Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information. 
Results List Previous  4 of 49  Next
Optics Communications
Volume 222, Issues 1-6 , 1 July 2003, Pages 29-50

This Document
SummaryPlus
Full Text + Links
PDF (410 K)
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation

doi:10.1016/S0030-4018(03)01558-X    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2003 Elsevier Science B.V. All rights reserved.

Origins of decoherence in coherent X-ray diffraction experiments

I. A. VartanyantsCorresponding Author Contact Information, E-mail The Corresponding Author, 1 and I. K. Robinson

Department of Physics, University of Illinois, 1110 W. Green St., Urbana IL 61801, USA

Received 17 March 2003;  revised 12 May 2003;  accepted 13 May 2003. ; Available online 31 May 2003.


Abstract

The propagation of the mutual intensity function from an incoherent synchrotron source to the sample is discussed. It is shown how coherency properties of the beam are changed by propagation through random optical elements, such as Be windows and mirrors present in the beamline. The mutual intensity function in this case cannot be described by one coherence length but will rather have several components with different coherence lengths. With computer simulations it is shown how such multicomponent mutual intensity function can affect the reconstruction of nanoparticles in coherent X-ray diffraction experiments.

Author Keywords: Propagation of coherence; Coherent X-ray diffraction; Phase retrieval

PACS classification codes: 61.10.Dp; 41.50.+h; 42.30.Rx; 81.07.Bc


Article Outline

1. Introduction
2. Laws of propagation of the mutual coherence function. Basic equations
3. Propagation of the mutual intensity function through the optical element
4. Propagation of the mutual intensity function through a random optical element
5. Contribution to the coherency properties of the beam from rescattering from random optical element
6. Effects of the optical element on the imaging of small crystals
7. Conclusions
Acknowledgements
Appendix A. Calculation of undistorted part of MIF JS(r1,r2)
References



Enlarge Image
(2K)
Fig. 1. Propagation of mutual coherence function from surface capital Sigma, Greek1 to surface capital Sigma, Greek2. Vectors n1 and n2 are the normal vectors to the surface capital Sigma, Greek1 at points P1 and P2.

Enlarge Image
(3K)
Fig. 2. Beamline with one optical element on the way of propagation of X-rays from the synchrotron source to the sample. The source, element, and the sample are described in their "local" 2D coordinate frames perpendicular to the direction of the beam propagation by their coordinates s, u, and r, respectively.

Enlarge Image
(5K)
Fig. 3. Schematic view of propagation of the MIF from the incoherent synchrotron source through a random optical element (here Be window). Upon passing the Be window, the MIF has two components: one broad component with high coherency properties propagating directly from the source and a second one originating from the Be window that gives reduced coherence lengths at the sample position.

Enlarge Image
(9K)
Fig. 4. Horizontal and vertical components of the complex coherence factor small mu, Greekxy) calculated for the X-ray radiation with the wavelength Image Å propagating through a random phase optical element at a distance L2=6 m in front of the sample. Parameters of the source and statistical properties of an element are given in the text and are summarized in Table 1. Each curve is shifted by one unit for clarity.

Enlarge Image
(89K)
Fig. 6. The MIF (a) used for calculation of diffraction intensity patterns (b) from the crystal shape shown in Fig. 5. Reconstructed real-space images for two different sets of starting random phases are shown in (c). Parameters used for calculations of the A–D MIF are listed in Table 2.

Enlarge Image
(26K)
Fig. 5. Initial crystal shape (left image) used for calculations, its diffraction pattern (central image) in a perfect coherent beam and reconstructed shape of the particle (right image). Another non-linear color gradient is used for reconstructed image to enhance the background contribution. Calculations used an array of 700 × 400 pixels. In the figure, real space images have been cut to a size of 160 × 160 pixels and reciprocal space image to 300 × 160 pixels. The support region in the calculations was a rectangular box with a lateral size of 150 × 150 pixels.



