Go to ScienceDirect® Home Skip Main Navigation Links Register or Login: Password: Home Search Browse Journals Browse Abstract Databases Browse Reference Works My Alerts My Profile Help (Opens new window) Quick Search: within Quick Search searches abstracts, titles, and keywords. Click for more information. 5 of 168 Result List Previous Next Journal of Magnetism and Magnetic Materials Volumes 258-259 , March 2003, Pages 19-24 Second Moscow International Symposium on Magnetism This Document SummaryPlus Full Text + Links PDF (782 K) ------------------------------------------------------------------------ Actions Cited By Save as Citation Alert E-mail Article Export Citation doi:10.1016/S0304-8853(02)00998-8 How to cite or link using doi (opens new window) Cite or link using doi Copyright © 2002 Elsevier Science B.V. All rights reserved. Magneto-optical indicator film study of the hybrid exchange spring formation and evolution processes V. I. NikitenkoCorresponding Author Contact Information <#m4.cor*>, E-mail The Corresponding Author , a <#affa>, b <#affb>, c <#affc>, V. S. Gornakova <#affa>, b <#affb>, Yu. P.Kabanova <#affa>, A. J. Shapirob <#affb>, R. D. Shullb <#affb>, C. L. Chienc <#affc>, J. S. Jiangd <#affd> and S. D. Baderd <#affd> a Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow District 142432, Russia b National Institute of Standards and Technology, Gaithersburg, MD 20899, USA c The Johns Hopkins University, Baltimore, MD 21218, USA d Argonne National Laboratory, Argonne, IL 60439, USA Available online 5 October 2002. Abstract The elementary events of the remagnetization processes in nanocomposite magnetic bilayers were investigated using iron-garnet indicator films with in-plane anisotropy. We have observed hybrid domain walls consisting of both ferromagnetic and antiferromagnetic sections perpendicular to the interface. The external magnetic field shifts only the ferromagnetic part of the domain walls. This leads to the formation of a hybrid exchange spin spring parallel to the interface. The processes of spring nucleation and untwisting occur at different locations. With the field oriented antiparallel to the macroscopic unidirectional anisotropy, remagnetization of the soft ferromagnet layer in the hard/soft nanocomposite starts by the formation of an exchange spring consisting of micrometer-scale sub-domains with opposite direction spin twisting. A rotating magnetic field (smaller than some critical value) creates firstly a single-chiral spin spiral; this spiral then loses stability, incoherently untwists and gradually inverts its chirality with increasing field rotation. Untwisting of the hybrid exchange spring at higher fields leads to the creation of unusual hybrid non-180° domain walls. The initial (ground) state of the bilayer with such noncollinear magnetized domains is not restored after stopping the field rotation and returning it to zero. The revealed phenomena are attributed to the influence of the dispersion in the unidirectional anisotropy induced by magnetization frustration in the interface and bilayer crystal lattice defects. Author Keywords: Magnetic bilayers: domain walls; Exchange springs; Magnetic imaging Article Outline round bullet, filled References Enlarge Image (6K) Fig. 1. Minor hysteresis loops of Py(160 Å)/FeMn(300 Å) at 300 K (a) after demagnetizing at 400 K, and zero field cooling and (b) after field cooling in a 20 mT field. Enlarge Image (40K) Fig. 2. MOIF images of domain structure taken during unidirectional-axis remagnetization of the zero field cooling Py/FeMn bilayer. (a)?(e) correspond to the right loop and (a), (f)?