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Abstract

The propagation of the mutual intensity function from an incoherent synchrotron source to the sample is discussed.
It is shown how coherency properties of the beam are changed by propagation through random optical elements, such
as Be windows and mirrors present in the beamline. The mutual intensity function in this case cannot be described by
one coherence length but will rather have several components with different coherence lengths. With computer simu-
lations it is shown how such multicomponent mutual intensity function can affect the reconstruction of nanoparticles in

coherent X-ray diffraction experiments.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Current advances in experimental facilities
(ESRF, APS, and SPRING-8) provide high-en-
ergy, high-brightness hard X-ray beams with rel-
atively high degrees of coherence. The X-ray
coherence lengths achievable with these latest
synchrotron radiation sources are in the range of a
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few microns. The unique properties of these
modern synchrotron sources have the potential to
open new fields in X-ray physics such as fluctua-
tion correlation dynamics [1-6], phase imaging [7—
10], and coherent X-ray diffraction (CXD) [11-14].
All these techniques utilize the coherency proper-
ties of the synchrotron radiation [15].

As was shown in recent CXD experiments [16],
it is possible to image crystals of nanometer size.
Illuminated by coherent beam with transverse and
longitudinal coherence lengths bigger than the size
of the particle they produce a continuous inter-
ference diffraction pattern. The diffraction from
such nanocrystals is no longer comprised of sharp
Bragg peaks and broad diffuse background as in
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conventional incoherent scattering but have a
complicated intensity distribution centered at each
reciprocal-lattice point.

It was shown in the same papers the possibility
to invert this continuous diffraction pattern into a
real space image. This new type of X-ray micro-
scope may have certain advantages compared with
commonly used techniques. In principle, it does not
need lenses; its resolution depends on the available
coherent flux from the synchrotron source (at the
moment a resolution better than 0.1 um can be
achieved) and 3D image of the sample can be ob-
tained conveniently from several adjacent scans of
reciprocal space, without need of the 180° rotation
of the sample as in tomography [17]. What is most
important, due to the high penetration of X-rays,
this new X-ray microscope can image the inner
parts of the crystal (with all possible inhomogene-
ities and holes) and additionally with the potential
of imaging the strain field inside the crystal [18].

In the first reconstructed images we have seen
some additional regions of high intensity that can-
not be associated with the nanocrystal structure.
Computer simulations assuming partial coherence
rather than pure coherence of the incoming beam
have shown [19] that additional features observed
on the images can be attributed to this partial co-
herence of the incoming beam. In most previous
studies it was assumed that the partial coherence of
the incoming beam is associated mainly with a finite
size of the source. The same approach was used in
our model calculations. However, simple estima-
tions show that for the parameters of the hard
X-ray beamline where CXD experiments were
performed (APS storage ring) the finite size of the
source is not the only origin of the coherence loss.
Optical elements present in the beamline can con-
tribute significantly to the possible degradation of
coherence of the beam. In addition, the transverse
coherence of the beam can change non-uniformly
and can contain sharp features on the more uni-
form background. From this preliminary analysis it
has become clear that more detailed analysis of the
coherency properties of the beam passing different
optical elements is necessary.

It was appreciated from the beginning that
partial coherence of the incoming beam can
change the apparent scattered intensity distribu-

tion from a sample. A comprehensive theoretical
study of partial coherence effects on the observed
intensity distribution in the far-field as well as in
the near-field X-ray scattering was made by Sinha
et al. [20]. In a recent paper [21] partial coherence
effects on the topography measurements were an-
alyzed. There were even proposals [22] to manip-
ulate with coherency properties of the beam in
order to obtain a diffraction pattern from just one
protein molecule in a crystal. These different ap-
plications of X-ray coherent scattering motivate
further theoretical and experimental attempts to
understand the coherency properties of the beam
on third generation storage rings.

During last decade several attempts were made
to measure the coherency properties of the X-ray
beams. It is not a trivial problem for X-ray wave-
lengths of the order of angstrom to measure co-
herence with a two-slit Young type experiment that
is routinely used for the visible light [23]. However,
in the soft X-ray region, an interferometric Young
type measurement of the spatial coherency prop-
erties of the beam was performed [24-26]. To
measure spatial coherence in the hard X-ray region
different approaches were proposed: to use dy-
namical diffraction effects to measure the visibility
of Pendellosung fringes [27], to measure interference
pattern from double reflecting mirrors in a kind of
two-slit Young experiment [28], to use gratings as a
phase object to measure coherence utilizing Talbot
effect [29], to make high precision measurements
of intensity distribution on well-defined objects as
slits in the far-field [30] and more recently slits and
fibers in the near-field [31]. Quite different approach
of the characterization of transverse coherence by
intensity interferometry technique was proposed in
[32]. First two-slit Young experiment to measure
spatial coherence of the synchrotron beam in hard
X-ray energy range was reported only recently [33]
(a specially prepared phase mask was used to
measure the coherence at APS storage ring [34]). It
is important to note here that coherency properties
can change essentially from one beamline to an-
other and even on the same beamline they depend
on the optics present in experiment.

When the first phase contrast images with co-
herent X-rays were obtained, it became clear that
the quality of the optic elements present in the
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beamline can be important for this imaging tech-
nique. The height profile of the mirror [35] and the
inhomogeneities of the Be window [36] illuminated
by coherent beam introduce additional distortion
of the wavefront and can produce unavoidable
artifact images in the form of speckle pattern and
as a result can distort the image of the object.
What is more important and was not investigated
in detail up to now is that all the optics in the
beamline can change the coherency properties of
the beam. So it will be desirable to have some
method to calculate or at least to estimate effects
introduced by an optical element on the coherency
properties of the X-ray beam. This is the main goal
of this paper.

In visible light optics it is well established that
coherency properties of the beam can be described
by the so-called mutual coherence function (MCF)
that measure correlation between two beams sep-
arated in space and time [23,37,38]. The propaga-
tion of this MCF in the free space is governed by
two wave equations similar to the wave propaga-
tion equation obtained directly from Maxwell
equations. This general approach can be in princi-
ple applied to propagation of any electromagnetic
radiation including hard X-rays. The theoretical
description is simplified if ““quasi-monochromatic”
conditions are fulfilled which means that the path
length difference between the two beams is less than
the longitudinal coherence length. The statistical
properties of the beam in the plane across its
propagation direction can then be well described by
the mutual intensity function (MIF) that gives
correlations of two field amplitudes at different
points in this plane and the same time. The general
propagation laws of this MIF in free space are
obtained directly from the corresponding equations
for MCF. These main definitions and equations are
briefly summarized in Section 2.

In this paper we will be interested in applying
this general theory of propagation of the MIF to
the special case of propagation of the hard X-rays
starting from a conventional “insertion device”
(wiggler or undulator) on a third generation X-ray
storage ring. It is well known that such source can
be well described as an incoherent source of X-ray
radiation because each electron is an independent
radiator. Typical beamlines at high energy syn-

chrotron radiation sources are built from compo-
nents which contain optical elements. These are
either intended to adapt the qualities of the beam
to the needs of the experiment or can do so inad-
vertently. Important categories of components
would be slits, mirrors, monochromators, lenses,
and windows. Each of these elements can change
in a different way the coherency properties of the
beam. We will consider an idealized beamline
configuration with only one optic element on the
way from the source to the sample. The radiation
incoming on this element can be of any state of
coherence. Then by applying the general propa-
gation law for the MIF, the coherency properties
of the beam at the sample position will be calcu-
lated (Section 3). If the detailed structure (slit size,
microstructure of the window or height function of
the mirror) of the element is known this general
approach gives, in principle, the possibility to
calculate the MIF and consequently the coherency
properties of the beam at the sample position.
However, exact knowledge of the optical elements
microstructure is often limited. This makes it dif-
ficult to predict the coherency properties of the
beam at the sample position and different ap-
proaches have to be applied.

The following situation is often realized on the
beamline: because of the divergence of the beam,
the illuminated area on an optical element is much
bigger than the coherence length of the incoming
radiation. That is especially true for the last ele-
ment that is usually an exit Be window. The in-
coming beam is rescattered and refracted due to all
inhomogeneities present in the window that cause
an unpredictable change of an optical pathlength
of X-rays transmitted through that window. In this
situation an optical element can be modeled as a
random object and its structure can be character-
ized by statistical parameters such as roughness of
the surface and correlation length of the height-
height fluctuations. It will be shown (Section 4)
that in this case MIF will split into two parts. The
first one will describe the propagation of radiation
from the source to the sample without rescattering
on the optics and will preserve high coherence. The
second one takes into consideration the effects
of rescattering on the optics and has reduced co-
herence lengths. The detailed calculation of this
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additional contribution is given in Section 5. The
short coherence lengths can be explained to a first
approximation in the far-field limit by a large ef-
fective source size on the window due to diver-
gence of X-ray beam. However, as was discussed
in detail in [20], the far-field conditions are easily
violated in the case of hard X-rays. It will be
shown in the same section, that for the typical
parameters of the CXD beamline, the ‘sharp’
contribution to MIF has to be calculated in the
near-field rather then far-field limit.

