Skip Main Navigation Links
ScienceDirect Logo Skip Main Navigation Links
 Register or Login:   Password:      
HomeBrowseSearch FormsMy AlertsMy ProfileHelp (Opens new window)
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
168 of 183 Result ListPreviousNext
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Volume 190, Issues 1-4, May 2002, Pages 840-845
This Document
SummaryPlus
Full Text + Links
PDF (116 K)

Actions
Cited By
Save as Citation Alert
Export Citation

DOI: 10.1016/S0168-583X(01)01208-3
PII: S0168-583X(01)01208-3

Copyright © 2002 Elsevier Science B.V. All rights reserved.

Hyperfine interaction studies with monolayer depth resolution using ultra-low energy radioactive ion beams

A. VantommeCorresponding Author Contact Information, E-mail The Corresponding Author, B. Degroote, S. Degroote, K. Vanormelingen, J. Meersschaut, B. Croonenborghs, S. M. Van Eek, H. Pattyn, M. Rots and G. Langouche

Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium

Available online 4 January 2002.

Abstract

A variety of nuclear techniques rely on the incorporation of radioactive atoms to investigate the microscopic structural, electronic and magnetic properties of a material. In the past, ion implantation has been utilized to introduce these radioactive probes, resulting in a depth distribution of typically several hundreds of Å, and damaging the sample. Both implantation-related deficiencies are incompatible with the ever shrinking sizes relevant in nanostructures. This problem can be circumvented by using ultra-low energy ion beams ¯ of the order of 5 eV, i.e. below the displacement energy of the substrate atoms. Consequently, the radioactive probes are "deposited" on top of the sample, without generating damage to the substrate. Since the implantation chamber is in vacuo connected with the molecular beam epitaxy deposition chamber, the probe layer can be introduced at any stage during the sample growth (from surface to interface) ¯ with monolayer depth resolution. As an example, we discuss the ultra-low energy ion deposition of 111In in Cr, followed by analysis with perturbed angular correlation spectroscopy. The aim of the study is to explore the magnetic ordering of Cr thin films.

Author Keywords: Low energy ion deposition; Nuclear solid state physics; Soft landing; Nanotechnology; Cr spin density wave

PACS classification codes: 75.70.Ak; 68.35.-p; 31.30.G; 61.18.F

Article Outline

1. Introduction
2. LEID: the technique and the setup
3. Low energy ion deposition of In on Cr
3.1. Deposition of stable 115In ions
3.2. Deposition of radioactive 111In ions
3.3. Perturbed angular correlation experiment
4. Conclusion
Acknowledgements
References


Enlarge Image
(5K)
Fig. 1. Schematic diagram of the LEID set-up. The deposition energy is selected by adjusting the output voltage of the power supply V2.

Enlarge Image
(3K)
Fig. 2. Ion current through the grid as a function of output voltage V2. The zero-point energy is set at approximately 50 V using power supply V1.

Enlarge Image
(10K)
Fig. 3. Schematic configuration of a transversal SDW with its wave vector in the plane (a,c) or out of the plane (b,d) of the Cr layer. The confinement of the radioactive probes in case of soft landing (c,d) results in monolayer depth sensitivity, which cannot be obtained when using conventional ion implantation (a,b).

Enlarge Image
(10K)
Fig. 4. PAC time spectrum of a 200 Å thick Cr layer, which was halfway decorated with 111In probes, using ion beam deposition at 5 eV. The solid line is a fit assuming a longitudinal SDW.

References

1. G. Schatz and A. Weidinger Nuclear Condensed Matter Physics, Wiley, West Sussex (1996).

2. G. Langouche, Editor, Hyperfine Interaction of Defects in Semiconductors, Elsevier, Amsterdam (1992).

3. J. Meersschaut, J. Dekoster, S. Demuynck, S. Cottenier, B. Swinnen and M. Rots Phys. Rev. B 57 (1998), p. R5575. Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

4. T. Klas, R. Fink, G. Krausch, R. Platzer, J. Voigt, R. Wesche and G. Schatz Surf. Sci. 216 (1989), p. 270. Abstract-INSPEC   | $Order Document

5. ISOLDE Collaboration, E. Kugler, D. Fiander, B. Jonson, H. Haas, A. Przewloka, H.L. Ravn, D.J. Simon and K. Zimmer Nucl. Instr. and Meth. B 70 (1992), p. 41. Abstract-INSPEC   | $Order Document

6. J. Dekoster, B. Degroote, H. Pattyn, G. Langouche, A. Vantomme and S. Degroote Appl. Phys. Lett. 75 (1999), p. 938. Abstract-INSPEC   | $Order Document | OJPS full text | Full Text via CrossRef

7. B. Degroote, Ph.D. Thesis, Katholieke Universiteit Leuven, 2001, available at www.fys.kuleuven.ac.be/iks/nvsf/nvsf.htm.

8. C.R. Laurens, L. Venema, G.J. Kemerink and L. Niesen Nucl. Instr. and Meth. B 129 (1997), p. 429. Abstract | PDF (440 K)

9. C.R. Laurens, M.F. Rosu, F. Pleiter and L. Niesen Phys. Rev. Lett. 78 (1997), p. 4075. Abstract-INSPEC   | $Order Document | APS full text | Full Text via CrossRef

10. B. Degroote, A. Vantomme, H. Pattyn, K. Vanormelingen, submitted to Phys. Rev. B.

11. D.A. Dahl, D.E. Delmore and A.D. Appelhans Rev. Sci. Instr. 61 (1990), p. 607. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

12. P. Bödeker, A. Schreyer and H. Zabel Phys. Rev. B 59 (1999), p. 9408. Abstract-INSPEC   | $Order Document | APS full text

13. J. Meersschaut, J. Dekoster, R. Schad, P. Beliën and M. Rots Phys. Rev. Lett. 75 (1995), p. 1638. Abstract-INSPEC   | $Order Document | Full Text via CrossRef

Corresponding Author Contact Information Corresponding author. Tel.: +32-16-32-75-14; fax: +32-16-32-79-85; email: andre.vantomme@fys.kuleuven.ac.be
This Document
SummaryPlus
Full Text + Links
PDF (116 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Volume 190, Issues 1-4, May 2002, Pages 840-845


168 of 183 Result ListPreviousNext
HomeBrowseSearch FormsMy AlertsMy ProfileHelp (Opens new window) ScienceDirect Logo

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.