du ¼ u2 
 u1. Substituting this

result into (23), we get for the autocorrelation

function (22)

CðDuÞ ¼ exp
�

 r2

U½1
 cUðDuÞ�
�
; ð24Þ

where r2
U ¼ U2ð0Þ is the variance and cUðDuÞ ¼

UðuÞUðuþ DuÞ=r2
U is the normalized phase auto-

correlation function which has the general property

of decaying from unity at Du ¼ 0 to zero when
Du ! 1. Expression (24) can be split into a sum of

two terms

CðDuÞ ¼ e
r2U þ e
r2U er2UcUðDuÞ
h


 1
i

¼ E2 þ E2gUðDuÞ; ð25Þ
where

E2 ¼ expð
r2
UÞ; gUðDuÞ ¼ er2UcUðDuÞ

h

 1

i
: ð26Þ

In the limit of small variance r2
U 	 1, we have

from (26) an approximate expression
gUðDuÞ ’ r2
UcUðDuÞ: ð27Þ

The variance r2
U in the case of the uniform window

is equal to r2
U ¼ k

2
d2r2

d , where r2
d ¼ d2ðuÞ is the

variance for the thickness fluctuations. For the

non-uniform Be window, the variance of the re-

fractive index r2
d has to be also included giving

r2
U ¼ k

2ðr2
d þ r2

dÞ. The variance for the reflecting

mirror is equal to r2
U ¼ q2zr

2
h, where r2

h ¼ h2ðuÞ is

the variance for the height fluctuations on the

surface of the mirror.
The form of the normalized autocorrelation

function cUðDuÞ depends on the type of fluctua-

tions in the element. It is usual to parametrize it

with a finite number of parameters. The simplest

model for the autocorrelation function that satis-

fies its general properties is in the form of expo-

nential function

cUðDuÞ ¼ expð
jDuj=sÞ; ð28Þ
where s is the lateral correlation length of the

fluctuations. For the height–height fluctuations on

the surface, a more general form of the autocor-
relation function cUðDuÞ was proposed by Sinha

et al. [39]

chðDuÞ ¼ exp½
ðjDuj=sÞ2a�; ð29Þ
where the roughness exponent a is included. This

expression gives a power law � ðjDuj=sÞ2a appro-

priate for the short-range correlations. For the

roughness parameter a ¼ 1=2, this definition of

chðDuÞ coincides with the exponential form (28).
For generality the random absorbing window

can be also considered. In this case it is the am-

plitude BðuÞ of the transmittance function (14) that

is considered as a random function for the X-rays

propagating through the window. At the same

time we neglect the change of the phase UðuÞ.
According to Goodman [37], in the case of the

random absorbing window the autocorrelation
function (22) can be also presented as a sum of two

terms

CðDuÞ ¼ T 2
0 þ gtðDuÞ; gtðDuÞ ¼ r2

t ctðDuÞ; ð30Þ
where T0 is real and non-negative 06 T0 6 1, r2

t is

variance and ctðDuÞ is the normalized autocorre-

lation function of the random fluctuations. The
same exponential model (28) can be taken for the

autocorrelation function ctðDuÞ.
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Now, substituting the expressions obtained for

the autocorrelation function CðDuÞ for the random
phase (25) and random absorbing (30) optical el-

ement into the expression for the MIF (21), we

obtain

Jðr1; r2Þ ¼ C1JSðr1; r2Þ þ C2JWðr1; r2Þ; ð31Þ
where

JSðr1; r2Þ ¼
Z Z

Jinðu1; u2ÞPL2ðr1 
 u1Þ

� P �
L2
ðr2 
 u2Þdu1 du2 ð32Þ

describes the part of MIF that propagates directly

from the source through the window without any

distortion and

JWðr1; r2Þ ¼
Z Z

gðDuÞJinðu1; u2ÞPL2ðr1 
 u1Þ

� P �
L2
ðr2 
 u2Þdu1 du2 ð33Þ

is the part that is changed due to propagation
through the random structure of the window or

mirror. In Eq. (31), coefficients C1 and C2 are

equal to C1 ¼ C2 ¼ E2 for the random phase

element and C1 ¼ T 2
0 ;C2 ¼ 1 for the random ab-

sorbing window. Function gðDuÞ is defined in (26)

and (30).

It can be shown (see Appendix A for details)

that the undistorted part of the MIF JSðr1; r2Þ
travelling a distance L1 from the source followed

by a distance L2 to the sample can be calculated

according to the van Cittert–Zernike theorem

[23,37,38] as

JSðr1; r2Þ ¼ j
e
iwS

½kðL1 þ L2Þ�2
Z

R
ISðsÞ

� exp i
k

L1 þ L2
ðr2

�

 r1Þs

�
ds; ð34Þ

where wS ¼ k=½2ðL1 þ L2Þ�ðr22 
 r21Þ, ISðsÞ is the in-

tensity distribution of the incoherent source and
integration is performed over the whole area of the

incoherent source, R.
The intensity distribution for a generic syn-

chrotron radiation source will be taken in the form

of a Gaussian function

ISðsx; syÞ ¼ I0 exp

"

 s2x
2r2

x



s2y
2r2

y

#
; ð35Þ
where rx and ry are the halfwidths of the intensity
distribution in the horizontal (xÞ and vertical (yÞ
directions. This represents an approximation for

the shape of the electron ‘‘bunches’’ within the

storage ring.

