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Abstract—The structure of domain walls in magnetic multilayers is investigated taking into account the uniax-
ial anisotropy and biquadratic exchange between the layers. Analytical solutions are derived for different types
of domain wall structures. The majority of the solutions obtained have no analogs in conventional magnetic
materials. The thickness and the energy density per unit area are calculated for the domain walls under investi-
gation. The range of parameters that correspond to more energetically favorable structures of domain walls is
established. © 2002 MAIK “Nauka/Interperiodica”.
1. At present, the properties of magnetic multilayer
structures are under extensive investigation. New mate-
rials with magnetic multilayer structures have aroused
great interest owing to their unusual physical properties
and wide prospects of practical application in memory
devices.

Investigations into the phase transitions and the pro-
cesses of magnetization reversal induced in magnetic
superlattices under the action of an external magnetic
field are being carried out particularly intensively (see,
for example, [1] and references therein). Theoretical
studies of phase transitions [2–9] have shown that these
materials are characterized by a much greater number
of phase transitions as compared to conventional mag-
netic materials (see, for example, [10]). It was found
that the domain walls normal to the plane of layers in
magnetic superlattices substantially affect the magneti-
zation reversal in these materials [11–13]; this can lead,
in particular, to changes in their resistive characteris-
tics. Furthermore, the domain wall structure in itself
can affect the electrical and physical properties of mag-
netic multilayers. Numerical calculations performed by
Labrune and Milat [14] demonstrated that the domain
walls in magnetic superlattices possess a number of
unusual properties (asymmetry of the domain wall,
deviation of the magnetization from the plane of layers,
etc.) and could prove a very interesting object of inves-
tigation. It was also shown [15] that the symmetric
domain walls in magnetic multilayers can be relatively
unstable. Morozov and Sigov [16] explained the occur-
rence of domain walls in multilayers in terms of step-
type inhomogeneities at the interface between the mag-
netic and nonmagnetic layers. However, the existence
of domain walls between regions with a noncollinear
orientation of magnetization in adjacent layers [11–13]
was not interpreted. Moreover, experimental observa-
tions of magnetization reversal in magnetic multilayers
through the nucleation and growth of domains of the
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other phase [11–13, 17] also contradict the aforemen-
tioned model.

The foregoing shows that the domain walls in mag-
netic superlattices have not been adequately investi-
gated theoretically. In particular, no consideration is
given to the structure of domain walls in the case of
noncollinear orientation of the magnetization in adja-
cent layers, even though such domain walls have been
observed experimentally. In the present work, the struc-
ture of domain walls in magnetic multilayers is investi-
gated taking into account the biquadratic exchange
interaction between the layers for both collinear and
noncollinear orientation of the magnetization in adja-
cent layers. The only case considered is when the mag-
netization is identical in all the magnetic layers. The sit-
uation when the magnetization have different values in
the magnetic layers, which is of particular interest, will
be considered in a separate publication.

2. The domain wall structure is considered in the
two-sublattice approximation; i.e., it is assumed that
M1 and M2 are the magnetizations in all odd and even
layers, respectively (|M1| = |M2|). This approximation
holds for a large number of layers [18] and breaks down
only in the case of surface spin-flop transition [19]. It
should be noted that magnetic multilayer structures are
characterized by a greater number of domain wall types
as compared to conventional magnets (see, for exam-
ple, [20]). We assume the thickness of each magnetic
layer (d) to be smaller than that of the domain wall in
the bulk sample (d ! ∆). Let the z axis be directed along
the normal to the plane of the layers. In this case, the
dependence of the magnetization on the z coordinate
inside each layer can be ignored. Within this approxi-
mation, the problem of calculating the dependence of
the magnetization M(x, y, z, t) on three spatial coor-
dinates and time is reduced to the problem of calculat-
ing the dependences of two quantities, M1(x, y) and
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M2(x, y), on only two spatial coordinates and time
(Mi is the magnetization in the ith magnetic layer).