In the last section such a two-component MIF,
calculated for elements with various statistical
properties, will be applied to calculate the intensity
distribution from a small crystalline particle in a
CXD experiment. This intensity distribution is
similar to one observed in experiment [16]. Then
applying reconstruction procedure discussed in
[19] this intensity distribution will be used to ob-
tain the real image of the particle. Additional
features that can appear in the image of a nano-
particle due to a reduced coherence of the incom-
ing beam will be discussed.

2. Laws of propagation of the mutual coherence
function. Basic equations

The central concept in the theory of partial
coherency is the so-called mutual coherence func-
tion (MCF) (P, P>;t) that defines the correla-
tions between two complex scalar? values of the
electric field at different points P; and P, and dif-
ferent times. It is defined as

I'(P,Py;1) = (E(P,t +1)E" (P, 1)), (1)

where E(P,t+ 1) and E(Py, ) are the field values
at the points P; and P, and brackets (- - -), mean an
averaging over times 7 much longer than the
fluctuation time of the X-ray field. It is also as-
sumed that the radiation is ergodic and stationary.
According to the laws of propagation of partially
coherent narrowband radiation (Aw < ) defined
by the Huygens—Fresnel principle [37,38], the

2 In the following, for simplicity, we will consider only one
polarization of the X-ray field.

MCF propagates from the surface X; to the sur-
face 2,, as shown in Fig. 1, according to

Ry, — R1
PI;P27T+

% E‘Sl ﬁ. 2)
AR| AR,

Here, R, and R, are the distances between the
points P, and P, on the surface X; and the points
0, and O, on the surface X,, 1 is an average
wavelength and ¢ is the speed of light. It is as-
sumed in this expression for the narrow divergent
X-ray field that the obliquity factor y(0) =~ 1.

The experiment is defined as ‘“‘quasi-mono-
chromatic” when it satisfies the condition that the
maximum pathlength difference is much smaller
than the longitudinal coherence length R, — R} <«
leoh = Teonc. Then, according to Goodman [37], the
MCEF can be written as

(0, 0;7)

[(01,05;1) =J(01,05) e, (3)
where
J(01,0:) = T'(0Q1,0:;0) = (E(Q1,)E* (01, 1)) 1

(4)
is called the mutual intensity function (MIF) and
w is the mean frequency. The MIF specifies the
correlations of the fields at different points and
the same time. The propagation law for the MIF
follows from (2):

J(01,0) = // (P1,P)e ¢ H(R-R) ds; ds,,
/s
(5)
P] R]
n; Ql
Q>
P,

R;

n;

Fig. 1. Propagation of mutual coherence function from surface
2 to surface X,. Vectors n; and n, are the normal vectors to the
surface X at points P; and P,.
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where k = 21r/7h Here, it has been assumed that,
for large distances between the surfaces ~; and 2,,
the approximation 1/R; ~ 1/R, ~ 1/R is valid. It
is usual to normalize the MIF as

(Q17 QZ)
VI(01,00)7(05,0)’

which is known as complex coherence factor
(CCPF).

The intensity distribution is obtained directly
from (5) by letting O, — Q) to give the expression

1(01) =J(01,01). (7)

WO, 0s) =

(6)

3. Propagation of the mutual intensity function
through the optical element

We will consider now an idealized situation of
the beamline when on the way from the synchro-
tron source to the sample the X-ray beam passes
through one optical element (Fig. 2). It can be pair
of slits, lens, Be window or a mirror. In the most
general way these elements can be characterized by
their complex valued amplitude transmittance
function T(u). The actual form of the transmit-
tance function may differ from one element to
another and will be defined more explicitly below.

We will also assume a “conventional” source of
synchrotron radiation (bending magnet, wiggler
or undulator) which can be considered to be a
planar incoherent source at distance L; from the
element. The sample is at a distance L, behind it

(Fig. 2). The source, optical element, and the
sample will be described in their “local” 2D co-
ordinate frames perpendicular to the direction of
the beam propagation by its coordinates s,u, and
r, respectively. Below, we will tacitly assume that a
monochromator is also present in the beamline to
provide narrow bandwidth of the X-ray beam and
hence provide with high degree of longitudinal
coherence length. It will be also considered that
the incoming radiation on the element can be
partially coherent.

The amplitude of the transmitted beam A(u, ¢)
can be written in terms of the amplitude 4, (u, ¢) of
the incoming beam as

A(u,t) = T(a)4in (u, t — 79), (8)

where 7T'(u) is an amplitude transmittance function
and 1 is an average time delay associated with the
structure of the element. In further calculations it
will be assumed that the amplitude transmittance
function 7T'(u) is independent of wavelength within
the narrow bandwidth of the incident radiation. The
MIF transmitted through the structure can be easily
obtained from (4), (8) (see, for e.g., textbook [37])

Jo(u,wp) = T(w) T () Jin (uy, w2). 9)

The MIF propagating from such an element to
the sample at distance L, (Fig. 2) can be obtained
according to the general law of propagation of
MIF (5)

J(r,n) = /1L2 // u) 7™ (up)Jin (0, )

e“"(R’ —Ri) dll1 dll2 (10)

Optical element

Sample

Fig. 2. Beamline with one optical element on the way of propagation of X-rays from the synchrotron source to the sample. The source,
element, and the sample are described in their “local”’ 2D coordinate frames perpendicular to the direction of the beam propagation by

their coordinates s, u, and r, respectively.
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In the paraxial approximation, when the
distance from the element to the sample is
much bigger than the effective size of intensity
distribution on the element and the size of the
sample,

Ry — Ry = 1/2L,[(r; — w)* — (r; —w;)?]

and expression for the MIF (10) can be written in
the following form:

T, p) = / / T () T (us )i (1 0P, (1 — 1)
X Pzz(l'z — llz)dll] dllz, (11)

where the Green’s function (or propagator)
Py, (r —u) is introduced. It describes the propaga-
tion of radiation in free space and is defined
as

PLz(ru)iexp [iz%(ru)z]. (12)

The intensity distribution at the sample position is
obtained according to (7) from Eq. (11) by putting
r, =r, =r giving

](l’) = //T(ll])T*(llz)Jin(lll,U2)PL2(T — ll])
X PL*z(rfuz)dul dllz. (13)

Expressions (11) and (13) are quite general (their
detailed discussion can be found in the textbooks
of Goodman [37] and Mandel and Wolf [38]) and
relate the coherency properties of the beam inci-
dent on the optical element and the coherency
properties and intensity distribution reaching the
sample. In some sense this element can be regarded
as a secondary source defining the coherency
properties of the beam on the sample position with
MIF J(ry,r;). Of course different elements modify
the coherency properties of the beam in different
ways through their specific transmittance function
T(u). Below we will analyze in more detail the
special case of Be windows or mirrors considered
as optical elements on the way from the source to
the sample.

A window will be considered as a thin object in
the sense that X-rays incoming at point u exit the
window essentially at the same transverse coordi-
nate (small refraction effects are neglected). We

will also assume that the aperture of the window is
essentially bigger than the intensity distribution of
the incoming beam. Such element can be charac-
terized by a complex transmittance function

T(u) = B(u)e®™, (14)

where the amplitude B(u) is responsible for atten-
uation (absorption) and the phase shift ®(u) =
wor is determined by the time delay dt introduced
at point u by the element. For X-rays propagating
through a window characterized by its thickness
function d(u) and refractive index n ~ 1 — J +1if,
where ¢ is the refractive index decrement and f is
the absorption index, this time delay introduced at
point u is equal to dt = —dd(u)/c. If absorption
effects are taken into account, then following
Goodman [37], it easy to show that the amplitude
Bw(u) and the phase shift @ (u) at point u on the
window are equal to

Byw(u) = exp[~kpd(u)], Pw(u) = —kdd(u),

(15)
where § and 6 can be also position-dependent.

Hypothetically two different types of optics can
be considered: purely absorbing (with the phase
shift @(u) = 0) and purely refractive (phase ob-
jects, with the amplitude function B(u) = 1). In the
case of hard X-rays propagating through a Be
window, the transmittance function is well ap-
proximated by a pure phase function.

Reflecting mirrors are often used on the beam-
lines as optical elements. Strictly speaking we
cannot introduce amplitude transmittance func-
tion for the mirrors as it was defined in (8) due to
the inversion property (for ideally flat mirror
Ai(—u) = 4;,(u)). However, it is well known [20,39]
that in the case of reflecting rough surface in the
first Born approximation the influence of the sur-
face on the incoming amplitude can be associated
with the phase factor

Py (u) = g:h(u). (16)

Here, ¢. is the scattering vector perpendicular to
the surface and A(u) is the height function of the
surface converted to the coordinate system u
across the beam at the position of the sample. Due
to the grazing incident angle conditions, the illu-
minated area is substantially elongated along the
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beam direction. Therefore, coordinate system
along the mirror surface itself can be defined as
(u, u, = uy,u,/sin6), where 20 is the scattering
angle. For an ideally flat surface @, (u) = const.
and does not change the wave front of the in-
coming amplitude. However, roughness of the
surface will change the phase of the scattered
amplitude. So, with some restrictions, a mirror
also can be described as a pure phase object by its
transmittance function (14) with amplitude
By(u) =1 and phase @, (u) (16).

