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Antiferromagnetic domains in a two-dimensional Heisenberg square lattice
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An intrinsic mechanism for the antiferromagnetic domain formation has been proposed in a two-dimensional
Heisenberg square lattice. The results indicate that the competition between the magnetic anisotropy and the
dipole-dipole interaction can indeed yield both the Bloch type and Ne´el type domain structures. Using a spin
dynamics calculation with fast Fourier transformation, we further show some representative antiferromagnetic
domain patterns and their phase diagram as a function of the competition.
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The unidirectional magnetic anisotropy in a ferromag
~FM!/antiferromagnet~AFM! system, an effect discovered i
1956 and referred as exchange bias,1 has currently received
much attention because of its importance in the magn
storage industry.2–4. To understand the exchange bias o
served in experiments, it is generally believed that a cl
picture about the detailed micromagnetic structure is the
issue.5,6 Using the polarization-dependent x-ray magnetic
chroism spectra microscopy, the antiferromagnetic doma
~AFMD! in epitaxial thin films were recently observed,7,8

meanwhile their correlation to the local exchange bias w
established.9 It is further realized that the AFMD structure
are surface and interface dependent as a breaking symm
effect.10,11

Different from the well-understood ferromagnetic doma
mechanism promoted by the reduction of magnetostatic
ergy, the origin of domain formation in an AFM is no
straightforward, since the magnetostatic effect is expecte
play a less important role for an overall compensated A
system. In fact, the existence of domain in antiferromagn
was proposed by Ne´el in 1953, to explain the increase o
susceptibility of antiferromagnets with field intensity.12 Yin-
Yuan Li argued that the domain wall would owe its stabil
to the presence of lattice imperfections.13 Malozemoff men-
tioned the AFMD derived from the random exchange int
actions similar to random field.14 However, so far, theoreti
cally AFMD is still only attributed to the extrinsic origin
such as defects, meanwhile experimentally AFMD has
tracted present efforts in exchange bias system and also
demonstrated clearly.7–11 Then it is naturally interesting to
explore: Does there exist any intrinsic origins of AFMD?

In this paper, we propose that a competition between
dipole-dipole interaction and the magnetic anisotropy may
an intrinsic mechanism for the domain formation in a tw
dimensional~2D! Heisenberg antiferromagnet with an in
plane anisotropy. The key point is that these two interacti
tend to align the spins perpendicular and parallel to
plane, respectively, in this AFM system. In other words,
an antiferromagnet with the in-plane anisotropy, the dipo
dipole interaction favors the spins standing perpendicula
the plane while the anisotropy prefers them lying down
the plane. Therefore an antiferromagnet with the dipo
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dipole interaction alone prefers to align its spins perpendi
lar to the plane. As the in-plane anisotropy is turned on,
instability of the originally homogenous AFM phase starts
develop and finally leads to the domain formation. The f
lowing will indicate that the instability can be monitored b
the magnon excitation energy gap.

For a two-dimensional Heisenberg model with square
tice, the Hamiltonian is

H5J(
^ i , j &

Si•Sj1D(
i

Sz
21Udipole, ~1!

Udipole5
1

2 (
i , j

V i j F ~Si•Sj !2
3

r i j
2 ~r •Si !~r •Sj !G , ~2!

whereJ.0 represents the antiferromagnetic ordering,D the
anisotropy strength, andUdipole the dipole-dipole interaction
and V i j 5V(r i j )

23@V5(guB)2/a3, g the Lande factor,uB
the Bohr magneton,a the lattice constant#. After the
Holstein-Primakoff ~HP! transformation15 under the har-
monic approximation, the Hamiltonian becomes

H5U01H11H21H3 , ~3!

whereU0 is a constant, andH1 , H2 , H3 represent the ex-
change, anisotropy, and dipole-dipole interactions, resp
tively. In dividing the system into two sublatticesa andb, we
can obtain

H15JS(
^ l ,m&

@~al
1al1bm

1bm!2~al
1bm

11albm!#, ~4!

H252~2S21!DS (
l

al
1al1(

m
bm

1bmD , ~5!

whereal , bm label the two antiferromagnetic sublatticesa
andb:

H35Ha1Hb1Hab , ~6!

whereHa , Hb are the dipole-dipole interactions in thea, b
sublattices, respectively, whileHab is the dipole-dipole inter-
©2002 The American Physical Society06-1
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action between the two sublattices. Settingr 15x1 iy ,r 2

5x2 iy , we can rewrite the forms as

Ha52S(
i , j

V i j ai
1ai2

1

2
S(

i , j
V i j ai

1aj

2
3

4
S(

i , j
V i j S r 1

2

r 2
ai

1aj
11

r 2
2

r 2
aiaj D , ~7!

Hb52S(
i , j

V i j bi
1bi2

1

2
S(

i , j
V i j bi

1bj

2
3

4
S(

i , j
V i j S r 1

2

r 2
bi

1bj
11

r 2
2

r 2
bibj D , ~8!

Hab5
1

2
S(

l ,m
V lm~al

1al1bm
1bm!

1
1

4
S(

l ,m
V lm~al

1bm
11albm!

1
3

4
S(

i , j
V lmS r 1

2

r 2
al

1bm1
r 2

2

r 2
albm

1D . ~9!

The quantum fluctuation coming from the higher ord
terms is expected to be suppressed significantly by the
isotropy which can result in gap in excitation energy. No
the Hamiltonian ~3! can be diagonalized by the gener
(U,V) transformations with numerical calculation,16 so the
excitation energy en and the magnon energy gapD
5min@en# are obtained. It is obvious that a positiveD means
the state without quantum fluctuation is stable or metasta
otherwise the state will be unstable and turn to an inhom
geneous or domain state.

