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Abstract

Exact methods for determining the complex neutron reflection amplitude for a thin film, which make use of multiple

measurements of the specularly reflected intensities of composite systems, composed of the film adjacent to a reference

layer and/or surrounding media, have been developed over the past several years. These techniques are valid even where

the Born or distorted wave Born approximations break down. Thus, given both the modulus and phase of the specular

reflection, a first-principles inversion can be performed which yields the scattering length density (SLD) depth profile of

the film directly. Ideally, if the reflection amplitude is known for all wave vector transfers Q; the associated SLD profile

is unique. Applying the aforementioned methods to a purely real SLD profile, which, effectively, is almost always that

encountered in neutron reflection, at least two distinct reflectivity curves, corresponding to two different composite film

systems, are required to determine the phase by direct algebraic computation, independently at each value of Q: Each of
the composite systems consists of the common unknown part of the film plus a different reference layer segment and/or

surrounding medium (e.g., the backing). Recently, investigations of certain classes of SLD profiles have been reported

in the literature which examine whether a single X-ray reflectivity curve, given certain a priori knowledge about the

system, i.e., about known parts of the film SLD and/or substrate, suffices to reconstruct the phase. Employing the exact

formulation of phase sensitive reflectometry, we consider several illustrative and realistic cases in which a minimum of

two reflectivity curves are required to distinguish the true SLD profile.

r 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Specular neutron and X-ray reflectometry are
potentially powerful probes of the chemical as well

as magnetization depth profiles of layered thin film
materials. Subnanometer spatial resolutions are
currently achievable in many cases. Nonetheless,
the loss of intrinsic phase information, common to
all scattering techniques whereby only reflected
intensities are measured, can lead to ambiguous
scattering length density (SLD) profiles obtained
by fitting reflectivity data to curves generated from
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model profiles. It is well-known [1,2, and refer-
ences therein] that the complex specular reflection
amplitude, rðQÞ ¼ jrðQÞjeifðQÞ; as a function of
scattering wave vector Q; is both sufficient and
necessary information for the unique solution of
the inverse-scattering problem for retrieval of the
SLD profile rðzÞ as a function of the z-coordinate,
perpendicular to the film; a unique solution,
mathematically speaking, means rðzÞ2rðQÞ;
i.e., that just as rðzÞ implies rðQÞ—the direct
problem—rðQÞ also implies rðzÞ—the inverse
problem1. There are thus two aspects to the phase-
inversion problem: determining the complex
reflection amplitude from measurements of reflec-
tion intensities, and then inverting the reflection
amplitude to retrieve rðzÞ: In practice, these
mathematically distinct elements often have been
combined using the Born approximation (BA) or
the distorted wave Born approximation (DWBA),
which provide explicit but approximate functional
relationships between rðQÞ and rðzÞ; thereby
enabling schemes that attempt to infer rðzÞ from
the data without explicit determination of the
phase.
Interference methods involving reference layers

and substrates have been introduced over the
years, within the BA and DWBA, which, in some
cases, enable the retrieval or inference of sufficient
phase information that ambiguities in the deduced
SLD profiles are either significantly diminished [3]
or possibly eliminated [4]. Along different lines,
Clinton [5] and Zimmermann et al. [6] have studied
whether the phase of the reflection amplitude, for
particular classes of potentials, can be well-
approximated under certain conditions (e.g., in
the presence of a known segment of the film and/or
underlying substrate) given only a single reflectiv-
ity data set. These latter methods extract the phase
from reflectivity data ‘‘non-locally’’ by invoking a
dispersion relation, which entails integration of the
data over all Q: For general rðzÞ functions,
however, the phase of rðQÞ is not uniquely
determined by jrðQÞj2: Mirror symmetric SLD

profiles define a broad class of exceptions [7],
which appears to be unique in this regard [8].
Examples of a multiplicity of rðzÞ obtainable from
the same jrðQÞj2 have been given in theoretical
terms [8,9] and in the context of model-indepen-
dent fitting [10].
Exact methods for phase determination using