(j) to the left hysteresis loop at Fig. 1a <#fig1>. (a) small mu, Greek0H=0, (b) +1.8, (c) +6.0, (d) +0.6, (e) +0.6 after 20 s, (f) -1.15, (g) -1.2, (h) -6.0, (I) -0.4, (j) -0.35 mT, The top band perpendicular to the unidirectional axis is the edge of the bilayer. Enlarge Image (15K) Fig. 3. Schematic diagram of the spin structures in the FM/AFM bilayer of Fig. 1 <#fig1> during remagnetization. Enlarge Image (3K) Fig. 4. Hysteresis loop of SmCo/Fe bilayer. Enlarge Image (15K) Fig. 5. MO images of the SmCo/Fe bilayer region near the 300 mM hole at different reverse fields. The field is applied at angle small alpha, Greek=0° (a?c) and 10° (d?f). Enlarge Image (33K) Fig. 6. MO images of the SmCo/Fe bylayer region near the hole during an in-plane field rotation for small mu, Greek0H=60 mT. The white and black arrows indicate the directions of H and M, respectively. The graph shows the rotation angle curly or open small phi, Greek of M vs. the magnetic field rotation angle (small alpha, Greek) for different field amplitudes measured from the MOIF images. Enlarge Image (26K) Fig. 7. MOIF images of the SmCo/Fe bilayer region near the hole during decreasing field small mu, Greek0H=90 mT after interrupting its rotation. References 1. J. Nogues and I.K. Schuller. J. Magn. Magn. Mater. 192 (1999), p. 203. Abstract | PDF (383 K) 2. R.L. Stamps. J. Phys. D 33 (2000), p. R247. Abstract-INSPEC | Abstract-Compendex | $Order Document | Full Text via CrossRef 3. A. Hubert and R. Shafer. Magnetic Domains, Springer, Berlin (1998). 4. L.A. Dorosinskii, M.V. Indenbom, V.I. Nikitenko, Yu.A. Ossip'yan, A.A. Polyanskii and V.K. Vlasko-Vlasov. Physica C 203 (1992), p. 149. Abstract | Abstract + References | PDF (622 K) 5. L.H. Bennett, R.D. McMichael, L.J. Swartzendruber, S. Hua, D.S. Lashmore, A.J. Shapiro, V.S. Gornakov, L.M. Dedukh and V.I. Nikitenko. Appl. Phys. Lett. 66 (1995), p. 888. Abstract-INSPEC | $Order Document | Full Text via CrossRef 6. V.I.V.I. Nikitenko, V.S. Gornakov, L.M. Dedukh, Yu.P. Kabanov, A.F. Khapikov, A.J. Shapiro, R.D. Shull, A. Chaiken and R.P. Michel. Phys. Rev. B 57 (1998), p. R8111. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef 7. N.J. Gokenmeijer and C.L. Chien. J. Appl. Phys. 85 (1999), p. 5516. 8. V.I. Nikitenko, V.S. Gornakov, L.M. Dedukh, A.F. Khapikov, A.J. Shapiro, R.D. Shull and A. Chaiken. J. Magn. Magn. Mater. 198?199 (1999), p. 500. SummaryPlus | Full Text + Links | PDF (284 K) 9. V.I. Nikitenko, V.S. Gornakov, A.J. Shapiro, R.D. Shull, Kai Liu, S.M.Zhou, C.L. Chien, Phys. Rev. Lett. 84 (2000) 765. 10. D. Mauri, H.C. Siegmann, P.S. Bagus and E. Kay. J. Appl. Phys. 62 (1987), p. 3047. Abstract-INSPEC | $Order Document | Full Text via CrossRef 11. J.S. Jiang, E.E. Fullerton, C.H. Sowers, A. Inomata, S.D. Bader, A.J. Shapiro, R.D. Shull, V.S. Gornakov and V.I. Nikitenko. IEEE Trans. Magn. 35 (1999), p. 3229. Abstract-Compendex | Abstract-INSPEC | $Order Document 12. R.D. Shull, A.J. Shapiro, V.S. Gornakov, V.I. Nikitenko, J.S. Jiang, H. Kaper, G. Leaf and S.D. Bader. IEEE Trans. Magn. 37 (2001), p. 2576. Abstract-Compendex | Abstract-INSPEC | $Order Document | Full Text via CrossRef 13. V.S. Gornakov, V.I. Nikitenko, A.J. Shapiro, R.D. Shull, J.S. Jiang and S.D. Bader. J. Magn. Magn. Mater. 246 (2002), p. 80. SummaryPlus | Full Text + Links | PDF (222 K) 14. E. Fullerton et al.. J. Magn. Magn. Mater. 200 (1999), p. 392. SummaryPlus | Full Text + Links | PDF (485 K) 15. J.C. Slonczevski. Phys. Rev. Lett. 67 (1991), p. 3172. 16. V.K. Vlasko-Vlasov, U. Welp, J.S. Jiang, D.J. Miller, G.W. Crabtree and S.D. Bader. Phys. Rev. Lett. 85 (2001), p. 4386. Abstract-MEDLINE | Abstract-INSPEC | Abstract-Compendex | $Order Document | Full Text via CrossRef Corresponding Author Contact Information <#m4.bcor*>Corresponding author. Institute of Solid State Physics, Russian Academy of Sciences, , Chernogolovka, Moscow District 142432, , Russia This Document SummaryPlus Full Text + Links PDF (782 K) ------------------------------------------------------------------------ Actions Cited By Save as Citation Alert E-mail Article Export Citation Journal of Magnetism and Magnetic Materials Volumes 258-259 , March 2003 , Pages 19-24 Second Moscow International Symposium on Magnetism 5 of 168 Result List Previous Next Home Search Forms Browse Journals Browse Abstract Databases Browse Reference Works My Alerts My Profile Help (Opens new window) Send feedback to ScienceDirect Software and compilation © 2003 ScienceDirect. All rights reserved. ScienceDirect® is an Elsevier Science B.V. registered trademark. Your use of this service is governed by Terms and Conditions . Please review our Privacy Policy for details on how we protect information that you supply.