It is useful to examine several limiting cases of
the general expression (11) relating coherency
properties of the beam on the sample position with
its properties before passing an optical element.
Equation (11) was obtained in the paraxial
approximation for big distances L, between an
optical element and the sample. However it gives
the correct result even for very small distances.
Indeed for L, — 0 we have P,(r —u) — o(r —u).
Substituting this expression in (11) and performing
integrations we obtain that mutual intensity
function just after an optical element J(r;,r,;) =
T(r))T*(ry)Jin(ry,1r2) that is exactly the same as
defined in (9).

Now we will consider two limits of coherent and
incoherent illumination of the optical element de-
scribed by the transmittance function 7'(u) (14).
The CCF u;, (u;,u,) defined in (6) being a complex
function can be written as u;, (uy, up) = |, (U, uy)]
explio(u;) — ia(uy)], where a(u;) and «(u,) are the
phases corresponding to points u; and u, on the
optical element. In the coherent limit [37,38],
|tin (U1, m)| =1 which gives for the MIF of
the incoming beam Ji,(u;,w) = /fin(u;)+/Lin (1)
explio(u;) — ia(uy)]. In the case of the infinitely far
source the phases a(u;) = o(u,) = const. and can
be taken equal to zero. Substituting this expression
in Egs. (11) and (13) gives for the MIF

Jcoher(rl7r2) :A(rl)A*(rZ) (17)
and for the intensity distribution
ICOhCl’(r) = |A(l‘)|2, (18)

where

This is the general expression for the intensity and
amplitude of the coherently scattered radiation
that takes into account the intensity distribution of
the incoming beam and is valid both in the near-
and far-field limits. In the case of the non-uniform
element described by the transmittance function
T(u) (14) expressions (18) and (19) will result in
high contrast background speckle patterns on the
CCD detector after diffraction from the sample.
This effect was observed experimentally for hard
X-rays coherently illuminating mirrors [35] and Be
windows [36]. Of course this speckle pattern can be
significantly reduced by using a uniform window
(for example specially polished) with constant
amplitude Bw and phase shift @w across the beam.
However, this represents a difficult technical
problem for X-ray wavelengths [40].

In the incoherent limit of the incoming beam
the CCF p,(u;,u;) can be taken to be a delta
function [37,38] ;,(ur, wy) = kdé(wy — u;), where
is the numerical constant with the dimension of
the length squared. In this limit, the MIF of the
incoming beam reduces to Ji,(uy,uy) = kliy(uy) X
0(Au), where I,(u;) is the intensity distribution
of the incoming beam. Substituting this MIF in
Eq. (11) we obtain for the MIF at the sample
position

Jincoher(rl 5 1'2) = K/ |T(u)|21in (u)PLz (l‘] - ll)

x P/, (r; —u)du

ke W
= /| |Im
/le

X exp [1L—2(r2 - rl)u} du, (20)

where = (k/2L,)(r? —r?) and the explicit form
of the propagator function P, (r—u) (12) was
used. This expression is in fact the generalization
of the well-known van Cittert—Zernike theorem
[37,38] for incoherent illumination of an optical
element. It is interesting to note here that in the
case of pure phase object (Bw(u) = 1) the coher-
ency properties of the beam passing this optical
element will depend only on the intensity distri-
bution of the incoming beam I;,(u) and will not
depend on the phase shift @w(u), because the
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phase distribution in the incoming beams is al-
ready spatially random.

Below we will be interested in the situation in
between these two limiting cases when the incom-
ing radiation is partially coherent.

4. Propagation of the mutual intensity function
through a random optical element

For the perfect Be window the partial coher-
ence of the beam incoming on the sample can be
attributed entirely to the final size of the inco-
herent source. The wavefront of the beam passing
such ideal optical element will not be affected and
will propagate further to the sample position.
However, such ideal conditions can be rarely met
in practice. It is well known from the previous
experiments [36] that Be windows due to tech-
nological problems are highly nonuniform in its
internal structure and thickness. The average size
of the particles in the window can be about 1 um
[41] and give rise to rescattering and diffraction of
the incoming beam. It is clear that the detailed
structure of the optical imperfections in the
window is unknown a priori. As a consequence
we will treat the optical distortions on the way of
the beam as a random process and we will see
how this may affect coherency properties of the
beam.

We will show in this section that even if the
detailed structure of the transmittance function of
an optical element is not known but it rather can
be characterized by its averaged statistical prop-
erties still the MIF passing such element can be
calculated in a straightforward way. We will show
that this is the common situation for a beamline
optics and that in this case the MIF (11) splits into
two components. The first component can be
considered “‘unscattered”, propagating through
the optics without distortions. The second part
represents the scattering by inhomogeneities of the
window or roughness of the mirror.

One more important consideration for the le-
gitimacy of the statistical approach is that the
transverse coherence length &, of the beam in-
coming on the window must be much smaller than
the effective size of the intensity distribution ooy of

the beam: &, < ger. In this limit the incoming
radiation consists of a large number of coherent
volumes that propagate through the optics and do
not interfere with each other. This means that in-
tensities rather then amplitudes corresponding to
different coherent volumes have to be summed up.
We will also assume that the transverse coherence
length of the incoming radiation is macroscopic
and is bigger than (or of the order of) the corre-
lation length t of the spatial fluctuations in the
element: &, 7~ 7. If T were bigger than &;,, then the
transverse coherence length would simply “cut off”’
the spatial fluctuations.

Considering Be window as a random optical
element we will describe it by transmittance function
T(u) (14) that will now be treated as a function of
randomly changing amplitude B(u) and (or) phase
®(u). We can consider now the propagation through
such an optical element to be a random process
as well. Now statistical properties of the beam
passing such an optical element can be obtained by
averaging over some random variable (amplitude
or phase) in the expression for the MIF (11).
Performing this kind of averaging we obtain [42]

J(r, 1)) // (uy, ) Jin (U, ) Pp, (1) — y)
Py (r; — wp) du; duy, (21)
where
I(uy,u) = T ()7 (u) (22)

is the spatial autocorrelation of the amplitude
transmittance function. The notation 77* means
the averaging according to the following rules:
if z(x) is a complex random process then
Z(Xl) (Xz fflezpz yz,XQ,yl,Xl)d Zld Zg,WheI'e
D2(2z2,%2521,x1) 18 a joint probability density [38].
We want to note here that for the stationary and
ergodic process this averaging is equivalent to a
spatial averaging whereas (), implies time aver-
aging of the field amplitudes in (1).

According to Eq. (21) the effect on the coher-
ency properties of the beam passing such random
optic element is contained in the autocorrelation
function I'(u;,u,) (22) which characterizes it. Be-
low, we will calculate this autocorrelation function
for the special cases of random phase and random
absorbing optical element.
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For the random phase object, the phase @(u) in
the transmittance function (14) can be regarded as
a random phase shift introduced at point u. For
such object the phase of the transmitted X-ray
beam can change from point to point in the ran-
dom way but we neglect absorption processes in
the window. We believe that for high energy X-
rays passing low Z material such as Be window this
is the most appropriate model. We will now as-
sume that this random phase can be modeled as
zero-mean P(u;) = &(uy) =0 Gaussian random
process. Since both ®@(u;) and @(u,) are Gaussian,
so is the phase difference A®(u;,u;) = &(u;) —
®(uy). The autocorrelation function for such
Gaussian random process can be easily calculated
using some results of the theory of probability of
the random processes [42],

I'(uy,uy) = exp[iAd(u;, )]

= exp [ - 7[&15(“21’ uz)]Z] . (23)

Here, [A®(u,w,)])* = [®(u;) — &(u,)]” is the so-
called structure function of the random process
®(u). For a wide-sense stationary random process

this structure function [A®(Au)]* = 20%(0) —
2@(u)®(u + Au) and depends only on the coordi-
nate difference Au=u, —u;. Substituting this
result into (23), we get for the autocorrelation
function (22)

I'(Au) = exp { = o3[l = 74 (Au)]}, (24)

where 02, = @*(0) is the variance and 7,(Au) =

@(u)®(u+ Au)/c? is the normalized phase auto-
correlation function which has the general property
of decaying from unity at Au= 0 to zero when
Au — oco. Expression (24) can be split into a sum of
two terms

F(Au) = e_atzﬁ —+ e—ozw I:egzd;"f([)(Al” _ 1i|

=FE+ Ezgcp(Au)7 (25)
where
E* = exp(—3),  go(Au) = [ew™ — 1], (26)

In the limit of small variance o3 < 1, we have
from (26) an approximate expression

go(Au) = 5374 (Au). (27)
The variance 7 in the case of the uniform window
is equal to o =k 6%02, where o2 = d2(u) is the
variance for the thickness fluctuations. For the
non-uniform Be window, the variance of the re-
fractive index o2 has to be also included giving
62 =k (62 + 02). The variance for the reflecting
mirror is equal to o3, = ¢?a;, where o7 = h2(u) is
the variance for the height fluctuations on the
surface of the mirror.

The form of the normalized autocorrelation
function y,(Au) depends on the type of fluctua-
tions in the element. It is usual to parametrize it
with a finite number of parameters. The simplest
model for the autocorrelation function that satis-
fies its general properties is in the form of expo-
nential function

7o (Au) = exp(—|Aul/7), (28)
where 7 is the lateral correlation length of the
fluctuations. For the height-height fluctuations on
the surface, a more general form of the autocor-

relation function y,(Au) was proposed by Sinha
et al. [39]

74(Au) = exp[—(|Aul /)], (29)
where the roughness exponent o is included. This
expression gives a power law ~ (|Au|/7)” appro-
priate for the short-range correlations. For the
roughness parameter o = 1/2, this definition of
7,(Au) coincides with the exponential form (28).