references have been derived recently for specular
neutron reflectometry [11–13] and have been
successfully applied in various experiments to
retrieve the reflection amplitude (e.g., as reviewed
in Ref. [14]). These are ‘‘local’’ methods, in which
the phase at each Q is determined algebraically
using only data at the given Q: Thus, a rigorous
theoretical framework exists for answering ques-
tions concerning uniqueness of solutions, both in
mathematical and in practical terms. We will
consider several realistic examples within this
formulation to illustrate the extent to which an
effectively unique SLD profile for an ‘‘unknown’’
film can be obtained from measurements of the
reflectivities of composite film systems.

2. Theory

In the absence of significant nonspecular scat-
tering from in-plane variations of the SLD,
neutron specular reflectometry is accurately de-
scribed by a one-dimensional Schroedinger wave
equation,

�@2zcðk0z; zÞ þ 4prðzÞcðk0z; zÞ ¼ k2
0zcðk0z; zÞ; ð1Þ

where cðk0z; zÞ is the neutron wavefunction, k0z is
the z-component of the incident neutron wave
vector, k0; as measured in vacuum, and rðzÞ is the
SLD profile as a function of the coordinate z;
normal to the film. Notice that in the dimensions
of Eq. (1), the scattering potential is 4prðzÞ: In
terms of the solution to Eq. (1), the amplitude rðQÞ
of the reflected wave can be represented by the
integral [15]

rðQÞ ¼
4p
iQ

Z L

0

cðk0z; zÞrðzÞeik0zz dz; ð2Þ

where Q ¼ 2k0z and L is the width of the SLD
profile, i.e., the thickness of the film. It is assumed
for now that the sample is a free-film in vacuum.
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1When rðzÞ is such that the corresponding scattering

potential, 4prðzÞ; has one or more bound states, then the phase

of rðQÞ is not, in fact, uniquely determined by rðzÞ; but this is a
fairly weak exception in practice.
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When the neutron wavefunction within the film is
negligibly distorted from its plane-wave form in
free space, i.e., cðk0z; zÞEexpik0zz; then Eq. (2)
becomes the BA result,

rBAðQÞ ¼
4p
iQ

Z L

0

rðzÞeiQz dz �
4p
iQ

F ðQÞ: ð3Þ

When the film is backed by a (semi-infinite)
substrate, the upper limit of integration in Eq. (3)
is extended to z ¼ N: In addition, if the finite film
consists of a known reference layer and an
unknown portion, then in the BA, the structure
factor F ðQÞ in Eq. (3) can be written as a sum of
separate terms representing the known and un-
known layers and a term for the substrate [16,14].
Thus, a measurement of the composite reflectivity
jrBAðQÞj2 can be related to a series of terms which
include an interference term involving the reflec-
tion amplitude for the unknown part of the film.
Thus, if we measure the reflectivity for two
composite films consisting of the same unknown
layer and substrate but with two different refer-
ence layers and subtract the results, the common
term depending only on the unknown layer cancels
out. Then the unknown layer only appears linearly
in the result, and its structure factor can be
obtained by standard algebraic methods. How-
ever, the BA is only asymptotically correct as
Q-N and the reflectivity diminishes to zero,
justifying the plane-wave approximation to the
true wave function in the sample. Often the BA
provides a reasonable numerical approximation
for smaller Q; depending on film thickness and the
detailed behavior of rðzÞ; but as Q-0 it necessa-
rily breaks down, both numerically and analyti-
cally, and ultimately the BA, and thus Eq. (3),
ceases to provide a proper mathematical descrip-
tion of the reflectivity. Eq. (2) always applies, but
as distortion of the wavefunction under the
integral grows, the convenient cancellations that
occur in the BA are compromised, making the
solution for the unknown harder. Despite such
difficulties, successful applications of reference
layers and substrates using either the BA or
DWBA have been made in certain cases [3,4]. A
completely general and accessible solution method
for Eq. (1) is available, however.