Typical numbers for a CXD experiment can

now be estimated as follows. The distance from the
synchrotron source to the sample is L1 þ L2 ’ 60

m. At an energy Ec ’ 8 keV, the far-field condition

kD2=½2ðL1 þ L2Þ� 	 1 is easily satisfied for samples

of micron size. In this far-field limit we can neglect

the phase prefactor exp½iw� in Eq. (34) to obtain an

extremely simple (Fourier transform) connection

between the source intensity distribution and the

coherency properties of the beam reaching the
sample.

Integration in Eq. (34) with the typical intensity

distribution (35) gives for the MIF

JSðr2 
 r1Þ ¼ j
2prxryI0

½kðL1 þ L2Þ�2
exp

"

 Dx2

2n2
Sx


 Dy2

2n2
Sy

#
;

ð36Þ

where

nSx;y ¼
L1 þ L2
krx;y

ð37Þ

is the transverse coherence length at the sample

position given by the size of the incoherent

source rx;y and distance from the source to sample
L1 þ L2.

Typical numbers for coherence length that

might apply in CXD experiments can be estimated

for the APS source [44]. The size of the source in

horizontal rx ’ 250 and vertical ry ’ 50 lm di-

rections gives transverse coherence lengths nSx ’ 6

and nSy ’ 30 lm at 8 keV. If the typical size of the

sample (for example a particle of micron size) or
the size of the slits before the sample is less then

these coherence lengths D	 nS, then experiment is

regarded as coherent. However, we will show be-

low that this is a necessary, but not a sufficient,

condition to obtain a pure coherent illumination

of the sample in the beamline. The second term in

the MIF Jðr1; r2Þ can also change the effective

coherence lengths that affect the outcome of an
experiment.
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5. Contribution to the coherency properties of the

beam from rescattering from random optical

element

In this section we will discuss in detail the sec-
ond term JWðr1; r2Þ (33) in expression for the total

MIF Jðr1; r2Þ (31). According to definition of the

CCF (6) the MIF in the incoming beam is

Jinðu1; u2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iinðu1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iinðu2Þ

p
linðu1; u2Þ. In the of-

ten-used quasi-homogeneous approximation, the

CCF of the incoming beam linðu1; u2Þ depends

only on the difference of the coordinates Du ¼
u2 
 u1 and is characterized by its coherence length
nin. Further it is assumed that the width of the

intensity distribution IinðuÞ in the incoming beam is

much bigger than the transverse coherence area

Acoh (as used in (21)) and that this intensity dis-

tribution is a slow varying function on the size of

Acoh. In this quasi-homogeneous approximation,

the MIF of the incoming beam can be written

as

Jinðu1; u2Þ ¼ IinðuÞlinðDuÞ; ð38Þ

where u ¼ ðu1 þ u2Þ=2. Both, the intensity distri-
bution IinðuÞ and CCF linðDuÞ of the incoming

beam, can be assumed to be Gaussian. The

intensity distribution is taken with the constant

prefactor I in0 and halfwidths rðeffÞx;y in the

horizontal (xÞ and vertical (yÞ directions and

CCF

linðDuÞ ¼ exp

"

 Du2x
2n2

ðinÞx



Du2y
2n2

ðinÞy

#
; ð39Þ

where nðinÞx;y are the typical coherence lengths of

the incoming beam. For the beamline set-up

shown in Fig. 2 with an incoherent source far

away from the optical element this will be an

exact result in the far-field limit according to van

Cittert–Zernike theorem. In this case coherence

lengths will be defined by an expression similar
to (37)

nðinÞx;y ¼
L1
krx;y

; ð40Þ

where rx;y is the size of the primary source.

Substituting expression (38) in Eq. (33) we get

for the MIF at the sample position
JWðr;DrÞ ¼
e
iw

ðkL2Þ2
Z Z

gðDuÞIinðuÞlinðDuÞ

� exp

�

 i

k
L2

ðuDu
 uDr
 rDuÞ
�
dudDu;

ð41Þ
where w ¼ ðk=L2ÞðrDrÞ, r ¼ ðr1 þ r2Þ=2 and Dr ¼
r2 
 r1. In deriving Eq. (41) the explicit form of

propagators PL2ðr
 uÞ (12) and identity ð1=2L2Þ
½ðr2 
 u2Þ2 
 ðr1 
 u1Þ2� ¼ ð1=L2ÞðrDrþ uDu
 uDr

rDuÞ were used.

The intensity distribution of the beam at the

sample position is obtained directly from Eq. (41)

by the substitution r1 ¼ r2 ¼ r so that Dr ¼ 0 and
the phase factor w ¼ 0

IWðrÞ ¼
1

ðkL2Þ2
Z Z

gðDuÞIinðuÞlinðDuÞ

� exp

�

 i

k
L2

ðuDu
 rDuÞ
�
dudDu: ð42Þ

We want to note here that these expressions

for the MIF JWðr;DrÞ and the intensity distri-

bution IWðrÞ are valid both for the far-field

and the near-field approximation so long as

quasi-homogeneous illumination (38) is assumed.

We will consider separately two limits of these

expressions.

Far-field limit. The simplest expressions for the
MIF JWðr;DrÞ and the intensity distribution IWðrÞ
can be obtained when the following condition is

valid ðk=L2ÞuDu 	 p=2, which defines the far-field

limit, so that this phase factor can be neglected in

the exponent in (41) and (42). This gives for the

distance L2

L2 � 2reffnin=k; ð43Þ

where reff is an effective size of the spatial intensity
distribution of the beam reaching the optics and

nin is the transverse coherence length of this beam.

