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Does a surface spin-flop occur in antiferromagnetically coupled

multilayers?

Magnetic states and reorientation transitions in antiferromagnetic

superlattices
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Abstract

Equilibrium spin configurations and their stability limits have been calculated for models of mag-

netic superlattices with a finite number of thin ferromagnetic layers coupled antiferromagnetically

through (non-magnetic) spacers as Fe/Cr and Co/Ru multilayers. Depending on values of applied

magnetic field and unaxial anisotropy, the system assumes collinear (antiferromagnetic, ferromag-

netic, various “ferrimagnetic”) phases, or spatially inhomogeneous (symmetric spin-flop phase and

asymmetric, canted and twisted, phases) via series of field induced continuous and discontinuous

transitions. Contrary to semi-infinite systems a surface phase transition, so-called “surface spin-

flop”, does not occur in the models with a finite number of layers. It is shown that “discrete

jumps” observed in some Fe/Cr superlattices and interpreted as “surface spin-flop” transition are

first-order “volume” transitions between different canted phases. Depending on the system several

of these collinear and canted phases can exist as metastable states in broad ranges of the magnetic

fields, which may cause severe hysteresis effects. The results explain magnetization processes in

recent experiments on antiferromagnetic Fe/Cr superlattices.
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Antiferromagnetic coupling in magnetic multilayers mediated by spacer layers and giant

magnetoresistance are two related phenomena that have created the basis for applications

of antiferromagnetic superlattices as Fe/Cr, Co/Cu, or Co/Ru [1]. Multilayer stacks with

antiferromagnetic interlayer couplings are widely used in spin valves as synthetic antifer-

romagnets, in various other spinelectronics devices, and they are considered as promising

recording media [2]. High quality multilayer stacks, such as Co/Ru [3], Fe/Cr(211) [4], or

Fe/Cr(001)[5], can be considered as “artificial” nanoscale antiferromagnets. They provide

experimental models for the magnetic properties of confined antiferromagnets under influ-

ence of surface-effects. Hence, both for applications and from a fundamental point of view,

such systems are of great importance and attract much interest in modern nanomagnetism

[5, 6, 7, 8, 9, 10].

In the last years, efforts based on experimental investigations [4, 5, 6, 7, 8, 9], and theo-

retical studies[4, 10] to understand ground states and the transitions under magnetic fields

in such multilayers resulted in a controversy around the problem of the so-called “surface

spin-flop”. This problem can be traced back to Mills’ theory [11] which predicted that in

uniaxial antiferromagnets spins near the surfaces rotate into the flopped state at a field

reduced by a factor of
√

2 compared to the bulk spin-flop field. In an increasing magnetic

field such localized surface states spread into the depth of the sample [11]. In Ref. [4],

the authors claimed to observe these surface states in Fe/Cr superlattices and supported

their experimental results by numerical calculations. Subsequent theoretical studies (mostly

based on numerical simulations within simplified discretized models [11]) led to conflicting

conclusions on the evolution of magnetic states in these systems [10]. Finally, recent exper-

imental investigations obtained different scenarios for reorientational transitions in Fe/Cr

[7, 8, 9], and Co/Ru [6] multilayer systems.

This study provides a comprehensive analysis within the standard theory of phase tran-

sitions to determine all (one-dimensional) spin configurations and their stability limits for

models of antiferromagnetic superlattices. Our results explain the diversity of experimen-

tally observed effects in different antiferromagnetic multilayer-systems [4, 5, 6, 7, 8, 9]. It is

shown that the magnetization processes observed in [4] and [7] and interpreted as a manifes-

tation of the “surface spin-flop transitions”, are a succession of first-order phase transitions

between asymmetric inhomogeneous phases. Such transitions occur only in a certain range

of uniaxial anisotropy. In the major parts of the magnetic field-vs.-uniaxial anisotropy phase
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diagram the antiferromagnetic phase undergoes discontinuous transitions either into an in-

homogeneous spin-flop phase (low anisotropy) or into ferrimagnetic collinear phases (high

anisotropy).