Table 1. Parameters used for the calculation of the CCF small mu, Greekxy) at the sample position Full Size Table
Notations A–D are maintained throughout the paper, notably in Fig. 4 and Fig. 6. Here, small sigma, Greekx,y are the horizontal and vertical source sizes, small sigma, Greek(eff)x,y are an effective source size of the beam on the Be window, small sigma, Greekcapital Phi, Greek2 and small tau, Greek are variance and longitudinal correlation length of this window.


Table 2. Transverse coherence lengths of the "broad" small xi, GreekS and "sharp" small xi, GreekS components of the MIF Jinr) on the sample position obtained as a result of fitting with expression (63) Full Size Table
Letters (L) and (G) mean Lorentzian or Gaussian form of CCF small mu, GreekWr). Parameter small sigma, GreekQx,y gives the size of distribution of incoherent intensity in the reciprocal space according to Eq. (73).


References

1. T. Thurn-Albrecht, G. Meier, P. Müller-Buschbaum, A. Patkowski, W. Steffen, G. Grübel, D.L. Abernathy, O. Diat, M. Winter, M.G. Koch and M.T. Reetz. Phys. Rev. E 59 (1999), p. 642. Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

2. S.G.J. Mochrie, A.M. Mayes, A.R. Sandy, M. Sutton, S. Brauer, G.B. Stephenson, D.L. Abernathy and G. Grübel. Phys. Rev. Lett. 78 (1997), p. 1275. Abstract-Compendex | Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

3. O.K.C. Tsui and S.G.J. Mochrie. Phys. Rev. E 57 (1998), p. 2030. Abstract-Compendex | Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

4. D.O. Riese, W.L. Vos, G.H. Wegdam, F.G. Poelwijk, G. Grübel and D.L. Abernathy. Phys. Rev. E 61 (2000), p. 1676. Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

5. T. Seydel, A. Madsen, M. Tolan, G. Grübel and W. Press. Phys. Rev. B 63 (2001), p. 0734099(4).

6. I. Sikharulidze, I.P. Dolbnya, A. Fera, A. Madsen, B. Ostrovskii and W. de Jeu. Phys. Rev. Lett. 88 (2002), p. 115503(4).

7. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov and I. Schelokov. Rev. Sci. Instrum. 66 (1995), p. 5486. Abstract-Compendex | Abstract-INSPEC   | $Order Document | Full Text via CrossRef

8. S.W. Wilkins, T.E. Gureyev, D. Gao, A. Pogany and A.W. Stevenson. Nature 384 (1996), p. 335. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-INSPEC | Abstract-INSPEC   | $Order Document | Full Text via CrossRef

9. T.E. Gureyev, C. Raven, A. Snigirev, I. Snigireva and S.W. Wilkins. J. Phys. D 32 (1999), p. 563. Abstract-Compendex | Abstract-Compendex | Abstract-INSPEC   | $Order Document | Full Text via CrossRef

10. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.P. Guigay and M. Schlenker. Appl. Phys. Lett. 75 (1999), p. 2912. Abstract-INSPEC   | $Order Document | OJPS full text | Full Text via CrossRef

11. J. Miao, P. Charalambous, J. Kirz and D. Sayre. Nature (London) 400 (1999), p. 342. Abstract-EMBASE | Abstract-Elsevier BIOBASE   | $Order Document | Full Text via CrossRef

12. I.K. Robinson, J.L. Libbert, I.A. Vartanyants, J.A. Pitney, D.M. Smilgies, D.L. Abernathy and G. Grübel. Phys. Rev. B 60 (1999), p. 9965. Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

13. J.A. Pitney, I.K. Robinson, I.A. Vartanyants, R. Appelton and C.P. Flynn. Phys. Rev. B 62 (2000), p. 13084. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

14. A. Letoublon, F. Yakhou, F. Livet, F. Bley, M. de Boissieu, L. Mancini, R. Caudron, C. Vettier and J. Gastaldi. Europhys. Lett. 54 (2001), p. 753. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