For generality the random absorbing window
can be also considered. In this case it is the am-
plitude B(u) of the transmittance function (14) that
is considered as a random function for the X-rays
propagating through the window. At the same
time we neglect the change of the phase &(u).
According to Goodman [37], in the case of the
random absorbing window the autocorrelation
function (22) can be also presented as a sum of two
terms

I(Au) = T3 + g (Au),  g(Au) = o7y,(Aw),  (30)

where T is real and non-negative 0< T < 1, o7 is
variance and y,(Au) is the normalized autocorre-
lation function of the random fluctuations. The
same exponential model (28) can be taken for the
autocorrelation function y,(Au).
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Now, substituting the expressions obtained for
the autocorrelation function I'(Au) for the random
phase (25) and random absorbing (30) optical el-
ement into the expression for the MIF (21), we
obtain

J(l’],l'z) :C]Js(rl,r2)+C2Jw(r1,r2), (31)
where
) = [ [ - w)

X PL*2 (I'Q — llz) dll] dll2 (32)

describes the part of MIF that propagates directly
from the source through the window without any
distortion and

Jw(ry, ) = //g(AU)Jm(ul, w)P,(r —uy)
X P;; (rz — UZ) dll1 dllz (33)

is the part that is changed due to propagation
through the random structure of the window or
mirror. In Eq. (31), coefficients C; and C, are
equal to C, = C, =E? for the random phase
element and C; = T027 C, =1 for the random ab-
sorbing window. Function g(Au) is defined in (26)
and (30).

It can be shown (see Appendix A for details)
that the undistorted part of the MIF Js(r;,r,)
travelling a distance L, from the source followed
by a distance L, to the sample can be calculated
according to the van Cittert-Zernike theorem
[23,37,38] as

e s
Js(l’l,rz) = KM/ZIS(S)

m (1'2 — 1'1)S:| dS7 (34)

where g = k/[2(Ly + L,)](r3 — 1?), Is(s) is the in-
tensity distribution of the incoherent source and
integration is performed over the whole area of the
incoherent source, .

The intensity distribution for a generic syn-
chrotron radiation source will be taken in the form
of a Gaussian function

X exp {i

2
I .y oS 35
S(SX?S}’) - ()eXp 20_2 20_2 ) ( )
x ¥y

where o, and g, are the halfwidths of the intensity
distribution in the horizontal (x) and vertical (y)
directions. This represents an approximation for
the shape of the electron ‘“bunches” within the
storage ring.

Typical numbers for a CXD experiment can
now be estimated as follows. The distance from the
synchrotron source to the sample is L; + L, ~ 60
m. At an energy E, ~ 8 keV, the far-field condition
kD*/[2(L, + L,)] < 1 is easily satisfied for samples
of micron size. In this far-field limit we can neglect
the phase prefactor exp[iyy] in Eq. (34) to obtain an
extremely simple (Fourier transform) connection
between the source intensity distribution and the
coherency properties of the beam reaching the
sample.

Integration in Eq. (34) with the typical intensity
distribution (35) gives for the MIF

2no,0,1; Ax? Ay
Js(l‘zfl'l):Kf—'Oz — =3 ); )
[4(L1 + L»)] 28, 26,
(36)
where
Li+L
fo,y = 1 2 (37)

ko,

is the transverse coherence length at the sample
position given by the size of the incoherent
source g, and distance from the source to sample
L+ L,.

Typical numbers for coherence length that
might apply in CXD experiments can be estimated
for the APS source [44]. The size of the source in
horizontal ¢, ~ 250 and vertical ¢, ~ 50 pm di-
rections gives transverse coherence lengths &g, ~ 6
and &g, ~ 30 um at 8 keV. If the typical size of the
sample (for example a particle of micron size) or
the size of the slits before the sample is less then
these coherence lengths D < &g, then experiment is
regarded as coherent. However, we will show be-
low that this is a necessary, but not a sufficient,
condition to obtain a pure coherent illumination
of the sample in the beamline. The second term in
the MIF J(r;,r;) can also change the effective
coherence lengths that affect the outcome of an
experiment.
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5. Contribution to the coherency properties of the
beam from rescattering from random optical
element

In this section we will discuss in detail the sec-
ond term Jw(ry,r;) (33) in expression for the total
MIF J(r;,r;) (31). According to definition of the
CCF (6) the MIF in the incoming beam is

Jn(y, ) = /Lin(uy)/fin (W) 1, (uy, wp). In the of-
ten-used quasi-homogeneous approximation, the
CCF of the incoming beam g, (u;,u;) depends
only on the difference of the coordinates Au =
uw, — u; and is characterized by its coherence length
&,,. Further it is assumed that the width of the
intensity distribution /;,(u) in the incoming beam is
much bigger than the transverse coherence area
Acon (as used in (21)) and that this intensity dis-
tribution is a slow varying function on the size of
Acon- In this quasi-homogeneous approximation,
the MIF of the incoming beam can be written
as

Jin(wy, wp) = Iy (@) i, (Au), (38)

where U = (u; +u,)/2. Both, the intensity distri-
bution 7, (@) and CCF p;,(Au) of the incoming
beam, can be assumed to be Gaussian. The
intensity distribution is taken with the constant
prefactor /" and halfwidths o)y, in the
horizontal (x) and vertical (y) directions and
CCF

Au? Au?
Hin(Au) = exp | — = - (39)
[ 2‘/;:?in ZQ (in)y

where &), are the typical coherence lengths of
the incoming beam. For the beamline set-up
shown in Fig. 2 with an incoherent source far
away from the optical element this will be an
exact result in the far-field limit according to van
Cittert—Zernike theorem. In this case coherence
lengths will be defined by an expression similar
to (37)

L
é(in)x,y = %O' ’
X,y

(40)

where g, , is the size of the primary source.
Substituting expression (38) in Eq. (33) we get
for the MIF at the sample position

,1,/,
Jw (T, A // (Auw) 7, () 1ty (Am)

X exp [ - 1L— (dAu — UAr — rAu) | dudAu,

(41)

where = (k/L,)(FAr), T = (r; +1)/2 and Ar =
r, —ry. In deriving Eq. (41) the explicit form of
propagators P, (r— u) (12) and identity (1/2L;)
[(ry —uy)” — (r; —u;)*] = (1/Ly) (FAr + GAu — GAr —
rAu) were used.

The intensity distribution of the beam at the
sample position is obtained directly from Eq. (41)
by the substitution r; =r, =r so that Ar =0 and
the phase factor y =0

r *71 ‘ u) /i, () 1, (Au
W= / / () (@) 5 (Am)

X exp [ — iL% (aAu — fAu)] dudAu. (42)

We want to note here that these expressions
for the MIF Jw(F,Ar) and the intensity distri-
bution Iw(¥) are valid both for the far-field
and the near-field approximation so long as
quasi-homogeneous illumination (38) is assumed.
We will consider separately two limits of these
expressions.

Far-field limit. The simplest expressions for the
MIF Jyw(r, Ar) and the intensity distribution /v ()
can be obtained when the following condition is
valid (k/L,)uAu < m/2, which defines the far-field
limit, so that this phase factor can be neglected in
the exponent in (41) and (42). This gives for the
distance L,

Ly > 20/ 2 (43)

where g is an effective size of the spatial intensity
distribution of the beam reaching the optics and
&, 1s the transverse coherence length of this beam.
If correlation lengths 7 of the element are much
less than the coherence length of the incoming
beam, then in expression (43) &, has to be
substituted by 7.

In this far-field limit, the MIF (41) factorizes
and can be written as a product of two functions

Sy (F,Ar) = Iy () -y (Ar), (44)
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where the intensity distribution at the sample po-
sition and the CCF are given by

@) = L2 [ et o)
x expli(k/L,)TAu] dAu, (45)
w (Ar) = flml /Iin(u)
x expli(k/L,)Aru] du. (46)

Here, due to far-field conditions (43), the contri-
bution of the phase factor ¢ in CCF ui (Ar) can
be neglected. As it follows from (46) in the far-field
limit the coherency properties of the beam on the
sample position are determined only by the in-
tensity distribution I, (u) of the incoming beam on
the optical element.

For the Gaussian distribution of the incoming
intensity the CCF p&f(Ar) (46) will also be
Gaussian

(47)

2 2
w (Ar) = exp [— Ax Ay ]

28, 28,

where Cy,, is a coherence length determined by the
effective size of the source on the optical element
by = 2 (48)
k- O ety

So, in this far-field limit the coherency properties
of the beam scattered from the optics are deter-
mined by an effective source size o and distance
L, from this element. Taking into account that for
the last optical element in the beamline usually
L, < L, and () > o, where ¢ is the size of the
synchrotron source we immediately have an esti-
mate &y < &g, where &g (37) is the coherence
length produced by the source itself. Since both
these inequalities typically represent factors of
10 or more, their combined effect is rather
substantial.