The energy of a superlattice with N coupled ferromagnetic layers can be modelled by

W =

N−1∑

i=1

[
Ji mi · mi+1 + J̃i (mi · mi+1)

2
]
− H ·

N∑

i=1

mi

− 1

2

N∑

i=1

Ki (mi · n)2 −
N−1∑

i=1

K ′
i (mi · n)(mi+1 · n) , (1)

where mi are unity vectors along the i-th layer magnetization; the first sum includes bi-

linear (Ji) and biquadratic (J̃i) exchange interactions; Ki and K ′
i are constants of uniaxial

anisotropy and H is an applied magnetic field. Here, we neglect possible variation of mag-

netic parameters within the ferromagnetic layers (see [12]). As the magnetic moments of

the layers are mesoscopically large, temperature fluctuations do not play a significant role

for the magnetic configurations. Thus, we have to find the zero-temperature ground-states

described by the energy (1). Temperature dependence enters only indirectly via the phe-

nomenological constants for interlayer exchange and anisotropies. Moreover, we consider the

case of antiferromagnetic systems with fully compensated magnetization, i.e systems with

even number of ferromagnetic layers. (The noncompensated magnetization in superlattices

with odd numbers of layers or with unequal thickness of layers strongly determines their

magnetic properties. Such structures are related to ferrimagnetic systems. They could be

studied by similar methods as used below, but have to be considered as separate class of

systems.)

The type of antiferromagnetic superlattices considered in our analysis are composed of

few tens of identical magnetic/nonmagnetic bilayers [3, 4, 5, 6, 7, 8, 9]. To simplify the

discussion, we assume that induced interactions in such systems maintain mirror symmetry

about the center of the layer stack, i. e. Ji = JN−i, Ki = KN+1−i etc. in the energy (1).

Usually demagnetization fields confine the magnetization vectors mi to the layer plane, and

their orientation within this plane can be described by their angles θi with the easy-axis n.

Thus the problem of the magnetic states for the model (1) is reduced to optimization of the

function W (θ1, θ2, ...θN ). We assume that values of the magnetic parameters are such that

the energy (1) yields a collinear antiferromagnetic (AF) phase as ground state in zero field,

i.e. mi are directed along the “easy axis” n and antiparallel in adjacent layers. Next, we
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FIG. 1: (a) States in antiferromagnetic superlattices (example N = 6) with increasing field: F

ferromagnetic; FM1/2 ferrimagnetic collinear - such phases may be energetically degenerate, but

they own different (meta)-stability limits; SF spin-flop states; C asymmetric canted; AF antiferro-

magnetic). (b) Example of evolution of state with field H for Mills model in low anisotropy case:

rotation angles θi (i odd) against easy-axis n || field H (for i even θi = −θN−i+1). Phases of type

C and FM1/2 may occur only at intermediate and higher anisotropy.

consider the evolution of states with a magnetic field along the easy-axis n.

In the case of weak anisotropy ( J̄i ≡ Ji − 2J̃i ≫ Ki, K
′
i) the applied field stabilizes a

spin-flop (SF) phase with symmetric (θi = −θN−i+1) deviations of mi from the easy -axis

(Fig. 1(a)). Contrary to spin-flop phases in bulk antiferromagnets, this SF phase is spa-

tially inhomogeneous. At low fields the solutions for the SF phase are given by a set of linear

equations J̄2j−1(π− θ2j−1 + θ2j) = H , θ2j − θ2j+1 = 0 (j = 1, 2, ...l, l = N/4 for systems with

N = 4 n or l = (N + 2)/4 for N = 4 n + 2, n = 0, 1, . . . ). These solutions describe small

deviations of the magnetization vectors, |θi − π/2| ≪ 1, from the directions perpendicular

to the easy axis (Fig. 1 (a)). Towards top and bottom layer i = 1 or N in the stack,

the deviations increase. For example, for N = 10 the solutions read θ5 = π/2 − H/(2J̄5),

θ4 = θ5 − π, θ3 = θ5 −H/J̄3, θ2 = θ3 − π, θ1 = θ3 −H/J̄1. The properties of these solutions

and other particular magnetic configurations of the model (1) arise essentially due to cut

exchange bonds at the boundary layers. This is different from surface-induced changes for

magnetic states of other nanoscale systems. In ferromagnetic nanostructures, as in nano-

sized layers of antiferromagnetic materials, noncollinear and/or twisted configurations are
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caused by particular surface-related anisotropy and exchange contributions due to modified

