Go to ScienceDirect® Home Skip Main Navigation Links Register or Login: Password: Home Search Browse Journals Browse Book Series and Reference Works Browse Abstract Databases My Profile Alerts Help (Opens New Window) Quick Search: within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information. Results List Previous 5 of 33 Next Journal of Magnetism and Magnetic Materials Volume 263, Issues 1-2 , July 2003, Pages 32-37 This Document SummaryPlus Full Text + Links PDF (303 K) Actions Cited By Save as Citation Alert E-mail Article Export Citation doi:10.1016/S0304-8853(02)01532-9 How to Cite or Link Using DOI (Opens New Window) Copyright © 2003 Elsevier Science B.V. All rights reserved. Coexistence of glassy antiferromagnetism and giant magnetoresistance in Fe/Cr multilayer structures N. Theodoropouloua <#aff1>, A. F. HebardCorresponding Author Contact Information <#m4.cor*>, E-mail The Corresponding Author , a <#aff1>, M. Gabayb <#aff2>, A. K. Majumdarc <#aff3>, C. Paced <#aff4>, J. Lannond <#aff4> and D. Templed <#aff4> a Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA b Laboratoire de Physique des Solides, Bat 510, Universite Paris-Sud, 91405, Orsay Cedex, France c Department of Physics, Indian Institute of Technology, Kanpur 208016, India d MCNC, Electronics Technologies Division, Research Triangle Park, NC 27709, USA Received 7 August 2002; revised 28 November 2002. Available online 24 January 2003. Abstract Using temperature-dependent magnetoresistance and magnetization measurements on Fe/Cr multilayers that exhibit pronounced giant magnetoresistance (GMR), we have found evidence for the presence of a glassy antiferromagnetic phase. This phase reflects the influence of interlayer exchange coupling (IEC) at low temperature (T<140 K) and is characterized by a field-independent glassy transition temperature, Tg, together with irreversible behavior having logarithmic time dependence below a "de Almeida and Thouless" critical field line. At room temperature, where the GMR effect is still robust, IEC plays only a minor role, and it is the random potential variations acting on the magnetic domains that are responsible for the antiparallel interlayer domain alignment. PACS classification codes: 75.70.Pa Article Outline • References Enlarge Image (9K) Fig. 1. Magnetization of a multilayer sample ([Fe(20Å)/Cr(12Å)]×30) normalized to the weight of iron plotted as a function of temperature at the indicated fields. The data at each field are taken in pairs: the open(solid) symbols referring to the FC (ZFC) procedure. The vertical arrows and dashed line are described in the text. Inset, dependence of the GMR ratio on applied field for the same film at 300 K (left axis) and at 10 K (right axis). Enlarge Image (6K) Fig. 2. Temperature dependence of the relative changes in resistance at the fields indicated in the legend for the same sample characterized in Fig. 1 <#fig1>. For each data point, the sample was ZFC as described in the text. The vertical arrows indicate the positions of the maxima for each field and define a critical field dependence similar to that defined by the maxima of the ZFC magnetizations in Fig. 1 <#fig1>. Enlarge Image (6K) Fig. 3. Critical field lines for the 30 layer [Fe(20Å)/Cr(12Å)] (solid circles and open triangles) sample shown in Fig. 1 <#fig1> and for a second 30 layer [Fe(20Å)/Cr(10Å)] (solid squares) multilayer sample with smaller Cr spacer thickness. The solid symbols refer to determinations using the experimental Tm(H)'s of ZFC magnetizations and the open triangles are determined by similar peaks in the resistance measurements. Inset, plot of the high temperature points (solid circles) showing the AT scaling dependence for spin glasses. Enlarge Image (6K) Fig. 4. Schematic of phase diagram in the H–T plane showing the relationship between the GAF, the AF and the paramagnetic (PM) phases. The axes are normalized as discussed in the text. The GT and AT line (dashed) are described in the text. For our samples the disorder is sufficiently large (i.e., ΔJsimilar, equalsJAF) and the field sufficiently low to ensure that the presence of an AF phase is obscured on the transition from the PM to GAF phase (horizontal dashed arrow). References 1. U. Hartmann (Ed.), Magnetic Multilayers and Giant Magnetoresistance, Vol. 37 of Surface Sciences, Springer, Berlin, Heidelberg, New York, 1999. 2. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas. Phys. Rev. Lett. 61 (1988), p. 2472. Abstract-INSPEC | $Order Document | Full Text via CrossRef 3. G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn. Phys. Rev. B 39 (1989), p. 4828. Abstract-INSPEC | $Order Document | Full Text via CrossRef 4. A. Barthèlèmy, A. Fert, M.N. Baibich, S. Hadjoudj, F. Petroff, P. Etienne, R. Cabanel, S. Lequien, F. Nguyen Van Dau and G. Creuzet. J. Appl. Phys. 67 (1990), p. 5908. Abstract-INSPEC | $Order Document | Full Text via CrossRef 5. S.S.P. Parkin, N. More and K.P. Roche. Phys. Rev. Lett. 64 (1990), p. 2304. Abstract-INSPEC | $Order Document | Full Text via CrossRef 6. A. Fert and I.A. Campbell. J. Phys. F 6 (1976), p. 849. Abstract-INSPEC | $Order Document 7. J. Barnas, A. Fuss, R.E. Camley, P. Grünberg and W. Zinn. Phys. Rev. B 42 (1990), p. 8110. Abstract-INSPEC | $Order Document | Full Text via CrossRef 8. S. Zhang, D.V. Dimitrov, G.C. Hadjipanayis, J.W. Cai and C.L. Chien. J. Magn. Magn. Mater. 198–199 (1999), p. 468. SummaryPlus | Full Text + Links | PDF (87 K) 9. P. Miltènyi, M. Gierlings, J. Keller, B. Beschoten, G. Güntherodt, U. Nowak and K.D. Usadel. Phys. Rev. Lett. 84 (2000), p. 4224. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef 10. J.C. Slonczewski. J. Magn. Magn. Mater. 150 (1994), p. 13. 11. M.E. Filipkowski, J.J. Krebs, G.A. Prinz and C.J. Gutierrez. Phys. Rev. Lett. 75 (1995), p. 1847. Abstract-INSPEC | $Order Document | Full Text via CrossRef 12. J.R.L. de Almeida and D.J. Thouless. J. Phys. A 11 (1978), p. 983. Abstract-INSPEC | $Order Document 13. K. Binder and A.P. Young. Rev. Mod. Phys. 58 (1986), p. 801. Abstract-INSPEC | $Order Document | Full Text via CrossRef 14. D.M. Cragg, D. Sherrington and M. Gabay. Phys. Rev. Lett. 49 (1982), p. 158. Abstract-INSPEC | $Order Document | Full Text via CrossRef 15. M. Gabay and G. Toulouse. Phys. Rev. Lett. 47 (1981), p. 201. Abstract-INSPEC | $Order Document | Full Text via CrossRef 16. M. Gabay and T. Garel. Phys. Rev. B 33 (1986), p. 6281. Abstract-INSPEC | $Order Document | Full Text via CrossRef 17. R. Prozorov, Y. Yeshurun, T. Prozorov and A. Gedanken. Phys. Rev. B 59 (1999), p. 6956. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef 18. D.T. Pierce, J. Unguris, R.J. Celotta and M.D. Stiles. J. Magn. Magn. Mater. 200 (1999), p. 290. SummaryPlus | Full Text + Links | PDF (1557 K) 19. R.S. Fishman and Z.-P. Shi. Phys. Rev. B 59 (1999), p. 13849. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef 20. A.K. Majumdar, A. Hebard, A. Singh and D. Temple. Phys. Rev. B 65 (2002), p. 054408. Full Text via CrossRef 21. C. Kooy and U. Enz. Philips Res. Rep. 15 (1960), p. 7. 22. M. Gabay and T. Garel. J. Phys. C 19 (1986), p. 655. Abstract-INSPEC | $Order Document Corresponding Author Contact Information <#m4.bcor*>Corresponding author. Tel.: +352-3928842; fax: +352-3923591 This Document SummaryPlus Full Text + Links PDF (303 K) Actions Cited By Save as Citation Alert E-mail Article Export Citation Journal of Magnetism and Magnetic Materials Volume 263, Issues 1-2 , July 2003, Pages 32-37 Results List Previous 5 of 33 Next Home Search Browse Journals Browse Book Series and Reference Works Browse Abstract Databases My Profile Alerts Help (Opens New Window) Feedback | Terms & Conditions | Privacy Policy Copyright © 2005 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.