First, let us represent the combined neutron
wavefunction in Eq. (1), cðk0z; zÞ; and its
first derivative with respect to z by the column
vector

wðk0z; zÞ ¼
cðk0z; zÞ

k�1
0z @zcðk0z; zÞ

 !
: ð4Þ

Now also introduce the 2� 2 matrix

Mðk0z; zÞ ¼
Aðk0z; zÞ Bðk0z; zÞ

Cðk0z; zÞ Dðk0z; zÞ

 !
; ð5Þ

and assert the property

wðk0z; zÞ ¼ Mðk0z; zÞwðk0z; 0Þ; ð6Þ

for 0pzpL; with the boundary condition

Mðk0z; 0Þ ¼ 1; ð7Þ

to make Eq. (6) consistent at z ¼ 0: The matrix
Mðk0z; zÞ thus ‘‘transfers’’ the exact wavefunction
and its derivative from the front edge of the film,
at z ¼ 0; to an arbitrary interior point, z: An
equation for the transfer matrix Mðk0z; zÞ can be
obtained directly from the Schroedinger equation
for cðk0z; zÞ: Thus, after differentiating wðk0z; zÞ; as
defined in Eq. (4), and then using Eq. (1) to clear
the resulting second derivative of cðk0z; zÞ; one
finds

@zwðk0z; zÞ ¼ Gðk0z; zÞwðk0z; 0Þ; ð8Þ

where the new matrix,

Gðk0z; zÞ ¼
0 k0z

4prðzÞ=k0z � k0z 0

 !
; ð9Þ

is completely defined by the SLD profile rðzÞ: But
we also have directly from Eq. (6) that

@zwðk0z; zÞ ¼ @zMðk0z; zÞwðk0z; 0Þ: ð10Þ

Thus substituting Eq. (8) into Eq. (10) and using
Eq. (6) to eliminate wðk0z; zÞ; we easily get the
evolution equation for the transfer matrix,

@zMðk0z; zÞ ¼ Gðk0z; zÞMðk0z; zÞ: ð11Þ

If we overlook the appearances of matrices for a
moment, then Eq. (11) is simply a linear first-order
equation, subject to the ‘‘initial’’ condition in
Eq. (7), and thus it has a unique solution at each
value of k0z; completely determined by rðzÞ: When
the matrix form is made explicit, using Eqs. (5)
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and (9), Eq. (11) generates four coupled linear
first-order equations for the transfer matrix
elements, A;B;C; and D; subject to the initial
conditions, A ¼ 1; B ¼ C ¼ 0; and D ¼ 1 at z ¼
0: Explicit solutions are difficult to achieve for
arbitrary rðzÞ; but the essential point here is that
they exist and are unique. Moreover, for real-
valued rðzÞ; the resulting transfer matrix is real-
valued, because Gðk0z; zÞ then is real.
For the purposes of general analysis, explicit

solutions for Mðk0z; zÞ are not required, however.
Most importantly, because Eq. (11) is first-order,
and because the boundary condition on M is an
initial condition, the solution for M at any z ¼ z0

depends on rðzÞ only for 0pzpz0; the behavior of
rðzÞ for z0oz is inconsequential. Thus, consider
that the film between 0pzpL is arbitrarily divided
into two parts at some value of z; say z ¼ z1: Then
Eq. (5) implies that, suppressing k0z; wðzÞ ¼
M1ðzÞwð0Þ for 0pzpz1; where M1ðzÞ corresponds
to rðzÞ in the first segment, i.e., for 0pzpz1: Now
Eq. (5) becomes wðzÞ ¼ Mðz � z1Þwðz1Þ for any
‘‘initial’’ point z1 > 0: Thus for z1pzpL we can
write wðzÞ ¼ M2ðz � z1Þwðz1Þ for 0pzpz1; where
M2 corresponds to rðzÞ in the second segment.
Therefore, for an arbitrary cut of rðzÞ into two
contiguous parts, say, at z1; we have MðzÞ ¼
M2ðz � z1ÞM1ð0Þ for z1pzpL; and at z ¼ L; in
particular, wðLÞ ¼ MðLÞwð0Þ; where

