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Effect of roughness on the magnetic structure of ferro/
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Abstract

Spin structures at the ferro/antiferromagnetic interfaces perturbed by defects such as atomic high steps are
analytically investigated. A two-dimensional model is proposed to describe the spin distribution formed on the
interfacial step at the domain wall. A criterion of the domain wall configuration relative to the interface is found,

defined by the magnetic and geometrical characteristics of the interface and the magnet. r 2002 Elsevier Science B.V.
All rights reserved.
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Layered magnetic structures and interfaces

between different magnetically ordered media have
aroused considerable interest in recent years due to
their wide variety of surprising features and a

multiplicity of technological uses. The roughness
of atomic high steps necessarily abundant on
the interface involves severe consequences for the

magnetic order of the layered systems. The
intention of the present paper is to describe spin
structures at ferro/antiferromagnetic (FM/AFM)
interfaces perturbed by defects such as steps. We

develop a model that allows one to obtain analytical
expressions for the magnetic ordering throughout
the volume of the system and for the energy of

the domain walls (DWs) of various configurations.
Information on the real spin distribution at the
perturbed interface expressed in terms of the material

parameters of the magnet can be used as a basis for
analysis of the observable physical effects, the formation

of DWs may lead to, such as exchange bias and other

related phenomena.
Consider classical Heisenberg FM/AFM system with

atomic high step on the interface, taking into account a

weak easy-axis anisotropy g along the x direction in the
easy xz-plane (Fig. 1). As it will be seen from below,
qualitative analysis of the magnetic structure, we are

interested in, is allowed under the assumption of
equal anisotropy for FM and AFM, however, the
quantitative analysis would require one to differ
anisotropy for the two layers. At the exchange inter-

action through the interface JS under a critical value J�
spin ordering in FM and AFM is ideal, and collinear
DW forms along one of the x half-axes. At J �
oJSoJnn the DW takes noncollinear form. As JS
reaches the critical value Jnn; the DW is repelled from
the interface since the energy of the DW in the layer is

less than that at the interface. To find a criterion of the
DW orientation and to determine the values J� and Jnn;
calculate the energy of the noncollinear DW at the step

along the interface.
From the energy of the magnetic interaction in

the spin chain along the z-axis at fixed x static
equations for spin deviations j in the chain can be

derived. After variables substitution taking into account
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‘‘layered’’ ordering in AFM, linearized equations take

the form:

JAb
2 q
2j
qz2

þ
g
2
sinð2jÞ ¼ 0;

JFb
2 q
2j
qz2

þ
g
2
sinð2jÞ ¼ 0; ð1Þ

where b is lattice parameter along z direction, JA and JF
are the exchange constants in the z-directions in AFM
and FM. Eqs. (1) is complemented by the boundary

conditions

bJA
qj
qz

����
z¼�b=2

¼ JS sinðj0 � j1Þ;

bJF
qj
qz

����
z¼þb=2

¼ JS sinðj0 � j1Þ: ð2Þ

The solutions of Eqs. (1) describe the rotation of spins
in a chain along z at fixed x:

j ¼ 2 arctan expððzA � zÞ=lAÞ; ðzo0Þ;

j ¼ 2 arctan expððzF � zÞ=lFÞ; ðz > 0Þ; ð3Þ

where lA ¼ b
ffiffiffiffiffiffiffiffiffiffi
JA=g

p
and lF ¼ b

ffiffiffiffiffiffiffiffiffiffi
JF=g

p
are the ‘‘magnetic

lengths’’ in the half spaces. The values zA and zF can be

defined from the boundary conditions (2) and are the
functions of the parameters JA; JF; JS; g: Using Eqs. (3)
we obtain the energy of the unit length of the DW along
the interface:
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: ð4Þ

Energy (4) appears to be the function of the exchange
integrals of FM, AFM and through the interface,

depending also on the easy-axis anisotropy
parameter. Common expression for the DW energy
immediately follows from Eqs. (4) in the case

JA ¼ JF ¼ JS: E0 ¼ 2
ffiffiffiffiffi
Jg

p
; which agrees with that

obtained by the direct calculation of the DW energy in
the homogeneous magnet. To compare the energies of
variously configurated DW, consider the case of equal

values of the exchange parameters in FM and AFM:
J � JA ¼ JFaJS (we use the assumption of equal
exchange constants in FM and AFM to obtain

some qualitative results. Note, that, for Fe/Cr, as an
example, JFe=JCrE2 while JFe=JFe2CrE10 and thus the
assumption is valid to be a good approximation). Then,

the energy of the unit length of the DW along the
interface is

E08ðJ; JS; gÞ ¼ 2
ffiffiffiffiffi
Jg

p
þ

g
2
1�

J

JS

� �
: ð5Þ

Comparing this expression with the energy
of the collinear DW in the plane of the interface Ecol ¼
2JS; a critical value of the exchange interaction through
the interface JS� can be found, at which the transforma-
tion of the collinear DW into the noncollinear DW
occurs: Jn

S ¼ 1
2

ffiffiffiffiffi
Jg

p
: At JS > Jnn ¼ J the energy of the

DW along the interface exceeds the energy of the
DW within the thickness of the magnet, the DW
is repelled from the interface and is oriented perpendi-

cular to the interface. It is easy to obtain the value
of the Jnn for JFaJA: Jnn ¼

ffiffiffiffiffiffiffiffiffiffiffi
JFJA

p
: If the

exchange parameters in FM and AFM differ, the DW
at JS > Jnn forms, obviously, in the magnet with the

smallest value of the exchange interaction.
These conclusions as to DW orientation are in
agreement with the results of numerical calculations

for Fe/Cr multilayers presented in Ref. [1]. If the
finite thickness of the FM and AFM layers and
the finite distance L between the steps on the

interface are take into account, a prerequisite
to the formation of the DW along the interface is
E8LoE>h; where E> ¼ 2

ffiffiffiffiffi
*Jg

p
( *J is the exchange

integral along the x-direction). The opposite inequality
is the condition of the DW formation perpendicular to
the interface.
Analytical description of the nonuniform magnetiza-

tion distribution caused by a monatomic step at the FM/
AFM interface can be provided in the framework of a
simple 2D model proposed in Ref. [2] for a system of

