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Abstract. Polarized neutron off-specular scattering from
magnetic fluctuations (magnetic domains, roughnesses, and
dynamical spin correlations) in thin films and multilayers is
theoretically considered within the super-matrix approach of
the distorted wave Born approximation. General equations
relating the scattering cross section with the pair spin correla-
tion function, the correlator of the nuclear scattering potential
fluctuations, and the magnetic–nuclear cross correlator are
derived and brought into a form easy for applications.

PACS: 61.12.Ha; 61.30.Hn

One of the greatest advantages of neutron scattering for
a wide range of problems in magnetism is the transparency
of the data interpretation and the reliability of the quanti-
tative analysis. Relatively weak interactions with matter of-
ten guarantee a single-event scattering process, which can be
described within the framework of the Born approximation
(BA). Then, the magnetic scattering cross section is simply
proportional to the Fourier transform of a known combination
of the pair spin correlation tensor (related to the dynamical
susceptibility) components. Explicit equations derived in the
BA [1–4] for the neutron polarization at magnetic scattering
have allowed the invention of the vector or 3D polarization
analysis [5, 6], widely employed [7] not only to separate nu-
clear scattering from magnetic scattering and from their in-
terference, but also to determine different components of the
susceptibility tensor, as well as to distinguish between static
and dynamical correlations. In thick crystals the BA may not
be valid [8], and then one needs to develop a dynamical scat-
tering theory of polarized neutrons [9], which appears to be
cumbersome and quite difficult in practical use. For scatter-
ing at grazing incidence on a flat surface the BA also breaks
down, but the situation is handled much more easily. In this
case interaction with the mean potential averaged over the lat-
eral projection of the neutron coherence length is strong and
leads to the optical effects: specular reflection and refraction,
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which are exactly accounted for. According to the neutron
spin states the exact solution incorporates birefringence [10–
12] of the neutron wave refracted into the homogeneous mag-
netic media. Lateral inhomogeneities of the interaction po-
tential giving rise to off-specular scattering are considered as
a perturbation and described within the distorted wave Born
approximation (DWBA) [13]. Examples of these inhomo-
geneities can include interfacial roughnesses [14], magnetic
domains [15], inclusions [16], thermal spin fluctuations, or
even lateral crystalline structure [10]. Each violates the trans-
lational invariance of the system with respect to the lateral
shift and causes off-specular scattering, which in magnetic
materials may be associated with spin-flip processes. This pa-
per is devoted to the derivation of the explicit equations for
(spin-flip and non-spin-flip) scattering cross sections. It gen-
eralizes earlier results [11, 12, 17, 18] used in [10, 15, 16, 19–
23] to treat various experimental situations.

1 Refraction, transmission, and reflection

The neutron interaction with a magnetic material is formally
described by the operator V̂ (r, t) = 1̂VN(r, t)+ µ̂B(r, t),
where VN(r, t) is the nuclear scattering potential, B(r, t) is
the microscopic magnetic field, µ = µσ̂ , µ is the neutron
magnetic moment, σ̂ is the vector of the Pauli matrices,
and 1̂ is a unit matrix in the neutron spin, s = σ̂/2, space.
A neutron wave impinging onto a surface at the angle αi
of grazing incidence averages out most of the microscopic
details of the interaction potential V̂ (r, t) over the lateral
projection l‖ ∼ lc/ sin αi of the coherence length lc ∼ λ/δθ ,
which is mostly related to the primary divergence δθ of
the beam (with the wavelength λ). As far as the mean
value 〈V̂ (r, t)〉ρ = V̂ (z) is a function of the coordinate z
normal to the surface and independent of the lateral pro-
jection ρ of the neutron coordinate r, the solution of the
Schrödinger equation with V̂ (z) is factorized into the product
|Ψ(r, t)〉 = e−iEt eiκρ|ψ(z)〉, where κ is the lateral projection
of the wave vector k, 2m E = h2k2, m is the neutron mass,
and |ψ(z)〉 is the two-component vector in the neutron spin
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space. In the layered structure V̂ (z)= ∑
n V̂n(z − zn−1) and

|ψ(z)〉 = ∑
n |ψn(z − zn−1)〉, where n enumerates the layers,

zn−1 ≤ z ≤ zn , and z0 = 0. If V̂n(z − zn−1)= V̂n is indepen-
dent of z, then |ψn〉 = Ŝn(z − zn−1)|ψ0〉, where |ψ0〉 is the
vector of the initial states, and the Ŝn-matrix is a linear com-
bination of the operators:

Ŝn(z − zn)= ei p̂n (z−zn−1) Ât
n + e−i p̂n(z−zn−1) Âr

n . (1)

