Go to ScienceDirect® Home Skip Main Navigation Links
 Register or Login:   Password:  
   
   
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)
 Quick Search:  within Quick Search searches abstracts, titles, keywords, and authors. Click here for more information. 
Results List Previous  8 of 34  Next
Physica B: Condensed Matter
Volume 336, Issues 1-2 , August 2003, Pages 63-67

Proceedings of the Seventh International Conference on Surface X-ray and Neutron Scattering

This Document
SummaryPlus
Full Text + Links
PDF (218 K)
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation

doi:10.1016/S0921-4526(03)00270-9    How to Cite or Link Using DOI (Opens New Window)  
Copyright © 2003 Elsevier Science B.V. All rights reserved.

Double pinhole diffraction of white synchrotron radiation

W. LeitenbergerCorresponding Author Contact Information, E-mail The Corresponding Author, a, H. Wendrockb, L. Bischoffc, T. Panznera, U. Pietscha, J. Grenzera and A. Puchera

a Institut für Physik, Universität Potsdam, Am Neuen Palais 10, D-14469, Potsdam, Germany
b Institut für Festkörper- und Werkstoffforschung, P.O. Box 270016, D-01171, Dresden, Germany
c Forschungszentrum Rossendorf e.V., P.O.B. 51 01 19, D-01314, Dresden, Germany

Received 26 September 2002;  accepted 12 December 2002. ; Available online 27 May 2003.


Abstract

The spatial coherence of hard X-rays provided by a bending magnet of the storage ring BESSY II was investigated by performing Young's interference experiment. The interference pattern was created by the diffraction of two 2 small mu, Greekm pinholes drilled into a thin tantalum foil by focused ion sputtering. Using an energy-dispersive detector with an energy resolution of 200 eV the interference patterns were detected simultaneously between 5 keV<E<16 keV scanning a 5 small mu, Greekm pinhole through the detector window. The set-up is suitable to characterize the coherence properties of the beamline in a simple manner, i.e. to deduce parameters as the effective source size, the coherence length and the visibility. For the present case the visibility was close to 100% at 5 keV and decreased to 20% at 16 keV.

Author Keywords: Double slit experiment; Coherent X-rays; White X-ray radiation


Article Outline

1. Introduction
2. Experiment
3. Results
4. Summary
Acknowledgements
References



Enlarge Image
(7K)
Fig. 1. Experimental set-up at the EDR-beamline at BESSY II.

Enlarge Image
(19K)
Fig. 2. Electron microscope image of the 30 small mu, Greekm tantalum foil containing the two micro-pinholes 11 small mu, Greekm separated (exposure at 10° tilt angle).

Enlarge Image
(12K)
Fig. 3. Normalized diffracted intensity as a function of energy and the distance from the optical axis.

Enlarge Image
(12K)
Fig. 4. Normalized interference fringes obtained with the double pinhole at three different energies (a)–(c) 6 keV, 10 keV and 14 keV. The squares indicate the measured data from Fig. 3 and the lines indicate the results of the best fit of Eq. (1).

Enlarge Image
(7K)
Fig. 5. Visibility of the interference fringes as a function of energy.

References

1. B. Lengeler. Naturwisssenschaften 88 (2001), p. 249. Abstract-EMBASE | Abstract-GEOBASE | Abstract-MEDLINE   | $Order Document

2. A.R. Lang and A.P.W. Makepeace. J. Synchrotron Rad. 6 (1999), p. 59. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

3. T. Ishikawa. Acta Cryst. A 44 (1988), p. 496. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

4. M. Yabashi, K. Tamasaku and T. Ishikawa. Phys. Rev. Lett. 87 (2001), p. 14080.1.

5. K. Fezzaa, F. Comin, S. Marchesini et al.. X-ray Sci. Techn. 7 (1997), p. 12. Abstract | Abstract + References | PDF (265 K)

6. C. Chang, P. Naulleau, E. Anderson and D. Attwood. Opt. Commun. 182 (2000), p. 25. SummaryPlus | Full Text + Links | PDF (494 K)

7. W. Leitenberger, S.M. Kuznetsov and A. Snigirev. Opt. Commun. 191 (2001), p. 91. SummaryPlus | Full Text + Links | PDF (217 K)

8. V. Kohn, I. Snigireva and A. Snigirev. Opt. Commun. 198 (2001), p. 293. SummaryPlus | Full Text + Links | PDF (347 K)

9. V. Kohn, I. Snigireva and A. Snigirev. Phys. Rev. Lett 85 (2000), p. 2745. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

10. P. Ellaume, C. Fortgang, C. Penel and E.J. Tarazona. J. Synchrotron Rad. 2 (1995), p. 209.

11. Y. Bodenthin, J. Grenzer, R. Lauter et al.. J. Synchrotron Rad. 9 (2002), p. 206. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

12. U. Pietsch, J. Grenzer, Th. Geue et al.. Nucl. Instrum. Meth. A 467–468 (2001), p. 1077. SummaryPlus | Full Text + Links | PDF (114 K)

13. M. Francon. Optical Interferometry, Academic Press, New York and London (1966).

14. M. Born and E. Wolf. Principles of Optics, Cambridge University Press, Cambridge (1999).

15. K. Holldack, J. Feikes and W.B. Peatman. Nucl. Instrum Meth. A 467–468 (2001), p. 235. SummaryPlus | Full Text + Links | PDF (264 K)

16. T. Panzner, W. Leitenberger, J. Grenzer et al., Proceeding X-TOP 2002. J. Phys. D: Appl. Phys. 36 (2003), p. A93. Abstract-Compendex | Abstract-INSPEC   | $Order Document | Full Text via CrossRef

17. I. K. Robinson personal communication.


Corresponding Author Contact InformationCorresponding author. Tel.:+49-331-977-11-10; fax: +49-331-977-11-33



This Document
SummaryPlus
Full Text + Links
PDF (218 K)
Actions
Cited By
Save as Citation Alert
E-mail Article
Export Citation
Physica B: Condensed Matter
Volume 336, Issues 1-2 , August 2003, Pages 63-67
Proceedings of the Seventh International Conference on Surface X-ray and Neutron Scattering


Results ListPrevious 8 of 34 Next
HomeSearchBrowse JournalsBrowse Book Series, Handbooks and Reference WorksBrowse Abstract DatabasesMy ProfileAlertsHelp (Opens New Window)

Feedback  |  Terms & Conditions  |  Privacy Policy

Copyright © 2005 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V.