Figure 1 shows the magnon gapD as a function of the
anisotropy strengthD for 838 2D square lattice sites, with
parameters.J51, V50.01, andS51 ~quantum spin!. First
of all, it is noticed that there exists a gapD.0 for the case
with easy axis perpendicular to the plane (D,0). This is
understandable because both the anisotropy and the di
dipole interaction tend to align the spins perpendicular to
plane. Therefore it costs energyD.0 for any excited states
or any spin configuration changes. However, for an e

FIG. 1. The magnon excitation energy gap (D) as a function of
the anisotropy.
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plane anisotropy (D.0), the anisotropy tends to align th
spins in the plane while the dipole-dipole favors to get t
spins out of plane. It is the increasing of the in-plane anis
ropy that causes the energy gapD decreasing then finally
reaching to zero. OnceD50 is reached, it means that th
homogenous perpendicular ground state becomes uns
and needs to be reconstructed.

To understand what the final state of the system is
how the spin configuration looks, now we will carry out
classical spin dynamics simulation focusing on the case
easy plane anisotropy. We obtain AFMD spin configurati
by classical spin dynamics, i.e., the local effective field
determined from the gradient of the energyH i

eff

52]H/guB]Si , and$Si% is required to satisfy the Laudau
Lifshitz equation of motion EOM with the Gilbert-Kelley
form for the damping term (]/]t)Si5guBSi3@H i

eff

2h(])/(]t)Si #, where h denotes the damping paramete
This damping term is phenomenological and is included
remove the energy from the system and to ensure that
magnetic system is in a stable or metastable equilibrium a
sufficient steps. The fast Fourier transformation~FFT!
method17 which will reduceN2 algorithm to Nlog2N , has
also been accepted in the spin dynamics to calculate the
range dipole-dipole interaction local field with large sca
lattice sites.

The initial spin configuration is set to be random. Aft
the sufficient iterating calculation, the system finally reach
to a stable or a metastable spin configuration. In our simu
tion, 2563256 lattice sites are considered in the simulati
and the parameters in Eq.~1! are J51.000, V50.0252, S
51 ~classical spin!, andD adjustable. In addition we defin
f 5D/V, and M5^( i uSi

zu&. They are used to describe re
spectively the competition between the anisotropy and
dipole-dipole interaction, and the average spin compon
out of plane. It is noticed that there exist two types of an
ferromagnetic domains, i.e., the Bloch type and Ne´el type
domains, a situation very similar to the ferromagnetic d
mains in thin film systems.18 The Néel type antiferromag-
netic domains are expected for a largerf, because the strong
anisotropy forces the spins almost lying down in the pla
However, the Bloch type antiferromagnetic domains a

FIG. 2. A representative Bloch type antiferromagnetic dom
pattern with a small in-plane anisotropy. Background color fro
white to gray indicating the different in-plane spin component d
main areas.
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more favorable for a smallerf, because the week anisotrop
allows the spins out of plane with nonzeroM.

A Bloch type antiferromagnetic domain pattern forf
51.98, is shown in Fig. 2. For simplicity in illustration, th
spins displayed in this figure are chosen from one of
sublattices, and only those fromS(1), S(17), S(33), . . . , in
the lattice. The amplitude of the arrows represents the s
component in the plane. The different in-plane spin com
nent domain areas are presented by background color f
white to gray in the figure. The spins are twisted three
mensionally.

Figure 3 indicates a Ne´el type antiferromagnetic domai
pattern for a largerf 52.38. Again, the spins displayed in th
figure are chosen from one of the AFM sublattices, and
every eight sites in the sublattice. The different spin orien
tion domain areas are shown by background color from li
gray to dark gray in the figure.

As previously mentioned, it is confirmed by the simul
tion of spin dynamics that when the anisotropy becomes
small, the spins are all aligned vertical to the plane and
domains vanish. Therefore it is interesting to establish
overall phase diagram as a function off, i.e., the competition
between the anisotropy and the dipole-dipole interacti
Figure 4 shows such a phase diagram withJ51, V
50.0252. The dash lines divide the phase diagram into th

FIG. 3. A representative Ne´el type antiferromagnetic domain
pattern with a large in-plane anisotropy. Background color fr
light gray to dark gray showing the different spin orientation d
main areas.
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parts. Whenf is small, just the homogenous AFM state,
the spins are perpendicular to the plane and no domain
such a finite lattice are realized. Asf increases, the spin con
figuration with Bloch type domains is more favorable in e
ergy. Finally whenf reaches sufficient large, the spin co
figuration with Néel type domains becomes more stable.

The above discussions for 2D lattice sites can easily
generalized to an ultrathin film case compared directly w
the experiments. It should also be pointed out that 3D AFM
is still an open question. The predicted two types of AFM
still need be verified by further experiments. These AFM
studies might also open the door to the further exchange
research.

In summary, an intrinsic mechanism for antiferromagn
in a 2D Heisenberg square lattice is proposed to explain
observed AFMD experiments. We suggest that there e
two types of antiferromagnetic domains, and further sh
their phase diagram as a competition between the dip
dipole interaction and the anisotropy.
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FIG. 4. The phase diagram as a function off (5D/V). In the
figure, phaseA: the homogenous AFM state; phaseB: the Bloch
type domains; phaseC: the Néel type domains.
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