If correlation lengths s of the element are much

less than the coherence length of the incoming

beam, then in expression (43) nin has to be

substituted by s.
In this far-field limit, the MIF (41) factorizes

and can be written as a product of two functions

JFFW ðr;DrÞ ¼ IFFW ðrÞ � lFF
W ðDrÞ; ð44Þ



40 I.A. Vartanyants, I.K. Robinson / Optics Communications 222 (2003) 29–50
where the intensity distribution at the sample po-

sition and the CCF are given by

IFFW ðrÞ ¼
R
IinðuÞdu
ðkL2Þ2

Z
gðDuÞlinðDuÞ

� exp½iðk=L2ÞrDu�dDu; ð45Þ

lFF
W ðDrÞ ¼ 1R

IinðuÞdu

Z
IinðuÞ

� exp½iðk=L2ÞDru�du: ð46Þ

Here, due to far-field conditions (43), the contri-

bution of the phase factor w in CCF lFF
W ðDrÞ can

be neglected. As it follows from (46) in the far-field

limit the coherency properties of the beam on the

sample position are determined only by the in-
tensity distribution IinðuÞ of the incoming beam on

the optical element.

For the Gaussian distribution of the incoming

intensity the CCF lFF
W ðDrÞ (46) will also be

Gaussian

lFF
W ðDrÞ ¼ exp

"

 Dx2

2n2
Wx


 Dy2

2n2
Wy

#
; ð47Þ

where nWx;y is a coherence length determined by the

effective size of the source on the optical element

nWx;y ¼
L2

k � rðeffÞx;y
: ð48Þ

So, in this far-field limit the coherency properties

of the beam scattered from the optics are deter-

mined by an effective source size reff and distance

L2 from this element. Taking into account that for
the last optical element in the beamline usually

L2 	 L1 and rðeffÞ � r, where r is the size of the

synchrotron source we immediately have an esti-

mate nW 	 nS, where nS (37) is the coherence

length produced by the source itself. Since both

these inequalities typically represent factors of

10 or more, their combined effect is rather

substantial.
For a typical CXD experiment the effective size

of the source on the Be window or mirror is de-

termined by the divergence of the beam. The di-

vergence of the beam from a synchrotron source is

usually small but finite and is of the order of few
lrad. A specific example is the angular distribution

of the nth harmonic of an undulator source which

has a half-width [45]

r0 ’ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2=2

2nNund

;

s
ð49Þ

where c is the relativistic parameter, K is the de-

flection parameter (of order unity), and Nund is the
number of undulator periods. For an undulator at

a 7-GeV storage ring with an effective Nund � 50,

the half-width of the angular divergence is ex-

pected to be r0 � 10 lrad. The standard ‘‘Undu-

lator A’’ at the APS has a horizontal half-width

divergence of r0
x ¼ 26 and r0

y ¼ 14 lrad in the

vertical. This determines the size of the entire beam

at the last optical element (usually a Be window) at
position L1 ¼ 55 m to be

rðeffÞx ’ rx þ r0
xL1 ¼ 1:7 mm;

rðeffÞy ’ ry þ r0
yL1 ¼ 0:8 mm:

ð50Þ

For this effective source size and distances between

the last Be window and the sample that might be

typically about L2 ’ 5 m, we obtain coherence

lengths nWx ¼ 0:07 and nWy ¼ 0:15 lm in the hor-

izontal and the vertical directions. Evidently these

coherence lengths are much shorter than coherence

lengths produced by the beam propagating directly

from the source (37). As we see from this analysis,
rescattering in the optics placed in the beam in-

troduces a new, shorter, coherence length at the

sample position.

It is important also to analyze the expression

for the intensity distribution IFFW ðrÞ (45) in the far-

field. Substituting the function gUðDuÞ (26) gives

IFFW ðqrÞ /
Z

er2UcUðDuÞ
h


 1
i
linðDuÞ

� exp½iqrDu�dDu; ð51Þ

where qr ¼ ðk=L2Þr. This expression is in fact a

generalization of the intensity of the diffuse scat-

tering in the first Born approximation for the

partial coherent incoming beam. Really, in the
case of scattering from a rough surface in the co-

herent limit linðDuÞ ¼ 1 with variance r2
U ¼ q2zr

2
h

and autocorrelation function chðDuÞ (29), Eq. (51)
coincides with the well-known expression from

[39]. Examination of Eq. (51) shows that unlike the
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CCF the intensity distribution in the far-field de-

pends on the imperfections of the optics.

Now, taking the limit of small variance r2
U 	 1

in Eq. (51), the exponential form (28) for the au-

tocorrelation function cUðDuÞ and assuming
Gaussian CCF linðDuÞ (39), we get for the inten-

sity distribution in the far-field limit

IFFW ðqrÞ ¼ IFF0 �IFFðqrÞ

¼ IFF0

nðinÞxnðinÞy

Z
exp

h

 jDuj=s 
 Du2x=2n

2
ðinÞx


 Du2y=2n
2
ðinÞy

i
expðiqrDuÞdðDuÞ; ð52Þ

where IFF0 ¼ 2pr2
UrðeffÞxrðeffÞynðinÞxnðinÞyI in0 =ðkL2Þ

2
[46].