15. B. Lengeler. Naturwissenschaften 88 (2001), p. 249. Abstract-EMBASE | Abstract-GEOBASE | Abstract-MEDLINE   | $Order Document

16. I.K. Robinson, I.A. Vartanyants, G.J. Williams, M.A. Pfeifer and J.A. Pitney. Phys. Rev. Lett. 87 (2001), p. 195505(4).
G.J. Williams, M.A. Pfeifer, I.A. Vartanyants and J.K. Robinson. Phys. Rev. Lett. 90 (2003), p. 175501 (4) . Full Text via CrossRef

17. A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, Society of Industrial and Applied Mathematics, Philadelphia, 2001

18. I.K. Robinson and I.A. Vartanyants. Appl. Surf. Sci. 182 (2001), p. 186. SummaryPlus | Full Text + Links | PDF (128 K)

19. I.A. Vartanyants and I.K. Robinson. J. Phys. 13 (2001), p. 10593. Abstract-Compendex | Abstract-INSPEC   | $Order Document | Full Text via CrossRef

20. S.K. Sinha, M. Tolan and A. Gibaud. Phys. Rev. B 57 (1998), p. 2740. Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

21. J. Borowski and J. Gronkowski. J. Phys. D 34 (2001), p. 3496. Abstract-Compendex | Abstract-INSPEC   | $Order Document | Full Text via CrossRef

22. A. Szöke. Acta Cryst. A 57 (2001), p. 586. Abstract-INSPEC | Abstract-MEDLINE   | $Order Document | Full Text via CrossRef

23. M. Born and E. Wolf, Principles of Optics. (seventh ed.),, Cambridge University Press, Cambridge (1999).

24. J.E. Trebes, K.A. Nugent, S. Mrowka, R.A. London, T.W. Barbee, M.R. Carter, J.A. Koch, B.J. MacGowan, D.L. Matthwes, L.B. Da Silva, G.F. Stona and M.D. Feit. Phys. Rev. Lett. 68 (1992), p. 588. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

25. Y. Takayama, R.Z. Tai, T. Hatano, T. Miyahara, W. Okamoto and Y. Kagoshima. J. Synchrotron. Rad. 5 (1998), p. 456. Abstract-INSPEC | Abstract-MEDLINE   | $Order Document | Full Text via CrossRef

26. Y. Takayama, T. Hatano, T. Miyahara and W. Okamoto. J. Synchrotron. Rad. 5 (1998), p. 1187. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

27. K. Tamasaku and T. Ishikawa. Acta Cryst. A 57 (2001), p. 197. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

28. K. Fezzaa, F. Comin, S. Marchesini, R. Coisson and M. Belakhovsky. J. X-ray Sci. Technol. 7 (1997), p. 12. Abstract | Abstract + References | PDF (265 K)

29. P. Cloetens, J.P. Guigay, C. De Martino, J. Baruchel and M. Schlenker. Opt. Lett. 22 (1997), p. 1059. Abstract-Compendex | Abstract-INSPEC   | $Order Document | OJPS full text

30. B. Lin, M.L. Schlossman, M. Meron, S.M. Williams, Z. Huang and P.J. Viccaro. Phys. Rev. B 58 (1998), p. 8025. APS full text | Full Text via CrossRef

31. V. Kohn, I. Snigireva and A. Snigirev. Phys. Rev. Lett. 85 (2000), p. 2745. Abstract-INSPEC   | $Order Document | Full Text via CrossRef
Opt. Commun. 198 (2001), p. 293.