For a typical CXD experiment the effective size
of the source on the Be window or mirror is de-
termined by the divergence of the beam. The di-
vergence of the beam from a synchrotron source is
usually small but finite and is of the order of few

prad. A specific example is the angular distribution
of the nth harmonic of an undulator source which
has a half-width [45]

1 [14K2)2
o | 49
’ Y 2n]\[und ’ ( )

where 7 is the relativistic parameter, K is the de-
flection parameter (of order unity), and N, is the
number of undulator periods. For an undulator at
a 7-GeV storage ring with an effective Ny,q =~ 50,
the half-width of the angular divergence is ex-
pected to be ¢’ = 10 prad. The standard “Undu-
lator A” at the APS has a horizontal half-width
divergence of ¢, =26 and ¢, =14 prad in the
vertical. This determlnes the 51ze of the entire beam
at the last optical element (usually a Be window) at
position L; = 55 m to be
Oefiyx = 0x + 0'.L; = 1.7 mm;

e (50)
O(eff)y = 0y + ayLl = 0.8 mm.
For this effective source size and distances between
the last Be window and the sample that might be
typically about L, ~5 m, we obtain coherence
lengths &y, = 0.07 and &y, = 0.15 um in the hor-
izontal and the vertical directions. Evidently these
coherence lengths are much shorter than coherence
lengths produced by the beam propagating directly
from the source (37). As we see from this analysis,
rescattering in the optics placed in the beam in-
troduces a new, shorter, coherence length at the
sample position.

It is important also to analyze the expression

for the intensity distribution If (F) (45) in the far-
field. Substituting the function g¢(Au) (26) gives

I8 o [ e 1 (aw
x expliq,Au] dAu, (51)

where q, = (k/L,)f. This expression is in fact a
generalization of the intensity of the diffuse scat-
tering in the first Born approximation for the
partial coherent incoming beam. Really, in the
case of scattering from a rough surface in the co-
herent limit p;,(Au) = 1 with variance o3 = ¢*o;
and autocorrelation function y,(Au) (29), Eq. (51)
coincides with the well-known expression from

[39]. Examination of Eq. (51) shows that unlike the
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CCF the intensity distribution in the far-field de-
pends on the imperfections of the optics.

Now, taking the limit of small variance 02 < 1
in Eq. (51), the exponential form (28) for the au-
tocorrelation function 7,(Au) and assuming
Gaussian CCF g, (Au) (39), we get for the inten-
sity distribution in the far-field limit

[\]):VF(qr) = [(fF : jFF(qr)
]FF

=0 [ exp [~ |Aul/e - A28,
C(in)xf(m)y / (i)

- Auf,/Zé%in)y} exp(iq,Au) d(Au), (52)

where IIT = 2162 0(etrye 0 ety & inys Eimp L7/ (AL2)” [46].
If coherence lengths i(in)x = f(imy = &:(in)a then in-
tegral in (52) can be calculated in circular coordi-
nates giving

B 21 o0 2
= o | exe[=ore= )
x Jo(q.p)pdp, (53)

where Jy(z) is a Bessel function of a zero order and
¢-=1q,]- As it follows from (52) in the limit
o5 < 1 the intensity Iy (q,) is directly propor-
tional to the variance o3. Consequently this con-
tribution can be made smaller by improving the
quality of the optics. It is interesting to note that in
the limit of big correlation lengths 7> &gy,
expressions (52) and (53) give Gaussian distribu-
tion of intensity I§f (¢,) o exp(—¢?&},, /2). In the
opposite limit of big coherence lengths ;) >t
we get for intensity distribution I (g,) ox £*/
(1+¢22)"".

The far-field expression for the MIF Jy (F, Ar)
(44) is valid only for distances L, satisfying con-
dition (43). Simple estimates show that this
condition is easily violated in the case of the hard
X-rays. A typical CXD experiment might have its
last Be window at L; ~ 50 m. For this configura-
tion the intensity distribution on the window will
be about (50) g ~ 1.5 mm and transverse co-
herence length of the incoming beam (40)
&iny ~ 10 pm. This would require L, > 2 x 10> m
to achieve the far-field limit condition (43) which is
difficult to realize in practice. So it is important to
understand how this result changes in the near-
field limit.

Near-field limit. In the near field limit the phase
term (k/L,)(UAu) in the expression for the MIF
Jw(T,Ar) (41) has to be taken into account ex-
plicitly. In general in this limit, the coherency
properties of the beam can be different for different
positions in the transverse plane r at the sample
position. However, to simplify the analysis we will
calculate the MIF Jy (¥, Ar) only for the center of
the illuminated region which means that we can
put ¥ =0 in (41). For this practically important
case the MIF can be written in the following form:

R (Ar) = ﬁ [ dlawg(auy (a0

« / il (@) e (54)

where ¢ = (k/L,)(Au — Ar). This expression can be
calculated further with the same approximations
that were used in the far-field limit: the Gaussian
distribution of the incoming intensity /;,(u) with
halfwidths 6 ). = (efr)y = o) (in this approxi-
mation according to definition (48) &w, = Cw, =
&w), the exponential form (28) for the autocorre-
lation function y,(Au) and the Gaussian form (39)
for the incoming CCF y;, (Au). This gives for the
MIF J3F(Ar) (54) in the near-field limit

JVNVF(Ar) = Ié\IF 'u‘I;IVF(Ar), (55)
where I)F = 2no3,00,) &l 7(0)/(7L,)* and
WF(AF) = 1 (Ar) - #(80)/ 5 (0) (56)

is the CCF in the near-field. In this expression
iy (Ar) is the far-field limit of CCF (47) with the
coherence length &y (48) and the integral #(Ar)
have the following form:

1 )
(e = [[exp [ = 1aule - s/ 2E)

w
— A2/(28) + AuAr/ff,v] d(Au),  (57)

where Efy = Elmpeyiv/ (Enpey + &) Expression
(56) give multiplicative corrections for the far-field
result of Eq. (46). It is important to note that
unlike the far-field limit results the CCF w\f (Ar) in
the near-field limit now depends on the statistical
properties of the Be window through the correla-
tion length 7. Integral in Eq. (57) can be further
calculated if we take into account that for the
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typical beamline ()., > ¢w that gives a good
approximation ¢, ~ {y. Using circular coordi-
nates, we obtain

2 [~
760 = 3 [ exp[-pfe- /28]
éw 0
x In(pAr/ &y ) pdp, (58)
where Iy(z) is a modified Bessel function of a zero
order and Ar = |Ar|.
The intensity distribution in the near-field can be
obtained directly from (42). With the same ap-

proximations as were made for the calculation of
the MIF J3F(Ar) (54) and (55), we get

I () = 1" -7 (g,)

- [ exp [~ taule - a2/ 22)

U
2
Sw

— M2/ (28)] x exp(iq.Au)d(Aw),  (59)

where q, is defined in (51). It is interesting to note
that this near-field intensity distribution has the
same form as the far-field expression (53) with the
only change of ¢ to ¢(in) that correspond to the limit
¢w — oo in Eq. (59). Assuming again that &, , ~ &y
and using circular coordinates we obtain for the
integral .#N* (q,) the following expression:

P g) =

= éT/Oooexp [—p/T—Pz/(Zf%v)]

x Jo(g-p)pdp, (60)

where ¢, = [q,]-

Summarizing the results of this section we see
that generally speaking, imperfections of the win-
dows and mirrors are the sources of the reduced
coherence on the beamline. If the statistical prop-
erties (roughness, correlation length, etc.) of an
element are known, the magnitude of these co-
herence lengths can be estimated from the ex-
pressions derived in this section. It is important to
note that the “decoherence” effect of optics is not a
degradation of the inherent source coherence, but
instead the creation of an entirely new component
to the coherence function with a dramatically re-
duced coherence length. This is illustrated sche-
matically in Fig. 3. If more than one optical
element is present the formalism generalizes in a
straightforward way to further components added
to MIF.

As an example in Fig. 4 we present the results of
a calculation using the formalism described in
this section of the complex coherence factor
1(Ax, Ay) = J(Ax, Ay)/J(0) calculated for the X-
ray radiation with wavelength 7 = 1.5 A propa-
gating through a random phase optical element
at a distance L, = 6 m from the sample. This ele-
ment is located at L; = 56 m from an incoherent
source of size o, =250 pum in the horizontal di-
rection (left panel in Fig. 4) and ¢, = 50 pm in the
vertical direction (right panel in Fig. 4). An effec-
tive source size of the beam on the optical element
0 (cfr)xy and parameters characterizing the statistical
properties of an element (variance o2, and longi-
tudinal correlation length t) used in calculations

= (]
Source Sample
(Gu G_v) J (l' r ) 2
stttz Be window Jw(r,ra)
(o(eﬂ'}x d(efl'j_\')
L] LZ
< >4 g

Fig. 3. Schematic view of propagation of the MIF from the incoherent synchrotron source through a random optical element (here Be
window). Upon passing the Be window, the MIF has two components: one broad component with high coherency properties prop-
agating directly from the source and a second one originating from the Be window that gives reduced coherence lengths at the sample

position.
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Fig. 4. Horizontal and vertical components of the complex coherence factor u(Ax, Ay) calculated for the X-ray radiation with the
wavelength A = 1.5 A propagating through a random phase optical element at a distance L, = 6 m in front of the sample. Parameters
of the source and statistical properties of an element are given in the text and are summarized in Table 1. Each curve is shifted by one

unit for clarity.

are summarized in Table 1. Variance ¢3 = 0.5
would correspond to the physical roughness of Be
window ¢, about micron for 8 keV X-rays.
Curves A represent what we consider to be
typical parameters for optics used in a CXD ex-
periment at APS. Curves B represent a reduction
of roughness variance. This improvement in the
optics quality enhances the contribution of the
broad component and at the same time reduces
the sharp component contribution. Curves C re-

Table 1
Parameters used for the calculation of the CCF u(Ax, Ay) at the
sample position

o: (km) oy (um) Oy (MM) 0 7 (pm)
A 250 50 1.5 0.5 1
B 250 50 L5 0.1 1
C 250 50 1.5 0.5 0.1
D 250 50 0.15 05 1

Notations A-D are maintained throughout the paper, no-
tably in Figs. 4 and 6. Here, o, are the horizontal and vertical
source sizes, g, are an effective source size of the beam on
the Be window, ¢% and 7 are variance and longitudinal corre-
lation length of this window.

duce the correlation length of the roughness and as
a result this immediately reduces the coherence
length of the sharp component. Curves D show the
improvement of coherency properties of the beam
obtained by restricting the size of the beam at the
position of an optical element.