If coherence lengths nðinÞx ¼ nðinÞy ¼ nðinÞ, then in-

tegral in (52) can be calculated in circular coordi-

nates giving

IFFðqrÞ ¼
2p

n2
ðinÞ

Z 1

0

exp
h

 q=s 
 q2=ð2n2

ðinÞÞ
i

� J0ðqrqÞqdq; ð53Þ

where J0ðzÞ is a Bessel function of a zero order and

qr ¼ jqrj. As it follows from (52) in the limit

r2
U 	 1 the intensity IFFW ðqrÞ is directly propor-

tional to the variance r2
U. Consequently this con-

tribution can be made smaller by improving the

quality of the optics. It is interesting to note that in

the limit of big correlation lengths s � nðinÞ
expressions (52) and (53) give Gaussian distribu-

tion of intensity IFFW ðqrÞ / expð
q2rn
2
ðinÞ=2Þ. In the

opposite limit of big coherence lengths nðinÞ � s
we get for intensity distribution IFFW ðqrÞ / t2=
ð1þ q2r t

2Þ3=2.
The far-field expression for the MIF JWðr;DrÞ

(44) is valid only for distances L2 satisfying con-

dition (43). Simple estimates show that this

condition is easily violated in the case of the hard

X-rays. A typical CXD experiment might have its

last Be window at L1 � 50 m. For this configura-

tion the intensity distribution on the window will

be about (50) reff � 1:5 mm and transverse co-
herence length of the incoming beam (40)

nðinÞ � 10 lm. This would require L2 � 2� 102 m

to achieve the far-field limit condition (43) which is

difficult to realize in practice. So it is important to

understand how this result changes in the near-

field limit.
Near-field limit. In the near field limit the phase

term ðk=L2ÞðuDuÞ in the expression for the MIF

JWðr;DrÞ (41) has to be taken into account ex-

plicitly. In general in this limit, the coherency

properties of the beam can be different for different

positions in the transverse plane r at the sample
position. However, to simplify the analysis we will

calculate the MIF JWðr;DrÞ only for the center of

the illuminated region which means that we can

put r ¼ 0 in (41). For this practically important

case the MIF can be written in the following form:

JNF
W ðDrÞ ¼ 1

ðkL2Þ2
Z

dðDuÞgðDuÞlinðDuÞ

�
Z

duIinðuÞe
iq0u; ð54Þ

where q0 ¼ ðk=L2ÞðDu
 DrÞ. This expression can be

calculated further with the same approximations

that were used in the far-field limit: the Gaussian

distribution of the incoming intensity IinðuÞ with
halfwidths rðeffÞx ¼ rðeffÞy ¼ rðeffÞ (in this approxi-

mation according to definition (48) nW;x ¼ nW;y ¼
nW), the exponential form (28) for the autocorre-

lation function cUðDuÞ and the Gaussian form (39)

for the incoming CCF linðDuÞ. This gives for the

MIF JNF
W ðDrÞ (54) in the near-field limit

JNF
W ðDrÞ ¼ INF

0 � lNF
W ðDrÞ; ð55Þ

where INF
0 ¼ 2pr2

Ur2
ðeffÞn

2
WI

in
0 Jð0Þ=ðkL2Þ2 and

lNF
W ðDrÞ ¼ lFF

W ðDrÞ �JðDrÞ=Jð0Þ ð56Þ
is the CCF in the near-field. In this expression
lFF
W ðDrÞ is the far-field limit of CCF (47) with the

coherence length nW (48) and the integral JðDrÞ
have the following form:

JðDrÞ ¼ 1

n2
W

Z
exp

h

 jDuj=s 
 Du2x=ð2n

2

xÞ


 Du2y=ð2n
2

yÞ þ DuDr=n2
W

i
dðDuÞ; ð57Þ

where n
2

x;y ¼ n2
ðinÞx;yn

2
W=ðn

2
ðinÞx;y þ n2

WÞ. Expression

(56) give multiplicative corrections for the far-field

result of Eq. (46). It is important to note that

unlike the far-field limit results the CCF lNF
W ðDrÞ in

the near-field limit now depends on the statistical
properties of the Be window through the correla-

tion length s. Integral in Eq. (57) can be further

calculated if we take into account that for the
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typical beamline nðinÞx;y � nW that gives a good

approximation nx;y � nW. Using circular coordi-

nates, we obtain

JðDrÞ ¼ 2p

n2
W

Z 1

0

exp
�

 q=s 
 q2=ð2n2

WÞ
�

� I0 qDr=n2
W

� �
qdq; ð58Þ

where I0ðzÞ is a modified Bessel function of a zero
order and Dr ¼ jDrj.

The intensity distribution in the near-field can be

obtained directly from (42). With the same ap-

proximations as were made for the calculation of

the MIF JNF
W ðDrÞ (54) and (55), we get

INF
W ðqrÞ ¼ INF

0 �INFðqrÞ

¼ INF
0

n2
W

Z
exp

h

 jDuj=s 
 Du2x=ð2n

2

xÞ


 Du2y=ð2n
2

yÞ
i
� expðiqrDuÞdðDuÞ; ð59Þ

where qr is defined in (51). It is interesting to note

that this near-field intensity distribution has the

same form as the far-field expression (53) with the

only change of n to nðinÞ that correspond to the limit

nW ! 1 in Eq. (59). Assuming again that nx;y � nW

and using circular coordinates we obtain for the

integral INFðqrÞ the following expression:

INFðqrÞ ¼
2p

n2
W

Z 1

0

exp
�

 q=s 
 q2=ð2n2

WÞ
�

� J0ðqrqÞqdq; ð60Þ

where qr ¼ jqrj.
Fig. 3. Schematic view of propagation of the MIF from the incoheren

window). Upon passing the Be window, the MIF has two componen

agating directly from the source and a second one originating from th

position.
Summarizing the results of this section we see

that generally speaking, imperfections of the win-

dows and mirrors are the sources of the reduced

coherence on the beamline. If the statistical prop-

erties (roughness, correlation length, etc.) of an

element are known, the magnitude of these co-
herence lengths can be estimated from the ex-

pressions derived in this section. It is important to

note that the ‘‘decoherence’’ effect of optics is not a

degradation of the inherent source coherence, but

instead the creation of an entirely new component

to the coherence function with a dramatically re-

duced coherence length. This is illustrated sche-

matically in Fig. 3. If more than one optical
element is present the formalism generalizes in a

straightforward way to further components added

to MIF.