It develops |ψ0〉 into the vector of neutron states within the
nth layer. The refraction effects are taken into account by the

operator p̂n =
√

p̂2
0 − p̂2

nc, where h2 p̂2
nc = 2mV̂n, p̂0 = 1̂p0,

and p0 = k sin α is the normal component of the wave vec-
tor k. If the quantization axis is chosen along with the mean
magnetic field Bn inside the layer, then p̂n is a diagonal

2 × 2 matrix with the eigenvalues p±
n =

√
p2

0 − p2
n±, where

p2
n± = p2

nN ± p2
nM, pn± are the critical wave numbers for the

total reflection of the positive or negative spin projection onto
the Bn direction, and p2

nN = 4π(Nb)nN, p2
nM = 4π(Nb)nM

and (Nb)nN, (Nb)nMq are the nuclear and magnetic scatter-
ing length densities, respectively. If the vectors Bn are not
collinear, then 2 ×2 matrices of transmittance, Ât

n , and re-
flectance, Ar

n, do not commute with the wave-number matrix
p̂n and can be computed via the super-matrix routine [11, 12].

2 Neutron scattering cross section in the DWBA

Interaction with the mean multilayer structure manifests itself
in only specular reflection from and transmission through the
sample. If the system contains magnetic domains laterally ex-
tended beyond the range of l‖ they can provide a spin-flip con-
tribution to the specular reflection and transmission, which
should be calculated for each of the domains, and the result
should be averaged over their distribution. If, on the contrary,
inhomogeneities are relatively small, then the effect of the re-
sidual part ˆ̃V (r, t)= V̂ (r, t)− V̂ (z) of the interaction operator
can be accounted for as a perturbation for the neutron states
found in the previous section. This perturbation causes off-
specular scattering with the double-differential cross section
given by the standard equation [1]:

dσ

dωdΩ
= C|〈Ψ f | ˆ̃V ll′ (r)|Ψ i〉|2δ(ω− εl′ + εl) , (2)

where ω is the energy transfer, C = (k f /ki)(m/2πh2)2, and
averaging runs over neutron states and over the specimen
states l and l′ with energies εl and εl′ , respectively. In the
DWBA the vectors |Ψ f(i)〉 of the final, f (or initial, i), neu-
tron states are to be calculated as indicated in the previ-
ous section with the wave vector k = {κ; p0} substituted for
kf(i) = {κ f(i); pf(i)}.

This immediately yields:

dσ

dωdΩ
= C

2πh
Tr

∫
dt e−iωt

(
ρ̂i

ˆ̃V fi+
(t)ρ̂ f

ˆ̃V fi
(0)

)
, (3)

where ρ̂ f(i) = |ψ f(i)〉〈ψ f(i)| = [1̂+ σ̂ Pf(i)]/2 is the density ma-
trix of the final (initial) neutron state, Pi is the incoming
beam polarization vector, and Pf is the vector of the polar-

ization analysis efficiency. In (3) ˆ̃V fi
(t)= ∑

n
ˆ̃V fi

n (t), where

ˆ̃V fi

n (t)= ˆ̃V n(q‖, pf , pi; t) is a function of the lateral momen-
tum transfer q‖ = κ f −κi , and of the normal to the surface
projections pi and pf of the incoming and outgoing wave vec-
tors, respectively:

ˆ̃V fi

n (t)=
∫

dρ eiq‖ρ

dn∫
0

dz Ŝ f
n (z)

ˆ̃V (ρ, z; t)Ŝi
n(z) , (4)

where dn is the layer thickness. Taking into account (1), the
integration over coordinates in (4) can readily be performed,
and

ˆ̃V fi

n (t)= Â fα
n Λ̂

µ
n

ˆ̃V n(q‖, pαµn f − pβνni ; t)Λ̂νn Âiβ
n , (5)

where α= t, r, β = t, r, µ= ±, ν = ±, and summation over
the repeating twice indexes is anticipated (the Einstein rule),

Λ̂±
n = [1̂± σ̂bn]/2, bn = Bn/Bn, pt±

n f(i) =
√

p2
f(i)− p2

n± repre-
sent two eigenvalues of the normal projections of the out-
going (incoming) wave vector in the nth layer, and pr±

n f(i) =
−pt±

n f(i).