MðLÞ ¼ M2ðL � z1ÞM1ð0Þ: ð12Þ

In other words, the transfer matrix for the entire
film is the product of transfer matrices for the two
parts, regardless of where the cut occurs or the
behavior of rðzÞ in each of the two segments. More
generally, by induction, this implies

M ¼ MNMN�1?M1 ð13Þ

for any partitioning of rðzÞ into N segments
at z ¼ z1;y; zN�1 where 0pz1pz2p?pzN�1:
Since in any segment, Mnðzn � zn�1Þ depends
implicitly on the segment length, zn � zn�1; we
can suppress the spatial argument when the
context is clear, as in Eq. (13). Such ‘‘matrifica-
tion’’ of the solution of Eq. (1) is well-known
for piecewise continuous, or slab-like, SLD
profiles, where rðzÞ is modeled as a histogram,
i.e., a set of N ‘‘bins’’ in each of which rðzÞ is

constant. In classical derivations [17–19], the
properties of the transfer matrix emerge from
explicit solutions of the Schroedinger equation
within each bin and the applications of boundary
conditions at each slab interface. Subsequent
generalization to continuous rðzÞ then may be
implied, casually, at least, by taking the limit,
N-N: In actuality, as we see, the transfer matrix
representation of Eq. (1) is not tied in any way to a
model description or computational rendering of
rðzÞ: Various general properties of M can be
derived from Eqs. (4)–(11) [20]. Two are required
subsequently. First, for any rðzÞ; including com-
plex valued functions, the transfer matrix is
unimodular, i.e., it has unit determinant: AD�
BC ¼ 1: (For the more mathematically inclined,
this very general property essentially expresses the
linear independence of waves traveling to the left
and to the right in the film.) Second, the only effect
of mirror-reversing the film, i.e., taking
rðzÞ-rðL � zÞ; is to interchange the diagonal
elements of M : A2D:
To obtain a formula for the reflection amplitude

in terms of the transfer matrix, we use Eq. (4) and
the known plane-wave solutions to Eq. (1) in the
semi-infinite fronting ðzo0Þ and backing ðz > LÞ
components of the sample:

cf ðQ=2; zÞ ¼ eif ðQÞQz=2 þ rðQÞe�if ðQÞQz=2; ð14aÞ

chðQ=2; zÞ ¼ tðQÞeihðQÞQz=2; ð14bÞ

respectively, where rðQÞ; again, is the reflection
amplitude and tðQÞ is the transmission amplitude,
and where

nðQÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

16prn

Q2

s
; ð15Þ

for n ¼ f (fronting medium, in which rðzÞ ¼ rf ; a
constant) and n ¼ h (backing, or ‘‘behind,’’
medium, in which rðzÞ ¼ rh; also a constant). In
Eqs. (14) we have replaced k0z by Q=2 to be
consistent with the usual convention of giving
notational primacy to the wave vector transfer
rather than to the incident wave vector. By
continuity, Eqs. (14) define cðzÞ and @zcðzÞ at the
leading and trailing edges of the film, i.e., at z ¼ 0
and z ¼ L; respectively. Thus wðzÞ is known in
terms of rðQÞ and tðQÞ at both z ¼ 0 and z ¼ L;
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and we get from Eq. (6) that

1

ih

 !
t eihQL=2 ¼

A B

C D

 !
1þ r

if 1� rð Þ

 !
; ð16Þ

where we have suppressed the implicit Q-depen-
dence for easier reading. Eq. (16) constitutes a pair
of equations for rðQÞ and tðQÞ: Eliminating t leads
to a representation of r as

r ¼
fhB þ C þ iðfD � hAÞ
fhB � C þ iðfD þ hAÞ

: ð17Þ

For the case of real-valued rðzÞ; appropriate for
most applications to neutrons, the functions
A;y;D are real, as mentioned above, and, with
the aid of unimodularity, Eq. (17) then takes the
rationalized form

r ¼
ðf 2h2B2 þ f 2D2Þ � ðh2A2 þ C2Þ � 2iðfh2AB þ fCDÞ

ðf 2h2B2 þ f 2D2Þ þ ðh2A2 þ C2Þ þ 2fh
:

ð18Þ

This looks complicated, written out in full, but in
fact there are just three functions that comprise the
formula. If we introduce a ¼ f �1hA2 þ ðfhÞ�1C2;
b ¼ fhB2 þ fh�1D2; and g ¼ hAB þ h�1CD—
where g2 ¼ ab� 1 because of unimodularity—

then Eq. (18) is easier to read as

r ¼
b� a� ig
aþ bþ 2

: ð19Þ

We see, in particular, that Re rðQÞ depends only on
a and b: The reflectivity from the entire sample
(film and ‘‘surround,’’ i.e., including the fronting
and backing media) is RðQÞ ¼ jrðQÞj2: Using
Eq. (18), RðQÞ can be related to the transfer matrix
in terms of a new, defined quantity, SðQÞ; as

S � 2fh
1þ R

1� R

¼ ðf 2h2B2 þ f 2D2Þ þ ðh2A2 þ C2Þ

¼ fhðaþ bÞ: ð20Þ

We can see at once from Eq. (20) that, locally (i.e.,
at a given Q) RðQÞ contains less information than
rðQÞ; an alternative perspective of the phase
problem.
To simplify a bit, while remaining realistic,

let us consider the generalized schematic SLD
profile shown in Fig. 1, where the beam is incident
from the left in vacuum (meaning here that f � 1),
on a composite film consisting of an ‘‘unknown’’
segment of rðzÞ on top of a reference segment.
The composite film, in turn, is adjacent to a
semi-infinite backing or substrate, the whole
system comprising the sample. For this particular
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Fig. 1. General composite system SLD profile with ‘‘unkown’’ and reference film segments on semi-infinite backing or substrate.

Dotted arrows are labeled by the normalized amplitudes of the incident (l) and reflected (r) beams.
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geometry,

S ¼ ðh2B2 þ D2Þ þ ðh2A2 þ C2Þ: ð21Þ

The figure also illustrates the formula in Eq. (12),
showing the transfer matrix for the film expressed
as the product of two transfer matrices, one for the
unknown portion and one for the reference
segment. The transfer matrix elements for the
composite film ðA;y;DÞ then can be expanded in
terms of the corresponding elements for the
unknown ða;y; dÞ and known ðx;y; zÞ parts to
give

S ¼ ðh2x2 þ z2Þðc2 þ d2Þ þ ðh2w2 þ y2Þða2 þ b2Þ

þ 2ðh2wx þ yzÞðac þ bdÞ: ð22Þ

(This also can be written concisely in the a–b–g
notational style used above [14], but the explicit
representation should be clear enough for the
remainder of the discussion.) The three unknown
functions, a2 þ b2; c2 þ d2; and ac þ bd; appearing
in Eq. (22) turn out to completely determine the
reflection amplitude, *rUðQÞ; for the mirror-reversed

ðBÞ unknown (U) layer—i.e., the unknown layer
with a2d—viz.,

*rU ¼
ða2 þ b2Þ � ðc2 þ d2Þ � 2iðac þ bdÞ

ða2 þ b2Þ þ ðc2 þ d2Þ þ 2
: ð23Þ

The quantities pertaining to the reference layer
and backing medium, viz., xðQÞ;y; zðQÞ; and hðQÞ
are presumed to be exactly known, whereas RðQÞ;
and therefore SðQÞ; are measured. Eqs. (22) and
(23) thus provide a direct means of determining
*rUðQÞ; locally, i.e., independently, at each Q value.
Namely, measure RðQÞ on each of three samples
having the same unknown layer and backing but
different reference layers. From Eq. (22) these
produce three linear algebraic equations in the
three variables, a2 þ b2; c2 þ d2; and ac þ bd ; and
from the unique solution we construct the reflec-
tion coefficient, *rUðQÞ; for the reversed unknown.
This can be inverted to find *rUðzÞ ¼ rUðL � zÞ;
and thus the desired rUðzÞ:
In the Cartesian space of the three unknowns,