As an example in Fig. 4 we present the results of

a calculation using the formalism described in

this section of the complex coherence factor

lðDx;DyÞ ¼ JðDx;DyÞ=Jð0Þ calculated for the X-

ray radiation with wavelength k ¼ 1:5 �AA propa-
gating through a random phase optical element

at a distance L2 ¼ 6 m from the sample. This ele-

ment is located at L1 ¼ 56 m from an incoherent

source of size rx ¼ 250 lm in the horizontal di-

rection (left panel in Fig. 4) and ry ¼ 50 lm in the

vertical direction (right panel in Fig. 4). An effec-

tive source size of the beam on the optical element

rðeffÞx;y and parameters characterizing the statistical
properties of an element (variance r2

U and longi-

tudinal correlation length s) used in calculations
t synchrotron source through a random optical element (here Be

ts: one broad component with high coherency properties prop-

e Be window that gives reduced coherence lengths at the sample



Fig. 4. Horizontal and vertical components of the complex coherence factor lðDx;DyÞ calculated for the X-ray radiation with the

wavelength k ¼ 1:5 �AA propagating through a random phase optical element at a distance L2 ¼ 6 m in front of the sample. Parameters

of the source and statistical properties of an element are given in the text and are summarized in Table 1. Each curve is shifted by one

unit for clarity.
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are summarized in Table 1. Variance r2
U ¼ 0:5

would correspond to the physical roughness of Be

window rd about micron for 8 keV X-rays.

Curves A represent what we consider to be

typical parameters for optics used in a CXD ex-

periment at APS. Curves B represent a reduction

of roughness variance. This improvement in the

optics quality enhances the contribution of the
broad component and at the same time reduces

the sharp component contribution. Curves C re-
Table 1

Parameters used for the calculation of the CCF lðDx;DyÞ at the
sample position

rx ðlmÞ ry ðlmÞ rðeffÞx;y (mm) r2
U s ðlmÞ

A 250 50 1.5 0.5 1

B 250 50 1.5 0.1 1

C 250 50 1.5 0.5 0.1

D 250 50 0.15 0.5 1

Notations A–D are maintained throughout the paper, no-

tably in Figs. 4 and 6. Here, rx;y are the horizontal and vertical

source sizes, rðeffÞx;y are an effective source size of the beam on

the Be window, r2
U and s are variance and longitudinal corre-

lation length of this window.
duce the correlation length of the roughness and as

a result this immediately reduces the coherence

length of the sharp component. Curves D show the

improvement of coherency properties of the beam

obtained by restricting the size of the beam at the

position of an optical element.
6. Effects of the optical element on the imaging of

small crystals

In this part we will apply results obtained in the

previous sections to a specific type of CXD ex-

periment – coherent X-ray scattering from small

crystalline particles [16]. Applying special iteration

techniques originally proposed by Gerchberg and
Saxton [47] and then further developed by Fienup

[48] and Millane and Stroud [49], the intensity

distribution obtained in such experiment can be

inverted to give a real space image of the particle

itself. It was demonstrated in our previous work

[19] how the reconstructed shape can become

modified by the coherency properties of the beam.

Computer simulations showed that in the pure
coherent beam the shape of the particle can be
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reconstructed identically with the initially gener-

ated shape. However, reduced coherence of the

beam can cause a region of high intensity to

appear in the reconstructed image. We will see

now how the two-component MIF discussed in

the previous sections can modify the recon-
structed image of the crystalline particle in CXD

experiment.

We will assume below that quasi-monochro-

matic conditions are satisfied which means that in

this kind of experiment time delays for X-ray

propagation in a sample Ds are much less than

coherence times Ds 	 sc ¼ lc=c. It was shown in

[19] that in this situation the intensity diffracted
from a small crystalline particle in the far-field

limit under exact Bragg condition can be written

as

IðQÞ ¼
Z Z

dr1 dr2szðr1Þszðr2ÞJ

� ðr1; r2Þe
iQðr2
r1Þ: ð61Þ

Here, szðrÞ ¼
R
dzsðr; zÞ is the projection of the

shape function sðr; zÞ of the particle, z axis is taken
along the direction of the diffracted beam, and r is

a 2D coordinate frame perpendicular to this di-

rection. In the simplest case, the shape function

sðr; zÞ is defined equal to one inside the particle and
to zero outside. For the exact Bragg condition the

scattering vector Q is equal to Q ¼ ðk=LÞv, where v
is the coordinate on the CCD detector located at a

distance L from the sample perpendicular to the

incoming beam. The beam illuminating the crys-

talline sample is assumed partially coherent with

its MIF Jðr1; r2Þ.
We have shown in the previous sections that

the coherency properties of the beam from the

undulator source on the way to the sample can

essentially change due to rescattering by imper-

fections of the Be windows and mirrors. According

to (31)–(33), the MIF Jðr1; r2Þ arriving at the

sample can be written in a quite general way as a

sum of two contributions with two different co-

herence lengths

Jðr1; r2Þ ¼ C1JSðr1; r2Þ þ C2JWðr1; r2Þ:

Here, JSðr1; r2Þ is a MIF (32) propagating along

beamline from the source to the sample without
rescattering and typically having large coherence

lengths at the sample position. The second part

JWðr1; r2Þ (33) is a result of rescattering from all

imperfections of windows or mirrors and has re-

duced coherence length. In a simple beamline set
up (Fig. 2) with one optical element on the way

from the source to the sample both parts of the

incoming MIF Jðr1; r2Þ (31) can be calculated ac-

cording to the theory presented in the previous

sections. Now taking into account that in the

typical CXD experiment the size of the sample is

of the order of microns, we can neglect any in-

tensity variations in the incoming beam across the
sample giving a good approximation