If ˆ̃V n(r, t) = 1̂ṼNn(r, t)+ σ̂ b̃n(r, t), then (5) allows sepa-
ration of different contributions in the scattering cross section
in (3), giving the result:

dσ

dωdΩ
= C

∑
nn′

{IM
nn′ + IN

nn′ + INM
nn′ } , (6)

where IN and IM respectively describe nuclear and magnetic
off-specular scattering, while INM refers to their interference.
Two first terms in (6) can be expressed via corresponding cor-
relation functions of fluctuations of the magnetic or nuclear
scattering potential, while the last is related to the correlations
between these two types of fluctuations:

IM
nn′ = µ2T {ζ}

i fnn′ 〈B̃ξn(q‖, q{η}
n , t)B̃ξ

′+
n′ (q‖, q{η′}

n′ , 0)〉ω , (7)

IN
nn′ = T {φ}

i fnn′ 〈ṼNn(q‖, q{η}
n , t)Ṽ+

Nn′(q‖, q{η′}
n′ , 0)〉ω , (8)

IMN
nn′ = µT {χ}

i fnn′ 〈B̃ξn(q‖, q{η}
n , t)Ṽ+

Nn′(q‖, q{η′}
n′ , 0)〉ω ,

+µT {θ}
i fnn′ 〈ṼNn(q‖, q{η}

n , t)B̃ξ
′+

n′ (q‖, q{η′}
n′ , 0)〉ω . (9)

Here the transverse momentum transfer q{η}
n = pαµn f − pβνni

is represented in the tensor form, accounting for all possible
spin-flip and non-spin-flip transitions between transmitted
and reflected waves inside the layer. The superscript notation
{ζ}, {φ}, {χ}, and {θ} becomes clear if the tensors depending
on the density matrices and reflection–transmission ampli-
tudes are written explicitly:

T {ζ}
i fnn′ = Tr{ρ̂β′β

in′nΓ̂
νξµ
n ρ̂αα

′
fnn′ Γ̂

µ′ξ ′ν′
n′ } , (10)

T {φ}
i fnn′ = Tr{ρ̂β′β

in′nΓ̂
νµ
n ρ̂αα

′
fnn′ Γ̂

µ′ν′
n′ } , (11)

T {θ}
i fnn′ = Tr{ρ̂β′β

in′nΓ̂
νξµ
n ρ̂αα

′
fnn′ Γ̂

µ′ν′
n′ } , (12)

T {χ}
i fnn′ = Tr{ρ̂β′β

in′nΓ̂
νµ
n ρ̂αα

′
fnn′ Γ̂

µ′ξ ′ν′
n′ } , (13)

where Γ̂ νξµn = Λ̂νnσ̂
ξ Λ̂

µ
n , Γ̂

νµ
n = Λ̂νnΛ̂

µ
n , and

ρ̂
β′β
in′n = Âβ

′
in′ ρ̂i[ Âβin]+ ; ρ̂αα′

fnn′ = [ Âαfn]+ρ̂ f [ Âα
′

fn]+ . (14)
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At first sight, these equations look quite complicated.
However, as soon as the amplitude matrices are represented
as Âαn = [1̂Aαn + σ̂ Aαn ]/2 and the quantities Aαn = Tr Âαn and
Aαn = Tr(σ̂ Âαn) are found, the traces can easily be calculated
either analytically (and expressed via a combination of Pf(i),
bn , Aαn , and Aαn [11]), or computed numerically [15, 18, 21–
23].

Since all information about the neutron spin behavior in
the mean multilayer structure is absorbed in (10)–(13), one
can concentrate on the functions around the mean value. Cor-
responding quantities enter (7)–(9) in the form of the Fourier
transforms:

B̃n(q‖, q{η}
n , t)=

dn∫
0

dz eiq{η}
n z B̃n(q‖, z, t) , (15)

ṼNn(q‖, q{η}
n , t)=

dn∫
0

dz eiq{η}
n z ṼNn(q‖, z, t) . (16)

Further calculations, as usual, require that or another
model for correlations of fluctuations in real space:

〈B̃ξn(ρ, z, t)B̃ξ
′

n′ (0, z′, 0)〉 , (17)

〈B̃ξn(ρ, z, t)ṼNn′(0, z′, 0)〉 , (18)

〈ṼNn(ρ, z, t)ṼNn′(0, z′, 0)〉 , (19)

which are in a known way related to the atomic pair spin
correlation function, the correlator of nuclear density fluctu-
ations, and the cross correlator of those two types of fluctu-
ations. This separate task is beyond the scope of the paper,
while some examples can be found in [15, 18, 21–23].

3 Conclusions

In conclusion, it is important to note that the BA definitely
fails either in the vicinity of the total reflection for incoming
(outgoing) wave vectors, or in the range of the Bragg reflec-
tion from the mean multilayer structure. Then one can use the
DWBA, which automatically takes into account the neutron
spin behavior during coherent neutron wave propagation in-
side a magnetic multilayer. This behavior is, however, rather
complex, especially in the case of a non-collinear layer mag-
netization arrangement. In the present paper it is shown that,
nonetheless, the problem of calculations of the polarized neu-
tron cross section of off-specular neutron scattering can be

reduced to a modeling of a pair spin correlation function, i.e.
to the general problem in the polarized neutron data interpre-
tation, independent of the fact whether the BA is valid or not.
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