AFM with the lattice dislocation. Consider JS value on
the interval J �oJSoJnn which corresponds to non-
collinear DW formation along the interface. For an

equivalent system of two FM half spaces in contact
after corresponding variables change, long-wave

Fig. 1. DW caused by a step on FM/AFM interface given

single-ion anisotropy in the easy plane (xz).
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equations for the magnetization distribution take the
form

*JAa
2 q
2j
qx2

þ JAb
2 q
2j
qz2

�
g
2
sinð2jÞ ¼ 0;

*JFa
2 q
2j
qx2

þ JFb
2 q
2j
qz2

�
g
2
sinð2jÞ ¼ 0; ð6Þ

where a is lattice parameter along the x direction, *JF and
*JA are, respectively, the exchange integrals in FM and
AFM in x-direction. Nonlinear Eqs. (6) can be linear-
ized by replacing single-ion anisotropy Ean ¼
gð1� cos2 jÞ=2 with the piecewise parabolic function,
which is possible when the exchange interaction in FM
and AFM are of the same order of value. Since we are

interested in the magnetization distribution over dis-
tances larger than atomic dimensions, replace an inter-
face with a step by the ideal boundary, having reversed
the sign of the exchange interaction through it on one

side of the step. Complementing the boundary condition
presenting the density of the effective forces acting at the
interface

f7ðxÞ ¼ 7sgnðxÞJS sinðjjz¼þb=2�jjz¼�b=2Þ; ð7Þ

leads us to the following solution of the volume problem
(6):

jðx; z > 0Þ ¼ �
JS

pa
ffiffiffiffiffiffiffiffiffiffi
*JFJF

p

	
Z þN

�N

dx0K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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	 sinðwðx0ÞÞsgnðx0Þ ð8Þ

(and the analogous expression for AFM half space),
where Macdonald’s function K0ðkÞ is the Green’s
function of the Klein–Gordon equation; w ¼
jjz¼þb=2�jjz¼�b=2 the function of relative spin deviation
at the interface; sx ¼ a

ffiffiffiffiffiffiffiffiffiffi
*JF=g

q
and sZ ¼ b

ffiffiffiffiffiffiffiffiffiffi
JF=g

p
are, respectively, the ‘‘magnetic lengths’’ along
the x and z directions. From the expression (8) a 1D
equation for the function wðxÞ follows. In the case of the
equal exchange constants in FM and AFM it takes the
form

wðxÞ ¼ � p�
2JS
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ffiffiffiffiffiffi
J *J

p
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ðx� x0Þ2
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	 sinðwðx0ÞÞsgnðx0Þ: ð9Þ

Eq. (9) can be solved by the successive approxima-
tions method. For the first approximation it gives:

w1ðxÞ ¼ �p�
JS
Jn
sinðeÞ

1

p

Z
N

�x=sx
dpK0ðpÞ; ð10Þ

where e changes from �p (at JS ¼ J�) to �ðp=2Þ
ffiffiffiffiffiffiffiffi
g=J

p
(at JS ¼ J). The function

IðxÞ ¼
1

p

Z
N

�x=sx
dpK0ðpÞ

can be estimated on the different intervals of the
coordinate x values:

IE

ffiffiffiffiffiffiffiffiffiffiffiffi
sx=jxj

p
expðx=sxÞ=

ffiffiffi
p

p
; x5� sx;

ðð1� jxj=sxÞ � ðjxj=sxÞlnðjxj=sxÞÞ=p;

�sxoxo0;

ðð1þ x=sxÞ � ðx=sxÞlnðx=sxÞÞ=p;

0oxosx;

1�
ffiffiffiffiffiffiffiffiffiffi
sx=x

p
expð�x=sxÞ=

ffiffiffi
p

p
; xbsx:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð11Þ

The solution of the 2D problem can be restored by
substituting the solution of the 1D Eq. (9) into expres-
sion (8):

jðx; z > 0ÞE
1

2

JS
Jn
sinðeðJSÞÞ

	
1

p

Z
N

0

dpK0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� x=sxÞ2 þ ðz=szÞ2

q
Þ:

ð12Þ

At x ¼ 0 and zbsZ it follows from Eqs. (12) that

jpðJS=JnÞsinðeðJSÞÞ
ffiffiffiffiffiffiffiffiffiffi
z=sZ

p
expð�z=sZÞ: At large dis-

tances from the interface the system turns to the ground
state (Fig. 1).
In conclusion, a two-dimensional model is presented

for analytical description of the spin structure at the
FM/AFM interface with the atomic high step. The
domain wall is necessarily associated with the step on

the interface. The energy along with the orientation of
the domain wall is dictated by the anisotropy and
exchange parameters of the FM, AFM and through the

interface as well as by the thickness of the layers and
geometry of the interface. The distribution of magneti-
zation in the entire volume of the magnet containing the

domain wall along the interface is expressed in the
terms of the magnetic and geometrical parameters
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of the system. Decrease of the nonuniformity
of the magnetization distribution into the depth of the

magnets is exponential, and the width of the domain
wall is proportional to the exchange interaction in
the magnets and inversely related to the anisotropy

parameter.
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