*aU ¼ c2 þ d2; *bU ¼ a2 þ b2; and *gU ¼ ac þ bd ;
Eq. (22) defines a plane. Thus for a single
measurement of RðQÞ; i.e., of SðQÞ; there are a
multitude of solutions consistent with the data.
The unimodularity of the transfer matrix imposes

a constraint, however. For the case at hand this
becomes *g2U ¼ *aU *bU � 1; which, geometrically
speaking, defines an hyperboloidal sheet, and this
intersects the S-plane in a hyperbolic curve, thus
greatly reducing the realm of allowable possibi-
lities. However, this constraint is useful for finding
a solution only when it is made explicit. A second
measurement produces a plane which intersects the
hyperbola in two points, one being the veridical or
‘‘physical’’ solution and the other, a spurious or
‘‘non-physical’’ solution, which, in principle, can
be identified as such from other criteria [21,22].
Finally, a third measurement defines a third plane
which contains only the physical solution (i.e., the
unique point of intersection of the three S-planes).
Reference layer experiments using three measure-
ments [23] and using two measurements and the
unimodular constraint [22] have been successfully
performed.
An alternative reference methodology is pro-

vided by varying the media surrounding the film of
interest, i.e., by varying the spatially constant
SLD-value of either the semi-infinite fronting or
backing. In this approach, a reference layer of
finite thickness is not required. Indeed to see how
this works, we need only shrink the thickness of
the reference layer in Fig. 1 to zero; this has the
effect of making w ¼ z ¼ 1 and x ¼ y ¼ 0 in
Eq. (22), which then becomes (again, for the case
of vacuum fronting, f ¼ 1)

S ¼ h2ða2 þ b2Þ þ ðc2 þ d2Þ: ð24Þ

We can see at once from this that two measure-
ments of RðQÞ for a fixed film in contact with
backings rh1 and rh2; respectively, giving h1ðQÞ
and h2ðQÞ in Eq. (24), provide two S-equations for
the unknowns c2 þ d2 and a2 þ b2 (i.e., *aU and *bU)
from which Re *rUðQÞ is obtained by Eq. (23). This
‘‘surround variation’’ method [13] has been
implemented experimentally [24].
Whichever reference variation technique is used,

once rðQÞ is determined, a first-principles inversion
can be performed to obtain the SLD profile of the
unknown film of interest directly [1,7]. Specific
aspects of the inversion problem are described
elsewhere [14]. We only remark here that, in fact,
for most situations of interest, Re *rðQÞ is sufficient
information for exact inversion to find rðzÞ:
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Some of the formulas discussed above require
real-valued rðzÞ and thus are not valid for cases
characterized by strong absorption, which apply to
most instances of X-ray reflectometry. However,
using a different approach, phase-determination
for absorptive scattering potentials has been
described [25].

3. Illustrative examples

The question then is whether it is necessary to
employ multiple references, either adjacent refer-
ence layers or a substrate with tunable SLD, to
determine the phase for the film of interest; or can
a single measurement of a reflectivity curve for the
film having a known segment or backing medium
suffice. Using the exact or ‘‘dynamical’’ theory
outlined above, we now consider some specific
examples of realistic SLD profiles that are
potentially problematical insofar as their unam-
biguous determination is concerned.

3.1. Free-standing film

Fig. 2 shows the mathematically identical
reflectivity curves that are calculated for the two
distinct SLD profiles shown in the inset, one the
mirror image of the other. It is clear that, lacking

other information, it is impossible to determine the
orientation of the free-standing film relative to the
incident beam. Although perhaps an esoteric
example, for the lack of mechanical support, it is
not an entirely implausible one. In practice, such a
situation can be approximately realized for neu-
tron reflection in the case of a deuterated organic
film floating on the surface of ordinary water (to
increase the SLD of the film relative to the water,
which is slightly less than zero). Fig. 3 presents a
plot of Q2 Re rðQÞ vs Q for these two film
orientations relative to the incident beam: it is
remarkable the degree to which the phase in-
formation implicit in Re rðQÞ provides an unam-
biguous identification. Thus, in this circumstance,
multiple (two) references are indispensable for
phase determination. Now for a film with a
symmetric SLD the original and mirror image
are, of course, identical. Furthermore, as men-
tioned earlier, rðQÞ; and thus Re rðQÞ; can be
extracted unambiguously from a single measure-
ment of the reflectivity of the free standing film in
this special case, albeit only with a non-local
method [7].