For a domain wall in a two-layer magnetic structure,
we write the variational principle in the following form:

(1)

It is appropriate to express the energy density FS in
terms of angular variables θi and ϕi, which determine
the orientation of the magnetization in the ith magnetic
layer. The polar angles θi are reckoned from the z axis,
and the azimuthal angles ϕi are measured from the
x axis in the xy plane.

The energy density FS in angular variables θi and ϕi

takes the form

(2)

where γ is the gyromagnetic ratio, M is the saturation
magnetization in the ferromagnetic layer, H is the
external magnetic field directed along the x axis, K is
the uniaxial anisotropy constant, A is the inhomoge-
neous exchange constant, and J1 and J2 are the constants
of the Heisenberg and biquadratic exchange between the
magnetic layers, respectively. Relationship (2) is
obtained from the Lagrangian density for a single-sub-
lattice ferromagnet with inclusion of the exchange inter-
action between the magnetic layers.

Since the demagnetization energy inhibits the devi-
ation of the magnetization from the plane of the layers,
we can assume that θi = const = π/2. In this case, it is
convenient to introduce the variables ϕ and ψ:

(3)

Consequently, the functional FS can be rewritten as

(4)

and equations used to describe the domain wall struc-
ture take the form

(5a)

(5b)
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For definiteness, we assume that the domain wall plane is
perpendicular to the z axis. In the case of a planar domain
wall, the system of equations (5) has the first integral

(6)

This allows us to find analytical solutions to this system
of equations.

In order to determine unambiguously the domain
wall structure, it is necessary to complement the system
of equations (5) with the boundary conditions. The
boundary conditions can be determined from the condi-
tion of stability of the homogeneous state. The mini-
mum condition of the functional for the homogeneous
state can be met with the following four phases depend-
ing on the magnitudes of the Heisenberg and biquadratic
exchange interactions between the layers (see, for
example, [7]): the ferromagnetic and antiferromagnetic
phases, the angular phase with the magnetization vec-
tors in adjacent layers that are symmetrically oriented
with respect to the easy axis, and the angular phase with
the magnetization vectors in adjacent layers that are
symmetrically oriented with respect to the hard axis.

3. At J1 < 0 and K > J1 > 2J2, the minimum energy
corresponds to the ferromagnetic phase. In this case,
two types of domain walls become possible, namely,
types 1a and 1b (Fig. 1). The rotation of magnetization
in adjacent layers occurs in the same direction for type
1a and in opposite directions for type 1b. The boundary
conditions for the type 1a domain walls have the form

(7)

The solution to the system of equations (4) with the
boundary conditions (7) takes the form

(8)

K ϕ2sin ψ 2ϕcos2sin+[ ] 1
2
---J1 2ϕcos+

+
1
2
---J2 2ϕcos const+ A ϕ '( )2 ψ'( )2+[ ] .=

ϕ const 0,= =

ψ ∞–( ) 0, ψ +∞( ) π, ψ' ∞±( ) 0.= = =

ψ 2 x/∆0( ),exparctan=

1a 1b 1c 1d

1e 1f 1g 1h

E

Fig. 1. The sense of rotation of the magnetization vector in
adjacent layers for different types of domain walls. E is the
easy axis.
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where ∆0 = . For domain walls 1b, the boundary
conditions are represented as

(9)

These conditions are satisfied with the solution

(10)

where ∆f =  and qf = 2J2/(K – J1).

4. The calculated wall energies per unit area for dif-
ferent types of domain walls are presented in the table.
If the magnitude of the exchange interaction between
the layers is large [|J1| > (16/π2 – 1)K], the energy of the
domain wall 1a is higher than that of the domain wall
1b. For |J1| < (16/π2 – 1)K, the lower energy can be
observed for either the type 1a or the type 1b domain
wall, depending on the magnitude of the biquadratic
exchange interaction. The regions of parameters corre-
sponding to different types of domain walls are shown
in Fig. 2.