(relativistic) spin-orbit effects near surfaces (as discussed, e.g., in [12, 13]). The simplified

variant of the energy (1) with Ji = J , Ki = K, J̃i = K ′
i = 0 embodies this cutting of

bonds as the only surface effect and allows to investigate this effect separately from other

surface-induced forces. This model, introduced by Mills as a semi-infinite model [11], was

later investigated in different cases also for finite systems [4, 10]. However, in spite of rather

sophisticated methods used in these previous studies, the magnetic properties described by

this model (called here Mills model) have remained elusive. Transitions and stability lines

for the collinear phases can be calculated analytically, but the main body of our results have

been obtained by numerical methods. We could investigate in detail systems up to N = 20

(and some aspects of larger systems) using a combination of methods: (i) search for energy

minima using of the order 1000 random starting states for a dense mesh of points in the

phase diagram; (ii) an efficient conjugate gradient minimization [14] to solve the coupled

equations for equilibria {∂W/∂θi = 0}i=1...N ; (iii) calculation of stability limits from the evo-

lution of the smallest eigenvalue e0(H, K) of the stability matrix (∂2W/∂θi∂θj), i, j = 1 . . . N

under changing anisotropy constant K and the applied magnetic field. The basic magnetic

configurations are expounded below.

(I) Evolution of the inhomogeneous SF phases is given in Fig. 1. At low fields, due

to the dominating role of the exchange interactions favouring antiparallel ordering of the

magnetizations in adjacent layers, some of the “sublattices” have to rotate against the

applied field. At sufficiently strong fields the sense of rotation for these “sublattices” is

reversed (Fig. 1(b)). Near saturation, the SF phase has only positive projections of the

magnetization on the direction of the magnetic field which decreases towards the center

similar to spin configurations described in Ref. [15]. There is a special field (independent of

N) where all inner sublattices have the same projection on the field direction (θi = (−1)i+1 θ0,

i = 2, 3...N − 1) (Fig. 1(b)). The parameters of this “knot” point are determined from the

equations H0/J = (4−k) cos θ0, cos(2θ0) = k−1−1/4−
√

1/16 + k−2, θ1+3 θ0 = π, k = K/J .

(II) In the case of strong anisotropy, only collinear (Ising) states minimize the system

energy. For Mills model, independently on N , there are two discontinuous (“metamagnetic”)

transitions: at H1 = J to the ferrimagnetic phase with flipped moment at both surfaces

(FM) (Fig. 1(a)), and between FM and ferromagnetic (F) phase at H2 = 2J (Fig. 2).

(III) A specific inhomogeneous asymmetric canted (C) phase (Fig. 1(a)) arises as a

5



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

M
ag

ne
tic

 F
ie

ld
 H

/J

Anisotropy K / J

( a )

δ

λ

γ

η

β

α

i

o
f

e
b

c

g

d

a
0.0 0.5

0

1

M
ag

ne
tic

 F
ie

ld
 H

/J

Anisotropy K / J

( b ) η

γ

β

α

f

e

b

c

d

a

FIG. 2: (color) Phase-diagram for Mills model with N = 4: (a) overview (b) details at low

anisotropy ( in this region critical lines have been shifted for clarity). Full black lines are first order

transitions between equilibrium states; continuous transitions are dashed and dotted. Equilibrium

states: antiferromagnetic below a−b−e−i line (AF); (red) area o−d−e−i collinear “ferrimagnetic”

(FM); area a− b− d− f − g symmetric spin-flop phase (SF); (blue) area b− e− d− c noncollinear

asymmetric (C); above line g − f − o ferromagnetic phase (FM). Greek letters: critical points

at boundaries of metastable states. Metastable states corresponding to FM exist in the region

(magenta) right of line η − β − d − e − γ and for C in the two regions α − b − e − γ − α and

c − β − d − c (light blue), respectively. Further stability limits: for SF a − α − b − c and c − δ

(white) δ − f − g; for AF a − λ (violet); for FM g − f − δ − ζ.

transitional low symmetry structure between higher symmetry SF and FM phases. The

transition FM → C is marked by the onset of noncollinearity, i.e. a deviation of mi from

the easy axis, and the transition SF → C breaks the mirror symmetry.