3.2. Unknown film on known backing (substrate)

Consider next, in Fig. 4a, the SLD profile
adjacent to a semi-infinite substrate (the SLD
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Fig. 2. Identical (neutron) reflectivity curves corresponding to mirror image SLD profiles shown in the inset. (After Fig. 1 of Ref. [14].)
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value of which, in actuality, is close to both
sapphire and heavy water). The mirror reversed
and flipped SLD of Fig. 4a is shown in Fig. 4b.
The calculated reflectivities for both of these

composite systems, i.e., film plus backing, are
plotted in Fig. 5. Even without including instru-
mental broadening, the two curves are practically
indistinguishable from one another. (An actual
film with an SLD profile similar to this model was
encountered in a neutron reflectivity measurement
performed on a titanium/titanium oxide film
deposited on a Si substrate and adjacent to an
aqueous reservoir [10].) It would seem unlikely,
therefore, that a single reflectivity curve could be
used to determine which of the two possible film
orientations depicted in Fig. 4 was the veridical
one, i.e., the one responsible for the data, despite
the fact that a known substrate was behind the
film. Yet, the Re rðQÞ curves for the two symmetry-
related films, shown in Fig. 6, are markedly
different. Therefore, if two different composite
reflectivity curves were measured, one for the
unknown film on a substrate with a SLD of 6:0�
10�6 (A

�2
(roughly the value for sapphire) and

another for the same film but on a substrate with
SLD value of, say, 2:0� 10�6 (A

�2
(approximately

the value for silicon), Re rðQÞ for the common
‘‘unknown’’ film could be determined from the
appropriate equations derived in the preceding
section. Fig. 7 shows the composite reflectivities
for the film of Fig. 4a on sapphire and silicon
backings. Solving Eq. (24), using the two measured
values of SðQÞ (independently, at each value of Q),
the quantities a2 þ b2 and c2 þ d2 can be found,
from which Re rðQÞ (for the reversed unknown
film—Re *rUðQÞ in Section 2) can be subsequently
computed from Eq. (23), as discussed above. Fig. 8
shows Re rðQÞ obtained by this procedure com-
pared to that computed from the original (but
reversed) SLD profile of Fig. 4a. The two curves
are the same theoretically and, as expected,
effectively coincide computationally. Once
Re rðQÞ is thereby determined, the SLD of the
unknown film can be obtained by direct inversion,
without any adjustable parameters, as mentioned
earlier.

3.3. Unknown film adjacent to reference layer on a

substrate

As the final illustration, suppose now that not
only is a film of interest deposited on a known
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Fig. 3. Q2 Re rðQÞ for the two SLD profiles in the inset of

Fig. 2.

Fig. 4. Symmetry-related SLD film profiles (reflection about

vertical axis through z ¼ 20 (A; followed by reflection about

horizontal axis through r-scale ¼ 3) on fixed known backing, as

discussed in the text.
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substrate material, but that the film is either next
to a reference layer or, what is essentially
equivalent, contains a known segment of the
SLD profile. Fig. 9a depicts such a case where
the portion of the film between, for instance, z ¼
20 and 60 (A is taken as completely known in both
its SLD value and its position relative to the

substrate. It happens, however, that the SLD
profile of Fig. 9b, possessing an identical known
reference layer section and substrate, produces
very nearly the same calculated composite reflec-
tivity curve as that generated by the SLD profile of
Fig. 9a, as shown in Fig. 10 (again, without
simulating instrumental resolution, which would
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Fig. 5. Reflectivity (neutron) curves corresponding to the SLD profiles of Fig. 4.

