|
168 of 183 |
This Document | ||
SummaryPlus | ||
Full Text + Links | ||
PDF (116 K) | ||
Actions | ||
Cited By | ||
Save as Citation Alert | ||
Export Citation | ||
Hyperfine interaction studies with monolayer depth resolution using ultra-low energy radioactive ion beams
A. Vantomme, , B. Degroote, S. Degroote, K. Vanormelingen, J. Meersschaut, B. Croonenborghs, S. M. Van Eek, H. Pattyn, M. Rots and G. Langouche
Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
Available online 4 January 2002.
A variety of nuclear techniques rely on the incorporation of radioactive atoms to investigate the microscopic structural, electronic and magnetic properties of a material. In the past, ion implantation has been utilized to introduce these radioactive probes, resulting in a depth distribution of typically several hundreds of Å, and damaging the sample. Both implantation-related deficiencies are incompatible with the ever shrinking sizes relevant in nanostructures. This problem can be circumvented by using ultra-low energy ion beams ¯ of the order of 5 eV, i.e. below the displacement energy of the substrate atoms. Consequently, the radioactive probes are "deposited" on top of the sample, without generating damage to the substrate. Since the implantation chamber is in vacuo connected with the molecular beam epitaxy deposition chamber, the probe layer can be introduced at any stage during the sample growth (from surface to interface) ¯ with monolayer depth resolution. As an example, we discuss the ultra-low energy ion deposition of 111In in Cr, followed by analysis with perturbed angular correlation spectroscopy. The aim of the study is to explore the magnetic ordering of Cr thin films.
Author Keywords: Low energy ion deposition; Nuclear solid state physics; Soft landing; Nanotechnology; Cr spin density wave
PACS classification codes: 75.70.Ak; 68.35.-p; 31.30.G; 61.18.F
1. G. Schatz and A. Weidinger Nuclear Condensed Matter Physics, Wiley, West Sussex (1996).
2. G. Langouche, Editor, Hyperfine Interaction of Defects in Semiconductors, Elsevier, Amsterdam (1992).
3. J. Meersschaut, J. Dekoster, S. Demuynck, S. Cottenier, B. Swinnen and M. Rots Phys. Rev. B 57 (1998), p. R5575. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef
4. T. Klas, R. Fink, G. Krausch, R. Platzer, J. Voigt, R. Wesche and G. Schatz Surf. Sci. 216 (1989), p. 270. Abstract-INSPEC | $Order Document
5. ISOLDE Collaboration, E. Kugler, D. Fiander, B. Jonson, H. Haas, A. Przewloka, H.L. Ravn, D.J. Simon and K. Zimmer Nucl. Instr. and Meth. B 70 (1992), p. 41. Abstract-INSPEC | $Order Document
6. J. Dekoster, B. Degroote, H. Pattyn, G. Langouche, A. Vantomme and S. Degroote Appl. Phys. Lett. 75 (1999), p. 938. Abstract-INSPEC | $Order Document | OJPS full text | Full Text via CrossRef
7. B. Degroote, Ph.D. Thesis, Katholieke Universiteit Leuven, 2001, available at www.fys.kuleuven.ac.be/iks/nvsf/nvsf.htm.
8. C.R. Laurens, L. Venema, G.J. Kemerink and L. Niesen Nucl. Instr. and Meth. B 129 (1997), p. 429. Abstract | PDF (440 K)
9. C.R. Laurens, M.F. Rosu, F. Pleiter and L. Niesen Phys. Rev. Lett. 78 (1997), p. 4075. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef
10. B. Degroote, A. Vantomme, H. Pattyn, K. Vanormelingen, submitted to Phys. Rev. B.
11. D.A. Dahl, D.E. Delmore and A.D. Appelhans Rev. Sci. Instr. 61 (1990), p. 607. Abstract-INSPEC | $Order Document | Full Text via CrossRef
12. P. Bödeker, A. Schreyer and H. Zabel Phys. Rev. B 59 (1999), p. 9408. Abstract-INSPEC | $Order Document | APS full text
13. J. Meersschaut, J. Dekoster, R. Schad, P. Beliën and M. Rots Phys. Rev. Lett. 75 (1995), p. 1638. Abstract-INSPEC
| $Order Document
| Full Text via CrossRef
Corresponding author. Tel.: +32-16-32-75-14; fax: +32-16-32-79-85; email: andre.vantomme@fys.kuleuven.ac.be
|
|||||||||||||||||||||||||||||||
Volume 190, Issues 1-4, May 2002, Pages 840-845 |
168 of 183 |
Send feedback to ScienceDirect |