JSðr1; r2Þ ’ ISð0ÞlSðDrÞ;
JWðr1; r2Þ ’ IWð0ÞlWðDrÞ;

ð62Þ

where ISð0Þ and IWð0Þ are intensity values in the

center of the incoming beam and lSðDrÞ; lWðDrÞ
are the normalized CCFs. Here, we want to note

that in the case of small variance r2
U 	 1 the in-

tensity distribution IWð0Þ / r2
U according to (52)

and (55). Substituting now (62) into (31) we get for
the MIF of the incoming beam

JðDrÞ ¼ C1ISð0Þ lSðDrÞ
h

þ eCClWðDrÞ
i
; ð63Þ

where eCC ¼ C2IWð0Þ=½C1ISð0Þ� is a constant pa-
rameter that determines the contribution of the

second term to the total MIF. To model the effects

of decoherence introduced by the optical element

we used expression (63) to fit the results of the

exact near-field calculations of the MIF passing a

random optical element made in the previous

section (Fig. 4) with a simple functional form. The

first CCF lSðDrÞ, naturally, can be taken in the
form of the Gaussian function (36) with coherence

lengths nSx;y (37). We found that a good approxi-

mation for the second CCF lWðDrÞ in the near-

field corresponding to the four configurations of

Table 1 was obtained either in the form of the

Lorentzian function

lWðDrÞ ¼
1

1þ ðDx=nWxÞ2
1

1þ ðDy=nWyÞ2
ð64Þ

or a Gaussian function with the coherence lengths

nWx;y . Results of this fitting are summarized in



Table 2

Transverse coherence lengths of the ‘‘broad’’ nS and ‘‘sharp’’ nS

components of the MIF JinðDrÞ on the sample position obtained

as a result of fitting with expression (63)

nSx

ðlmÞ
nSy

ðlmÞ
nWx;y

ðlmÞ
eCC rQx;y

ðlm
1Þ

A 5.92 29.6 0.8 (L) 0.545 1.25

B 5.92 29.6 0.8 (L) 0.11 1.25

C 5.92 29.6 0.15 (G) 0.22 6.67

D 5.92 29.6 1.5 (G) 0.22 0.67

Letters (L) and (G) mean Lorentzian or Gaussian form of

CCF lWðDrÞ. Parameter rQx;y gives the size of distribution

of incoherent intensity in the reciprocal space according to

Eq. (73).
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the Table 2. Letters (L) and (G) in Table 2 mean

Lorentzian or Gaussian form of CCF lWðDrÞ. The
MIF Jðr1; r2Þ (63) with parameters listed in Table 2

is presented in Fig. 6(a). Parameter sets A–D

correspond to the four configurations listed in

Table 1 and Fig. 4.

The crystal shape was taken in the form of a

uniform crystal with (1 1 1) facets shown in Fig. 5.
The diffraction pattern from this crystal shape

and reconstructed image of this crystal in the case

of perfect coherent incoming beam are also

shown in Fig. 5. The intensity distribution in the

diffraction pattern has high contrast. The recon-

structed shape of the particle for the coherent

illumination conditions is identical to the initial

one.
The diffraction patterns from the same crystal

with the four different MIFs listed in Table 2 were

calculated according to Eq. (61) and are presented

in Fig. 6(b). From this figure we can see how the

diffraction pattern is sensitive to different coher-

ency properties of the incoming beam. A sharp

component in the MIF smears the contrast in the

central part of the diffraction pattern and in some
cases reduces the visibility of the fringes. This is

particularly apparent in Fig. 6(c). However in

other cases, that are more often observed in ex-

periment, the sharp component of the MIF affects

only the small central part of the intensity distri-

bution keeping high visibility for the range of

higher Q values (Fig 6(b), image B).

We have applied the reconstruction algorithm
discussed in detail in our previous work [19] to
reconstruct the shape of the particle from the

intensity distributions shown in Fig 6(b). No in-

formation about the partial coherence was in-

cluded in the calculations, which are therefore not

expected to converge perfectly. Results of this re-

construction are shown in Fig. 6(c). The left and
right halves correspond to best reconstructions

starting with different sets of random phases to

give an impression of the reproducibility. As it is

well seen from these results, different types of MIF

give different results for the reconstructed shape of

the particle. We can also observe that reduced

coherence of the incoming beam affects the re-

producibility of image reconstruction. The two
general features introduced by the partial coher-

ence are the sharp bright peak in the center of the

image and the smearing of the borders of the

particle. The same behavior was observed in re-

construction of the shape of gold particles from

their diffraction pattern in CXD experiment [17].

We can see that fine features can be different for

the two different sets of starting phases but general
features as the smeared shape of the particle and

the size of the ‘‘hot’’ spot are preserved. Better

reconstruction images are obtained in the situation

when the quality of the optical element is im-

proved, in example B by reducing the rms

roughness r/, and in D by the introduction of a

smaller aperture reff .