6. Effects of the optical element on the imaging of
small crystals

In this part we will apply results obtained in the
previous sections to a specific type of CXD ex-
periment — coherent X-ray scattering from small
crystalline particles [16]. Applying special iteration
techniques originally proposed by Gerchberg and
Saxton [47] and then further developed by Fienup
[48] and Millane and Stroud [49], the intensity
distribution obtained in such experiment can be
inverted to give a real space image of the particle
itself. It was demonstrated in our previous work
[19] how the reconstructed shape can become
modified by the coherency properties of the beam.
Computer simulations showed that in the pure
coherent beam the shape of the particle can be
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reconstructed identically with the initially gener-
ated shape. However, reduced coherence of the
beam can cause a region of high intensity to
appear in the reconstructed image. We will see
now how the two-component MIF discussed in
the previous sections can modify the recon-
structed image of the crystalline particle in CXD
experiment.

We will assume below that quasi-monochro-
matic conditions are satisfied which means that in
this kind of experiment time delays for X-ray
propagation in a sample At are much less than
coherence times At < 1. = I./c. It was shown in
[19] that in this situation the intensity diffracted
from a small crystalline particle in the far-field
limit under exact Bragg condition can be written
as

1Q = [ [ dndrs.(rs. ()7

X (r},1,)e Q). (61)

Here, s.(r) = [ dzs(r,z) is the projection of the
shape function s(r,z) of the particle, z axis is taken
along the direction of the diffracted beam, and r is
a 2D coordinate frame perpendicular to this di-
rection. In the simplest case, the shape function
s(r, z) is defined equal to one inside the particle and
to zero outside. For the exact Bragg condition the
scattering vector Q is equal to Q = (k/L)v, where v
is the coordinate on the CCD detector located at a
distance L from the sample perpendicular to the
incoming beam. The beam illuminating the crys-
talline sample is assumed partially coherent with
its MIF J(ry,r2).

We have shown in the previous sections that
the coherency properties of the beam from the
undulator source on the way to the sample can
essentially change due to rescattering by imper-
fections of the Be windows and mirrors. According
to (31)—(33), the MIF J(r;,r,) arriving at the
sample can be written in a quite general way as a
sum of two contributions with two different co-
herence lengths

J(r1,15) = CiJs(r1,12) + Codw (1, 132).

Here, Js(ry,rp) is a MIF (32) propagating along
beamline from the source to the sample without

rescattering and typically having large coherence
lengths at the sample position. The second part
Jw(r,ry) (33) is a result of rescattering from all
imperfections of windows or mirrors and has re-
duced coherence length. In a simple beamline set
up (Fig. 2) with one optical element on the way
from the source to the sample both parts of the
incoming MIF J(r;,r,) (31) can be calculated ac-
cording to the theory presented in the previous
sections. Now taking into account that in the
typical CXD experiment the size of the sample is
of the order of microns, we can neglect any in-
tensity variations in the incoming beam across the
sample giving a good approximation

Js(r1,12) = Is(0) s (Ar),
Jw(l'l y rz) ~ Iw(O)MW(Al‘),

where I5(0) and Iw(0) are intensity values in the
center of the incoming beam and ug(Ar), py (Ar)
are the normalized CCFs. Here, we want to note
that in the case of small variance ¢3 < 1 the in-
tensity distribution w(0) < o2 according to (52)
and (55). Substituting now (62) into (31) we get for
the MIF of the incoming beam

(62)

T(Ar) = Ci15(0) | s (Ar) + Cuy (Ar)] (63)

where C = Cylw(0)/[C1I5(0)] is a constant pa-
rameter that determines the contribution of the
second term to the total MIF. To model the effects
of decoherence introduced by the optical element
we used expression (63) to fit the results of the
exact near-field calculations of the MIF passing a
random optical element made in the previous
section (Fig. 4) with a simple functional form. The
first CCF pg(Ar), naturally, can be taken in the
form of the Gaussian function (36) with coherence
lengths &, , (37). We found that a good approxi-
mation for the second CCF uy (Ar) in the near-
field corresponding to the four configurations of
Table 1 was obtained either in the form of the
Lorentzian function

1 1
14+ (Ax/Ewe)’ 1+ (Ay/fwy)z

or a Gaussian function with the coherence lengths
Ewyy- Results of this fitting are summarized in

Hw (Ar) (64)
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Table 2

Transverse coherence lengths of the “broad” &g and ““sharp” &g
components of the MIF J;,(Ar) on the sample position obtained
as a result of fitting with expression (63)

Cse sy Eway C 00,
(hm) (um) (nm) (um™")
A 5.92 29.6 0.8 (L) 0.545 1.25
B 5.92 29.6 0.8 (L) 0.11 1.25
C 5.92 29.6 0.15(G) 022 6.67
D 59 29.6 1.5 (G) 0.22 0.67

Letters (L) and (G) mean Lorentzian or Gaussian form of
CCF puy/(Ar). Parameter gy, gives the size of distribution
of incoherent intensity in the reciprocal space according to
Eq. (73).

the Table 2. Letters (L) and (G) in Table 2 mean
Lorentzian or Gaussian form of CCF puy, (Ar). The
MIF J(ry, ;) (63) with parameters listed in Table 2
is presented in Fig. 6(a). Parameter sets A-D
correspond to the four configurations listed in
Table 1 and Fig. 4.

The crystal shape was taken in the form of a
uniform crystal with (1 1 1) facets shown in Fig. 5.
The diffraction pattern from this crystal shape
and reconstructed image of this crystal in the case
of perfect coherent incoming beam are also
shown in Fig. 5. The intensity distribution in the
diffraction pattern has high contrast. The recon-
structed shape of the particle for the coherent
illumination conditions is identical to the initial
one.

The diffraction patterns from the same crystal
with the four different MIFs listed in Table 2 were
calculated according to Eq. (61) and are presented
in Fig. 6(b). From this figure we can see how the
diffraction pattern is sensitive to different coher-
ency properties of the incoming beam. A sharp
component in the MIF smears the contrast in the
central part of the diffraction pattern and in some
cases reduces the visibility of the fringes. This is
particularly apparent in Fig. 6(c). However in
other cases, that are more often observed in ex-
periment, the sharp component of the MIF affects
only the small central part of the intensity distri-
bution keeping high visibility for the range of
higher Q values (Fig 6(b), image B).

We have applied the reconstruction algorithm
discussed in detail in our previous work [19] to

reconstruct the shape of the particle from the
intensity distributions shown in Fig 6(b). No in-
formation about the partial coherence was in-
cluded in the calculations, which are therefore not
expected to converge perfectly. Results of this re-
construction are shown in Fig. 6(c). The left and
right halves correspond to best reconstructions
starting with different sets of random phases to
give an impression of the reproducibility. As it is
well seen from these results, different types of MIF
give different results for the reconstructed shape of
the particle. We can also observe that reduced
coherence of the incoming beam affects the re-
producibility of image reconstruction. The two
general features introduced by the partial coher-
ence are the sharp bright peak in the center of the
image and the smearing of the borders of the
particle. The same behavior was observed in re-
construction of the shape of gold particles from
their diffraction pattern in CXD experiment [17].
We can see that fine features can be different for
the two different sets of starting phases but general
features as the smeared shape of the particle and
the size of the “hot” spot are preserved. Better
reconstruction images are obtained in the situation
when the quality of the optical element is im-
proved, in example B by reducing the rms
roughness ¢4, and in D by the introduction of a
smaller aperture .

The reconstructed images are mostly affected
when the incoming MIF contains a very narrow
sharp component (in our test calculations with
Ewyy = 0.15 um). This is the case of short corre-
lation lengths 7 on the element. As one can see in
Fig. 6(c) (image C) the reconstructed image in this
case produces a narrow high intensity region,
smeared borders of the particle itself and even re-
gions with zero density inside the particle. Im-
provement of the beam coherence by reducing the
aperture on the optical element (Fig. 6(c), image
D) can improve the quality of reconstructed image
in the central part (enlarging the size of the bright
peak) but still fails to produce correct shape of the
crystal. For crystals of smaller sizes this improve-
ment can be enough to reconstruct the correct
shape of the particle.