The calculated phase diagram with N = 4 in Fig. 2 includes all these phases and

elucidates the corresponding magnetization processes for this Mills model. The critical points

b and f at Kb ≃ 0.30 and Kf =
√

2 for N = 4 separate the phase diagram (Fig. 2) into three

distinct regions. In the low-anisotropy region (K < Kb) the first-order transition from AF

to the inhomogeneous SF phase occurs at the critical line a − b, and a further second-order

transition from SF into F phase takes place at the higher field Hf = (2+
√

2)J −K (dashed
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FIG. 3: (color) Example of evolution of magnetization (continuous lines and left scales) and lowest

eigenvalue of stability matrices e0 (dotted, right scales) for Mills model (N = 16 and K = 0.5).

Black curves: magnetization of equilibrium states, color curves for various “canted” phases C1 . . .

C4 and the (reentrant) spin-flop state “SF”. Arrows mark phase transitions. Inset gives full range

of field H from antiferromagnetic (AF) to ferromagnetic (F) state (half-logarithmic plot for e0(H))

- details are magnified in main figure.

line g−f in Fig. 2). In the high-anisotropy region (K > Kf) the above mentioned sequence

of discontinuous transitions AF → FM → F occurs. In this region, different phases can exist

as metastable states in extremely broad ranges of magnetic fields leading to severe hysteresis

effects. Finally, in the intermediate region Kb < K < Kf the magnetization processes have a

complex character including continuous and discontinuous transitions into the C phase. For

N > 4 the region of the C-phase is subdivided into smaller areas corresponding to canted

asymmetric phases separated by first-order critical lines and an area of the reentrant SF

phase (Fig. 3). The number of these areas increases with increasing N . Here, the evolution

of magnetic states occurs as a cascade of discontinuous transitions between different C-

phases.

Generally, the function (1) can be considered as the energy of a “multi-sublattice” antifer-

romagnet with N sublattices each represented by individual ferromagnetic layers. The phase

diagram of such an “antiferromagnet” in the space of the magnetic parameters in the model

(1) may include a number of new homogeneous and inhomogeneous phases and additional

phase transitions. In particular, for nonequal exchange constants there is a cascade of dis-
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continuous transitions between different ferrimagnetic phases, and exchange anisotropy K ′
i

may stabilize a twisted phase [13]. Moreover, magnetic first-order transitions are generally

accompanied by an involved reconstruction of multidomain structures and hysteresis [16],

which will crucially determine the magnetic properties of experimental multilayer systems.

However, the basic features of the model (1) are mainly imposed by cut exchange bonds

and are revealed from Mills model. The phase diagram in Fig. 2 provides the backbone for

the phase diagrams of the whole class of such nanostructures and is representative for their

magnetic states.

Our results show that Mills model with finite N owns only well-defined “volume” phases

and transitions between them, i.e. phases and transitions affecting the whole layer-stack.

The model does not include solutions for surface-confined states, which were assumed to

occur at a “surface spin-flop field” HAF =
√

2JK + K2 and to spread into the depth of

the sample as the applied field increases up to the “bulk spin-flop field” HB =
√

4JK + K2

[7, 11]. The critical field HAF determines the stability limit of the “volume” AF phase

(violet line a − λ in Fig. 2), while the field HB has no physical significance for the finite

system. Non-collinear inhomogeneous structures similar to those discussed here as SF phase

have been observed in low anisotropic Fe/Cr superlattices [8]. The evolution of multidomain

structures accompanying spin-flop transitions was investigated in [9]. Inhomogeneous asym-

metric magnetic configurations found in Fe/Cr(211) superlattices with rather large uniaxial

anisotropy [4] and [7] are similar to C phases discussed in our paper. The magnetization

curve Fig. 3 for Mills model with N = 16 and K/J = 0.5 amends similar calculations

(cf. Fig. 1 (a) in [4]). In addition to the transition from AF into the C-phase, the above

described cascade of first-order transitions between different C-phases occurs. A peculiarity

of m(H) interpreted as the bulk spin-flop field (in Ref. [4] at H = 1.49 kG =̂H/J = 1.49)

does not correspond to any phase transition.

In conclusion, cut exchange bonds at the boundaries of antiferromagnetic superlattices

cause inhomogeneous, noncollinear, or canted magnetic configurations unknown in other

types of magnetic nanostructures. Experimental investigations (in particular on superlattices

with small number of layers, N = 4 and 6) should provide an interesting play-ground to

observe the rich variety of orientational effects predicted in this paper (Fig. 2).
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[13] A. N. Bogdanov, U. K. Rößler, Phys. Rev. B, in press (2003).

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C

9



(2nd edition, Cambridge University Press, Cambridge 1992), chap. 10.6.
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