Fig. 6. Q2 Re rðQÞ for the SLD profiles of Fig. 4 without backing.
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further diminish the already small differences that
occur near a few of the minima). Thus, even
‘‘armed’’ with the prior knowledge of a portion of
the film, it would seem unlikely that analysis of a
single measurement of RðQÞ could distinguish
between these two instances. These two model
SLD profiles, in fact, are similar to two of the
profiles considered in Fig. 3 of the work of

ARTICLE IN PRESS

Fig. 7. Composite system neutron reflectivities jrðQÞj2 for the SLD profile of Fig. 4a on backings of SLD equal to 6:0� 10�6 (A
�2

(approximately sapphire value) and 2:0� 10�6 (A
�2

(roughly that for silicon).

Fig. 8. Q2 Re rðQÞ; as determined algebraically by the exact

methods described in the text, from the two reflectivity model

‘‘data’’ sets of Fig. 7 compared to that computed directly for the

reversed SLD profile of Fig. 4a (free film only, i.e., no backing).

Fig. 9. Model SLD (neutron) profiles, (a) and (b), similar to

two of the profiles considered by Zimmermann et al. in Fig. 3 of

Ref. [6] for X-ray reflection. Note that not only are the backings

the same, but both profiles share a common ‘‘reference’’ or

known segment between z ¼ 20 and 60 (A:
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Zimmermann et al. [6] for X-ray reflection. Within
the BA, it was demonstrated that the X-ray
reflectivity curves corresponding to three different

SLD profiles (those depicted in Fig. 3 of Ref. [6])
were essentially indistinguishable from one an-
other. As Zimmermann et al. concluded, although
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Fig. 10. Neutron reflectivities for the two composite film systems (including backing) of Figs. 9a and b. Convolution for instrumental

resolution has not been applied. The two curves are practically indistinguishable from one another; slight differences primarily occur in

the vicinity of some of the minima.

Fig. 11. Q2 Re rðQÞ for the (reversed) film structures of Fig. 9 (not including the backing but incorporating the known or reference

sections of the films). These Re rðQÞ correspond to what would be retrieved, for example, by phase-sensitive reflectivity experiments (for
each of the two SLD profiles) in which the backing SLD density was varied according to the methods discussed in the text. In contrast

to the situation illustrated in Fig. 10, these curves are markedly different over a wide range of Q:
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sets of SLD profiles exists for which, under the
right conditions, the phase can be approximately
reconstructed with enough accuracy that a single
reflectivity curve suffices, this is not always so.
It is true that the two SLD profiles of Fig. 9 do

not produce mathematically identical reflectivities,
and thus there are some observable differences in
the reflectivity curves plotted in Fig. 10. But from
the standpoint of practical measurement, the two
spectra are essentially equivalent, even without
instrumental effects. On the other hand, the
corresponding Re rðQÞ for the films, shown in
Fig. 11, which can be retrieved by application of
the reference methodologies discussed above, can
significantly enhance the sensitivity for identifying
the true SLD profile in practice.

4. Conclusions

The possibility of exactly determining the
complex reflection amplitude for a film of interest,
through the use of reference structures, enables a
first-principles inversion that yields a unique SLD
profile. These exact methods of phase determina-
tion are valid in general at all wave vector
transfers, even where the BA and DWBA schemes
break down; and they can be directly applied to
determine what measurements are necessary in a
given case to ensure that the SLD profile subse-
quently deduced will be unambiguous. Although it
has been shown in the literature that certain
potentials exist for which the measurement of a
single reflectivity curve under the right conditions
suffices to reconstruct a satisfactory approxima-
tion of the phase, such is not the case in general.
Other, realistic, SLD profiles produce reflectivity
curves close enough to a degree which cannot be
experimentally distinguished by present instru-
mentation. For these latter cases, multiple refer-
ence methods are necessary to restore phase
sensitivity.
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