In order to understand results of calculations
qualitatively, we can calculate intensity distribu-
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Fig. 5. Initial crystal shape (left image) used for calculations, its diffraction pattern (central image) in a perfect coherent beam and
reconstructed shape of the particle (right image). Another non-linear color gradient is used for reconstructed image to enhance the
background contribution. Calculations used an array of 700 x 400 pixels. In the figure, real space images have been cut to a size of
160 x 160 pixels and reciprocal space image to 300 x 160 pixels. The support region in the calculations was a rectangular box with a
lateral size of 150 x 150 pixels.

Fig. 6. The MIF (a) used for calculation of diffraction intensity patterns (b) from the crystal shape shown in Fig. 5. Reconstructed real-
space images for two different sets of starting random phases are shown in (c). Parameters used for calculations of the A-D MIF are
listed in Table 2.

tion further with some reasonable approximations. Es>D, &y <D. (65)
We will assume that CCF’s pg(Ar) and py (Ar)
entering into an expression for the incoming MIF Now substituting expression for the incoming

(63) have different coherence lengths compared MIF (63) into (61), we get for the intensity distri-
with the average size of the particle D bution
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1(Q) Z//drl drys. (r1)s. (1;) g (Ar) e 714

+E'//dr1 dl‘zsz(l‘1)Sz(rz),uW(Al.)e—iQAr7
(66)

where intensity distribution /(Q) is normalized by
the value C,/5(0). Introducing the autocorrelation
function

@i (r) = / dr's.(r')s.(r + 1), (67)

the intensity distribution (66) can be written as
1Q) = [ draf, sty

+€ [ dr e (68)

Now, we can make use of relationships (65) in
calculating these integrals taking into account that
in the first integral CCF ug(Ar) is a slow varying
function compared with the autocorrelation func-
tion ¢, (r) while in the second, the opposite ap-
plies. This approximation gives for the intensity
distribution

1(Q) = us(0) / drgi, (r) e + i, 0)

= Odcoh(Q) + ﬁ[incoh(Q)a (69)
where I.on(Q) and I;,con(Q) represent coherent and
incoherent terms of the intensity distribution
2

)

Fan(@) = W@ =| [ drswye

(70)
Ineon(Q) = / iy (r) e 1

and o and f§ are constants. In the case of the scat-
tering from a small crystalline particle, the first part
gives a sharp interference diffraction pattern while
the second one smears this pattern. One important
result here is that incoherent part of the scattered
intensity is just the Fourier transform of the CCF
tw(r). That means that sharper is the distribution
of piy (r) in real space the broader will be incoherent
intensity fincon(Q) contribution in the diffracted
intensity. This result was observed in our direct

computer simulations (see Figs. 6(a) and (b)). We
can estimate the size of incoherent intensity distri-
bution for different forms of CCF py(r). For ex-
ample, Gaussian distribution will give

o O

2 h 2
205, 20y,

Iincoh(Q) = 2n6WxéWx CXp [ - ‘| 3 (71)

and Lorentzian distribution (64) will give

]incoh(Q) = néWxéWx eXp |: - @ - @] ’ (72)

O0ox g9y

where in both cases the width of incoherent dis-
tribution is determined by parameter

1

éWx,y .

Ooxy = (73)
For example, for transverse coherence lengths of
the sharp component &y, , ~ 0.1 pm it gives for
the typical size of the incoherent distribution
0oxy = 10 pm~'. The values of the parameter oy,
typical for our computer simulations are presented
in Table 2.

According to Egs. (69) and (70), we have two
different limits for the incoherent component. If
coefficient C is small, the contribution of inco-
herent component in the total intensity distribu-
tion is also small and inversion of Eq. (69) will give
just the shape of the particle. In the opposite limit
when coefficient C is big, inversion of Eq. (69) will
give, according to (70), the shape of CCF py,(r).

As a summary we can see from these test cal-
culations that in order to produce high quality
images of crystalline particles it is important to
reduce the contribution to the MIF coming from
the rescattered radiation from inhomogeneities of
the Be windows and roughness of the mirrors. This
can be achieved, for example, by special polishing
of mirrors [40] and Be windows or slightly reduc-
ing the aperture of the incoming beam at the lo-
cation of the optics.

Another important result, suggested by our
analysis, is a way of filtering the experimental data
in order to obtain images of higher quality. If the
limit (65) applies, then filtering can be obtained
just by subtracting the incoherent background in
the form of estimates of the functions fi,con(Q) (71)
and (72). If conditions (65) are violated, then the
general form of the intensity distribution (61) with
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MIF in the form of the two-component function
(31) must be used for filtering the measured data.

7. Conclusions

In conclusion we have seen how coherency
properties of the X-ray beam can change while
propagation through optics present in a typical
hard X-ray beamline. It was shown that it is con-
venient to describe coherency properties of the
beam by the MIF which can be obtained through
Eq. (11). Detailed knowledge of the structure of an
optical element, given by its transmittance function
T(u), is necessary to calculate the coherency prop-
erties of the beam. Limits of coherent and inco-
herent illumination of an element were discussed.

It was then shown that in the situation that is
often met in practice when the effective size of the
beam incoming on the optical element is much
bigger than its coherence length, this element can
be treated as a random optical element described
by its statistical properties: variance o2 and cor-
relation length 7. It was shown that for this ran-
dom element the MIF J(rj,r;) propagating
through such optics and incoming on the sample
will split into two parts. The first part Js(r;,r,)
describes propagation of radiation directly from
incoherent source to the sample and has large co-
herence lengths, however the second part Jw(r;,r2)
that results from rescattering of radiation by in-
homogeneities of the optics is responsible for the
decoherence of the original beam and has reduced
coherence lengths. The contribution of the second
term in MIF J(r;,r,) depends on the quality of an
optics through its roughness and correlation of
fluctuations. It can be reduced by the special
preparation of the windows and mirrors (e.g., by
polishing) or by taking smaller grazing angles 6 for
the mirrors. The properties of this second part of
MIF were discussed both in the far-field as well as
in the near-field limit. It was shown that for the
typical configuration of a beamline, in which the
last element is usually an exit Be window, far-field
conditions are violated and near-field analysis is
important. It is interesting to note here that similar
two-component MIF was measured in the recent
experiments on APS [34].

In the last section we discussed how this two-
component MIF can influence the intensity dis-
tribution obtained in a CXD experiment on
nanoparticles. It was shown that images obtained
by inversion of this intensity distribution can
contain some features (regions of high intensity or
even zero density) that can be associated with
partial coherence of the beam rather then present
in particle itself.

Analysis given in this paper can be useful for
the estimates of the coherency properties of exist-
ing X-ray beamlines in the experiments that utilize
coherence and also for the new constructed
beamlines dedicated for experiments that need to
preserve coherence.
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Appendix A. Calculation of undistorted part of MIF
Js(r1,r2)

We will show now that in the case of an inco-
herent source at distance L; from the random op-
tical element, the MIF Js(r;,r,) at the sample
position can be written as directly propagating
from this incoherent source.

Assuming that synchrotron radiation from the
bending magnet or an insertion device can be well
approximated as an incoherent source of radia-
tion, the corresponding CCF pu(sy,s;) can be taken
in the form of the delta-function p(s, —s;) =
kd(sy —s;), where x is the numerical constant with
the dimension of the length squared [37,38]. In this
limit the MIF of the source can be written as
J(sy — 1) = kls(s)0(sy — 1), where Is(s) is the in-
tensity distribution of incoherent source. Using the
propagation law for the MIF (5) in the paraxial
approximation, the MIF incoming on the Be
window from this incoherent synchrotron source
can be written as
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Jn(up,up) = K/IS(S)PLI (u; —s)
x Py (ay —s)ds, (A1)

where the definition of Green’s functions (12) was
used and one integral was taken using the prop-
erties of the o-function. Now substituting this ex-
pression into Eq. (32) calculated at the sample
position, we obtain

Js(ry, 1) = ;c/ //ls(s)PL1 (u; —s)P; (uy —s)
X P, (ry — ul)PL"2 (r; — up) dsdu; du,.
(A.2)

Using the properties of the Fourier transform it is
easy to show that the propagator function obeys
the following convolution theorem [50]:

/PLl (u—s)P,(r—u)du= P, ,,(r—s).

Performing now integration in (A.2) over uj, uy, we
obtain

Js(ry,rp) = K/IS(S)PL1+L2 (r —s)P; ,,(r2 —s)ds.

(A.3)

This is an important result showing that MIF
Js(ry,1y) at the sample position can be calculated
directly from the intensity distribution Zs(s) of
the source on the distance L, + L, without any
influence of an optical element (Be window or a
mirror).

Substituting now in expression for the MIF
Js(r, 1) (A.3) an explicit form of the Green’s
functions P, (r —s) (12), we obtain

e s
Js(l’l,rg) = wazls(S)

.k
X exp [1m (r, — rl)s} ds, (A4)
where g = k/[2(L; + L,)](r} —r3). This expres-
sion is well known as van Cittert—Zernike theorem
[37,38] and gives coherency properties of the beam
from an incoherent source on the distance L; + L,.

To the extent that the intensity distribution for
the synchrotron radiation source can be approxi-
mated by a Gaussian function (35), Eq. (A.4) gives
for the MIF

210,61 :
Js(rl,l'z) = K_Lo-y()z e—le
[4(L1 + Ly)]
sz A 2
X €Xp _—Z_LZ ) (AS)
255}( 2€Sy
where
L+ L,
=il A6
éS Y kaAy ( )

are transverse coherence lengths on the sample
position given by the size of the incoherent source
0., and the distance from the source to the sample
Li+ L,.