The reconstructed images are mostly affected
when the incoming MIF contains a very narrow

sharp component (in our test calculations with

nWx;y ¼ 0:15 lm). This is the case of short corre-

lation lengths s on the element. As one can see in

Fig. 6(c) (image C) the reconstructed image in this

case produces a narrow high intensity region,

smeared borders of the particle itself and even re-

gions with zero density inside the particle. Im-
provement of the beam coherence by reducing the

aperture on the optical element (Fig. 6(c), image

D) can improve the quality of reconstructed image

in the central part (enlarging the size of the bright

peak) but still fails to produce correct shape of the

crystal. For crystals of smaller sizes this improve-

ment can be enough to reconstruct the correct

shape of the particle.
In order to understand results of calculations

qualitatively, we can calculate intensity distribu-



Fig. 6. The MIF (a) used for calculation of diffraction intensity patterns (b) from the crystal shape shown in Fig. 5. Reconstructed real-

space images for two different sets of starting random phases are shown in (c). Parameters used for calculations of the A–D MIF are

listed in Table 2.

Fig. 5. Initial crystal shape (left image) used for calculations, its diffraction pattern (central image) in a perfect coherent beam and

reconstructed shape of the particle (right image). Another non-linear color gradient is used for reconstructed image to enhance the

background contribution. Calculations used an array of 700� 400 pixels. In the figure, real space images have been cut to a size of

160� 160 pixels and reciprocal space image to 300� 160 pixels. The support region in the calculations was a rectangular box with a

lateral size of 150� 150 pixels.
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tion further with some reasonable approximations.
We will assume that CCF�s lSðDrÞ and lWðDrÞ
entering into an expression for the incoming MIF

(63) have different coherence lengths compared

with the average size of the particle D
nS � D; nW 	 D: ð65Þ

Now substituting expression for the incoming

MIF (63) into (61), we get for the intensity distri-

bution
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IðQÞ ¼
Z Z

dr1 dr2szðr1Þszðr2ÞlSðDrÞe
iQDr

þ eCC Z Z
dr1 dr2szðr1Þszðr2ÞlWðDrÞe
iQDr;

ð66Þ
where intensity distribution IðQÞ is normalized by

the value C1ISð0Þ. Introducing the autocorrelation

function

uz
11ðrÞ ¼

Z
dr0szðr0Þszðr0 þ rÞ; ð67Þ

the intensity distribution (66) can be written as

IðQÞ ¼
Z

druz
11ðrÞlSðrÞe
iQr

þ eCC Z
druz

11ðrÞlWðrÞe
iQr: ð68Þ

Now, we can make use of relationships (65) in

calculating these integrals taking into account that

in the first integral CCF lSðDrÞ is a slow varying

function compared with the autocorrelation func-
tion uz

11ðrÞ while in the second, the opposite ap-

plies. This approximation gives for the intensity

distribution

IðQÞ ’ lSð0Þ
Z

druz
11ðrÞe
iQr þ eCCuz

11ð0Þ

�
Z

drlWðrÞe
iQr

¼ aIcohðQÞ þ bIincohðQÞ; ð69Þ
where IcohðQÞ and IincohðQÞ represent coherent and
incoherent terms of the intensity distribution

IcohðQÞ ¼ jAðQÞj2 ¼
Z

drszðrÞe
iQr

���� ����2;
IincohðQÞ ¼

Z
drlWðrÞe
iQr

ð70Þ

and a and b are constants. In the case of the scat-
tering from a small crystalline particle, the first part

gives a sharp interference diffraction pattern while

the second one smears this pattern. One important

result here is that incoherent part of the scattered

intensity is just the Fourier transform of the CCF

lWðrÞ. That means that sharper is the distribution

of lWðrÞ in real space the broader will be incoherent

intensity IincohðQÞ contribution in the diffracted
intensity. This result was observed in our direct
computer simulations (see Figs. 6(a) and (b)). We

can estimate the size of incoherent intensity distri-

bution for different forms of CCF lWðrÞ. For ex-

ample, Gaussian distribution will give

IincohðQÞ ¼ 2pnWxnWx exp

"

 Q2

x

2r2
Qx



Q2
y

2r2
Qy

#
; ð71Þ

and Lorentzian distribution (64) will give

IincohðQÞ ¼ pnWxnWx exp

�

 jQxj

rQx

 jQy j

rQy

�
; ð72Þ

where in both cases the width of incoherent dis-

tribution is determined by parameter

rQx;y ¼
1

nWx;y
: ð73Þ

For example, for transverse coherence lengths of

the sharp component nWx;y ’ 0:1 lm it gives for

the typical size of the incoherent distribution

rQx;y ’ 10 lm
1. The values of the parameter rQx;y
typical for our computer simulations are presented

in Table 2.

According to Eqs. (69) and (70), we have two

different limits for the incoherent component. If

coefficient eCC is small, the contribution of inco-

herent component in the total intensity distribu-

tion is also small and inversion of Eq. (69) will give

just the shape of the particle. In the opposite limit
when coefficient eCC is big, inversion of Eq. (69) will

give, according to (70), the shape of CCF lWðrÞ.
As a summary we can see from these test cal-

culations that in order to produce high quality

images of crystalline particles it is important to

reduce the contribution to the MIF coming from

the rescattered radiation from inhomogeneities of

the Be windows and roughness of the mirrors. This
can be achieved, for example, by special polishing

of mirrors [40] and Be windows or slightly reduc-

ing the aperture of the incoming beam at the lo-

cation of the optics.

Another important result, suggested by our

analysis, is a way of filtering the experimental data

in order to obtain images of higher quality. If the

limit (65) applies, then filtering can be obtained
just by subtracting the incoherent background in

the form of estimates of the functions IincohðQÞ (71)
and (72). If conditions (65) are violated, then the

general form of the intensity distribution (61) with
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MIF in the form of the two-component function

(31) must be used for filtering the measured data.
7. Conclusions

In conclusion we have seen how coherency

properties of the X-ray beam can change while

propagation through optics present in a typical

hard X-ray beamline. It was shown that it is con-

venient to describe coherency properties of the

beam by the MIF which can be obtained through

Eq. (11). Detailed knowledge of the structure of an

optical element, given by its transmittance function
T ðuÞ, is necessary to calculate the coherency prop-

erties of the beam. Limits of coherent and inco-

herent illumination of an element were discussed.