Calculated energies per unit area for different types of domain
walls shown in Fig. 1
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Fig. 2. The regions of parameters corresponding to the min-
imum energy for different types of domain walls shown in
Fig. 1.
P

5. In the case when the antiferromagnetic phase is
more energetically favorable (K + J1 > 2J2, J1 > 0), there
can also exist two types of domain walls that differ in
the sense of rotation of the magnetization in adjacent
layers, namely, types 1c and 1d (Figs. 1c, 1d). The
boundary conditions for domain walls 1c are given by

(11)

The solution to the system of equations (5) with the
boundary equations (11) has the form

(12)

For domain walls 1d, the boundary equations are repre-
sented as

(13)

These conditions are satisfied with the following solu-
tion to the system of equations (5):

(14)

where ∆a =  and qa = 2J2/(K + J1).

As in the case of the ferromagnetic phase when the
magnitude of the Heisenberg exchange interaction
between the layers is small [|J1| < (16/π2 – 1)K], the
energy of the domain wall 1d with opposite directions
of the magnetization vectors in adjacent layers can be
less than that of the domain wall 1c. The region of
parameters J1 and J2, which corresponds to this situa-
tion, is displayed in Fig. 2.

6. For J1 < 0 and K < J1 + 2J2, the minimum energy
corresponds to the angular phase with symmetric orien-
tation of the magnetization vectors in adjacent layers
with respect to the easy axis. The possible types of
domain walls for this case are represented in Figs. 1e
and 1f. The boundary conditions for domain walls 1e
have the following form:

(15)

The solution to the system of equations (5), which sat-
isfies these boundary conditions, is given by the for-
mula

(16)

where ∆1 =  and ϕI = .

For domain walls 1f, the boundary conditions are
given by

(17)
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2
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-------------------------------------------------------------------- ,arcsin=
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K J1–
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In this case, we obtain the following solutions to the
system of equations (5):

(18)

The energy of the domain wall 1e is less than that of
domain wall 1f, because the energy of the biquadratic
exchange interaction is identical for both types of
domain walls, whereas the energy of anisotropy and the
energy of the Heisenberg exchange interaction for
domain wall 1e are less than those for the domain wall
1f.

7. For J1 > 0 and K + J1 < 2J2, the minimum energy
corresponds to the angular phase with symmetric orien-
tation of the magnetization in adjacent layers with
respect to the hard axis. The possible types of domain
wall structures for this case are shown in Figs. 1g and
1h. The boundary conditions for domain walls 1g have
the form

(19)

where ϕII = . The solution to the system

of equations (5), which satisfies the boundary condi-
tions (19), is represented by the formula

(20)

Similarly, the boundary conditions for domain walls 1h
have the form

(21)

The solution satisfying these conditions is given by

(22)

As in the preceding case, the energy of the domain
wall 1h is always less than that of the domain wall 1g,
because the energy of the Heisenberg exchange interac-
tion and the energy of anisotropy for the former struc-
ture are also less than those for the latter structure.

8. Thus, the structure of domain walls in magnetic
superstructures is investigated. Eight exact solutions
are obtained for different types of domain walls. The
sense of rotation of the magnetization vectors in adja-
cent layers is represented in Fig. 1. The domain wall
structures 1b and 1d–1h have no analogs in conven-
tional magnetic materials. Domain walls of types 1f and
1g are universally characterized by a higher energy
compared to that of domain walls of types 1e and 1h,
respectively. However, it should be noted that the inclu-
sion of the magnetostatic energy can change this ratio.

ψ const 0,= =

ϕ ϕ I x 2ϕ I/∆1sin( )tanhcot[ ] .arccot=
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ϕ ϕ II x 2ϕ II/∆1sin( )tanhtan[ ] .arccot=
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