32. M. Yabashi, K. Tamasaku and T. Ishikawa. Phys. Rev. Lett. 87 (2001), p. 140801(4).

33. D. Paterson, B.E. Allman, P.J. McMahon, J. Lin, N. Moldovan, K.A. Nugent, I. McNulty, C.T. Chantler, C.C. Retsch, T.H.K. Irving and D.C. Mancini. Opt. Commun. 195 (2001), p. 79. SummaryPlus | Full Text + Links | PDF (277 K)

34. J. Lin, D. Paterson, A.G. Peele, P.J. McMahon, C.T. Chantler, K.A. Nugent, B. Lai, N. Moldovan, Z. Cai, D.C. Mancini and I. McNulty. Phys. Rev. Lett. 90 (2003), p. 074801(4).

35. A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, Y. Mori, Yamauchi, K. Yamamura and A. Saito. J. Synchrotron. Rad. 9 (2002), p. 223. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

36. A. Snigirev, I. Snigireva, V. Kohn and S.M. Kuznetsov. Nucl. Instrum. Meth. A 370 (1996), p. 634. SummaryPlus | Full Text + Links | PDF (554 K)

37. J.W. Goodman, Statistical Optics. , Wiley, New York (1985).

38. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. , Cambridge University Press, Cambridge (1995).

39. S.K. Sinha, E.B. Sirota, S. Garoff and H.B. Stanley. Phys. Rev. B 38 (1988), p. 2297. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

40. Y. Mori, K. Yamauchi, K. Yamamura and Y. Sano. Rev. Sci. Instrum. 71 (2000), p. 4620. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

41. I.K. Robinson, C.A. Kenney-Benson, I.A. Vartanyants, Recent experiments on APS source have shown that the typical particle size on Be window is about 1 small mu, Greekm, Physica B, Proceedings of SXNS-7 Conference (in press)

42. A detailed description can be found, for example, in [43] (vols. 1, 2 and 3). For a good overview of the elements of the theory of probability see also [37] (Chapters 2 and 3) and [38] (Chapters 1 and 2)

43. S.M. Rytov, Yu.A. Kravtsov and V.I. Tatarskii, Principles of Statistical Radiophysics. , Springer, Berlin, Heidelberg, New York (1987).

44. R.J. Dejus, B. Lai, E.R. Moog, E. Gluskin, Argonne National Laboratory Technical Bulletin ANL/APS/TB-17, 1994
H.M. Bizek, Argonne National Laboratory Technical Bulletin ANL/APS/TB-26, 1996. Improvements of the synchrotron source have since reduced the horizontal size of the source from small sigma, Greekxsimilar, equals350 small mu, Greekm published in these reports to present number small sigma, Greekxsimilar, equals250 small mu, Greekm that is used in our calculations

45. See, for example, in J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics. , Wiley, New York (2001).

46. The value of constant I0in depend on the optics upstream the random optic element. For the Gaussian source and beamline with one optical element (Fig. 2) from ((34) and (35)) I0in=2small pi, Greeksmall kappa, Greeksmall sigma, Greekxsmall sigma, GreekyI0/(small lambda, GreekL1)2

47. R.W. Gerchberg and W.O. Saxton. Optik 35 (1972), p. 237. Abstract-Compendex | Abstract-INSPEC   | $Order Document

48. J.R. Fienup. Appl. Opt. 21 (1982), p. 2758. Abstract-Compendex | Abstract-INSPEC   | $Order Document

49. R.P. Millane and W.J. Stroud. J. Opt. Soc. Am. A 14 (1997), p. 568. Abstract-INSPEC   | $Order Document

50. V. Kohn. Phys. Scripta 56 (1997), p. 14. Abstract-Compendex | Abstract-INSPEC   | $Order Document


Corresponding Author Contact InformationCorresponding author. Tel.: +1-217-333-682; fax: +1-217-244-2278

1 On leave from: Institute of Crystallography RAS, Leninsky Pr. 59, 117333 Moscow, Russia.



This Document
SummaryPlus
Full Text + Links
PDF (410 K)
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation
Optics Communications
Volume 222, Issues 1-6 , 1 July 2003, Pages 29-50


Results ListPrevious 4 of 49 Next
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2005 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.