It was then shown that in the situation that is

often met in practice when the effective size of the

beam incoming on the optical element is much

bigger than its coherence length, this element can

be treated as a random optical element described
by its statistical properties: variance r2

U and cor-

relation length s. It was shown that for this ran-

dom element the MIF Jðr1; r2Þ propagating

through such optics and incoming on the sample

will split into two parts. The first part JSðr1; r2Þ
describes propagation of radiation directly from

incoherent source to the sample and has large co-

herence lengths, however the second part JWðr1; r2Þ
that results from rescattering of radiation by in-

homogeneities of the optics is responsible for the

decoherence of the original beam and has reduced

coherence lengths. The contribution of the second

term in MIF Jðr1; r2Þ depends on the quality of an

optics through its roughness and correlation of

fluctuations. It can be reduced by the special

preparation of the windows and mirrors (e.g., by
polishing) or by taking smaller grazing angles h for

the mirrors. The properties of this second part of

MIF were discussed both in the far-field as well as

in the near-field limit. It was shown that for the

typical configuration of a beamline, in which the

last element is usually an exit Be window, far-field

conditions are violated and near-field analysis is

important. It is interesting to note here that similar
two-component MIF was measured in the recent

experiments on APS [34].
In the last section we discussed how this two-

component MIF can influence the intensity dis-

tribution obtained in a CXD experiment on

nanoparticles. It was shown that images obtained

by inversion of this intensity distribution can

contain some features (regions of high intensity or
even zero density) that can be associated with

partial coherence of the beam rather then present

in particle itself.

Analysis given in this paper can be useful for

the estimates of the coherency properties of exist-

ing X-ray beamlines in the experiments that utilize

coherence and also for the new constructed

beamlines dedicated for experiments that need to
preserve coherence.
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Appendix A. Calculation of undistorted part of MIF

JS(r1,r2)

We will show now that in the case of an inco-
herent source at distance L1 from the random op-

tical element, the MIF JSðr1; r2Þ at the sample

position can be written as directly propagating

from this incoherent source.

Assuming that synchrotron radiation from the

bending magnet or an insertion device can be well

approximated as an incoherent source of radia-

tion, the corresponding CCF lðs1; s2Þ can be taken
in the form of the delta-function lðs2 
 s1Þ ¼
jdðs2 
 s1Þ, where j is the numerical constant with

the dimension of the length squared [37,38]. In this

limit the MIF of the source can be written as

Jðs2 
 s1Þ ¼ jISðsÞdðs2 
 s1Þ, where ISðsÞ is the in-

tensity distribution of incoherent source. Using the

propagation law for the MIF (5) in the paraxial

approximation, the MIF incoming on the Be
window from this incoherent synchrotron source

can be written as
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Jinðu1; u2Þ ¼ j
Z
ISðsÞPL1ðu1 
 sÞ

� P �
L1
ðu2 
 sÞds; ðA:1Þ

where the definition of Green�s functions (12) was
used and one integral was taken using the prop-
erties of the d-function. Now substituting this ex-

pression into Eq. (32) calculated at the sample

position, we obtain

JSðr1; r2Þ ¼ j
Z Z Z

ISðsÞPL1ðu1 
 sÞP �
L1
ðu2 
 sÞ

� PL2ðr1 
 u1ÞP �
L2
ðr2 
 u2Þdsdu1 du2:

ðA:2Þ
Using the properties of the Fourier transform it is

easy to show that the propagator function obeys

the following convolution theorem [50]:Z
PL1ðu
 sÞPL2ðr
 uÞdu ¼ PL1þL2ðr
 sÞ:

Performing now integration in (A.2) over u1; u2, we
obtain

JSðr1; r2Þ ¼ j
Z
ISðsÞPL1þL2ðr1 
 sÞP �

L1þL2ðr2 
 sÞds:

ðA:3Þ
This is an important result showing that MIF
JSðr1; r2Þ at the sample position can be calculated

directly from the intensity distribution ISðsÞ of

the source on the distance L1 þ L2 without any

influence of an optical element (Be window or a

mirror).

Substituting now in expression for the MIF

JSðr1; r2Þ (A.3) an explicit form of the Green�s
functions PL1þL2ðr
 sÞ (12), we obtain

JSðr1; r2Þ ¼ j
e
iwS

½kðL1 þ L2Þ�2
Z

R
ISðsÞ

� exp i
k

L1 þ L2
ðr2

�

 r1Þs

�
ds; ðA:4Þ

where wS ¼ k=½2ðL1 þ L2Þ�ðr22 
 r21Þ. This expres-

sion is well known as van Cittert–Zernike theorem

[37,38] and gives coherency properties of the beam

from an incoherent source on the distance L1 þ L2.
To the extent that the intensity distribution for

the synchrotron radiation source can be approxi-

mated by a Gaussian function (35), Eq. (A.4) gives

for the MIF
JSðr1; r2Þ ¼ j
2prxryI0

½kðL1 þ L2Þ�2
e
iwS

� exp

"

 Dx2

2n2
Sx


 Dy2

2n2
Sy

#
; ðA:5Þ

where

nSx;y ¼
L1 þ L2
krx;y

ðA:6Þ

are transverse coherence lengths on the sample

position given by the size of the incoherent source

rx;y and the distance from the source to the sample

L1 þ L2.
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