References

[11 T. Thurn-Albrecht, G. Meier, P. Miiller-Buschbaum,
A. Patkowski, W. Steffen, G. Griibel, D.L. Abernathy,
0. Diat, M. Winter, M.G. Koch, M.T. Reetz, Phys. Rev. E
59 (1999) 642.

[2] S.G.J. Mochrie, A.M. Mayes, A.R. Sandy, M. Sutton, S.
Brauer, G.B. Stephenson, D.L. Abernathy, G. Griibel,
Phys. Rev. Lett. 78 (1997) 1275.

[3] O.K.C. Tsui, S.G.J. Mochrie, Phys. Rev. E 57 (1998)
2030.

[4] D.O. Riese, W.L. Vos, G.H. Wegdam, F.G. Poelwijk, G.
Griibel, D.L. Abernathy, Phys. Rev. E 61 (2000) 1676.

[5] T. Seydel, A. Madsen, M. Tolan, G. Griibel, W. Press,
Phys. Rev. B 63 (2001) 0734099(4).

[6] I. Sikharulidze, I.P. Dolbnya, A. Fera, A. Madsen, B.
Ostrovskii, W. de Jeu, Phys. Rev. Lett. 88 (2002)
115503(4).

[71 A. Snigirev, 1. Snigireva, V. Kohn, S. Kuznetsov,
1. Schelokov, Rev. Sci. Instrum. 66 (1995) 5486.

[8] S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany, A.W.
Stevenson, Nature 384 (1996) 335.

[9] T.E. Gureyev, C. Raven, A. Snigirev, I. Snigireva,
S.W. Wilkins, J. Phys. D 32 (1999) 563.

[10] P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van
Landuyt, J.P. Guigay, M. Schlenker, Appl. Phys. Lett. 75
(1999) 2912.

[11] J. Miao, P. Charalambous, J. Kirz, D. Sayre, Nature
(London) 400 (1999) 342.

[12] LK. Robinson, J.L. Libbert, I.A. Vartanyants, J.A. Pitney,
D.M. Smilgies, D.L. Abernathy, G. Griibel, Phys. Rev.
B 60 (1999) 9965.

[13] J.A. Pitney, .LK. Robinson, I.A. Vartanyants, R. Appelton,
C.P. Flynn, Phys. Rev. B 62 (2000) 13084.

[14] A. Letoublon, F. Yakhou, F. Livet, F. Bley, M. de
Boissieu, L. Mancini, R. Caudron, C. Vettier, J. Gastaldi,
Europhys. Lett. 54 (2001) 753.

[15] B. Lengeler, Naturwissenschaften 88 (2001) 249.

[16] I.K. Robinson, I.A. Vartanyants, G.J. Williams, M.A.
Pfeifer, J.A. Pitney, Phys. Rev. Lett. 87 (2001) 195505(4);



50 L A. Vartanyants, I.K. Robinson | Optics Communications 222 (2003) 29-50

G.J. Williams, M.A. Pfeifer, I.A. Vartanyants, J.K. Rob-
inson, Phys. Rev. Lett. 90 (2003) 175501 (4).

[17] A.C. Kak, M. Slaney, Principles of Computerized Tomo-
graphic Imaging, Society of Industrial and Applied Math-
ematics, Philadelphia, 2001.

[18] I.LK. Robinson, I.A. Vartanyants, Appl. Surf. Sci. 182
(2001) 186.

[19] LLA. Vartanyants, 1.LK. Robinson, J. Phys. 13 (2001)
10593.

[20] S.K. Sinha, M. Tolan, A. Gibaud, Phys. Rev. B 57 (1998)
2740.

[21] J. Borowski, J. Gronkowski, J. Phys. D 34 (2001) 3496.

[22] A. Szoke, Acta Cryst. A 57 (2001) 586.

[23] M. Born, E. Wolf, Principles of Optics, seventh ed.,
Cambridge University Press, Cambridge, 1999.

[24] J.E. Trebes, K.A. Nugent, S. Mrowka, R.A. London, T.W.
Barbee, M.R. Carter, J.A. Koch, B.J. MacGowan, D.L.
Matthwes, L.B. Da Silva, G.F. Stona, M.D. Feit, Phys.
Rev. Lett. 68 (1992) 588.

[25] Y. Takayama, R.Z. Tai, T. Hatano, T. Miyahara, W.
Okamoto, Y. Kagoshima, J. Synchrotron. Rad. 5 (1998)
456.

[26] Y. Takayama, T. Hatano, T. Miyahara, W. Okamoto,
J. Synchrotron. Rad. 5 (1998) 1187.

[27] K. Tamasaku, T. Ishikawa, Acta Cryst. A 57 (2001) 197.
[28] K. Fezzaa, F. Comin, S. Marchesini, R. Coisson,
M. Belakhovsky, J. X-ray Sci. Technol. 7 (1997) 12.

[29] P. Cloetens, J.P. Guigay, C. De Martino, J. Baruchel,
M. Schlenker, Opt. Lett. 22 (1997) 1059.

[30] B. Lin, M.L. Schlossman, M. Meron, S.M. Williams,
Z. Huang, P.J. Viccaro, Phys. Rev. B 58 (1998) 8025.

[31] V. Kohn, I. Snigireva, A. Snigirev, Phys. Rev. Lett. 85
(2000) 2745,

Opt. Commun. 198 (2001) 293.

[32] M. Yabashi, K. Tamasaku, T. Ishikawa, Phys. Rev. Lett.
87 (2001) 140801(4).

[33] D. Paterson, B.E. Allman, P.J. McMahon, J. Lin,
N. Moldovan, K.A. Nugent, I. McNulty, C.T. Chantler,
C.C. Retsch, T.H.K. Irving, D.C. Mancini, Opt. Commun.
195 (2001) 79.

[34] J. Lin, D. Paterson, A.G. Peele, P.J. McMahon,
C.T. Chantler, K.A. Nugent, B. Lai, N. Moldovan, Z.
Cai, D.C. Mancini, I. McNulty, Phys. Rev. Lett. 90 (2003)
074801(4).

[35] A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y.
Mori, Yamauchi, K. Yamamura, A. Saito, J. Synchrotron.
Rad. 9 (2002) 223.

[36] A. Snigirev, I. Snigireva, V. Kohn, S.M. Kuznetsov, Nucl.
Instrum. Meth. A 370 (1996) 634.

[37] J.W. Goodman, Statistical Optics, Wiley, New York, 1985.
[38] L. Mandel, E. Wolf, Optical Coherence and Quantum
Optics, Cambridge University Press, Cambridge, 1995.

[39] S.K. Sinha, E.B. Sirota, S. Garoff, H.B. Stanley, Phys. Rev.
B 38 (1988) 2297.

[40] Y. Mori, K. Yamauchi, K. Yamamura, Y. Sano, Rev. Sci.
Instrum. 71 (2000) 4620.

[41] LK. Robinson, C.A. Kenney-Benson, [.A. Vartanyants,
Recent experiments on APS source have shown that the
typical particle size on Be window is about 1 um, Physica
B, Proceedings of SXNS-7 Conference (in press).

[42] A detailed description can be found, for example, in [43]
(vols. 1, 2 and 3). For a good overview of the elements of
the theory of probability see also [37] (Chapters 2 and 3)
and [38] (Chapters 1 and 2).

[43] S.M. Rytov, Yu.A. Kravtsov, V.I. Tatarskii, Principles of
Statistical Radiophysics, Springer, Berlin, Heidelberg, New
York, 1987.

[44] R.J. Dejus, B. Lai, E.R. Moog, E. Gluskin, Argonne

National Laboratory Technical Bulletin ANL/APS/TB-17,
1994,
H.M. Bizek, Argonne National Laboratory Technical
Bulletin ANL/APS/TB-26, 1996. Improvements of the
synchrotron source have since reduced the horizontal size
of the source from g, ~ 350 pm published in these reports
to present number ¢, ~250 um that is used in our
calculations.

[45] See, for example, in J. Als-Nielsen, D. McMorrow,
Elements of Modern X-ray Physics, Wiley, New York,
2001.

[46] The value of constant Ii* depend on the optics upstream the
random optic element. For the Gaussian source and
beamline with one optical element (Fig. 2) from (34) to
(35) Ii* = 2nKa, 0,00/ (L)) .

[47] R.W. Gerchberg, W.O. Saxton, Optik 35 (1972) 237.

[48] J.R. Fienup, Appl. Opt. 21 (1982) 2758.

[49] R.P. Millane, W.J. Stroud, J. Opt. Soc. Am. A 14 (1997)
568.

[50] V. Kohn, Phys. Scripta 56 (1997) 14.



	Origins of decoherence in coherent X-ray diffraction experiments
	Introduction
	Laws of propagation of the mutual coherence function. Basic equations
	Propagation of the mutual intensity function through the optical element
	Propagation of the mutual intensity function through a random optical element
	Contribution to the coherency properties of the beam from rescattering from random optical element
	Effects of the optical element on the imaging of small crystals
	Conclusions
	Acknowledgements
	Calculation of undistorted part of MIF JS(r1,r2)
	References


