AIP Online Journal Publishing Service  |  AIP Journal Center  |  Article Purchases  |  Feedback  |  Help  |  Exit
JAP Home  Volume:   Page:  Search Browse



Article Collection:
View Collection | Help
(Click on the COLLECT ARTICLE to add an article.)

[ Previous / Next Abstract | Issue Table of Contents | Bottom of Page ]

Journal of Applied Physics -- December 15, 2002 -- Volume 92, Issue 12, pp. 7593-7598


Full Text:  [  HTML    Sectioned HTML    PDF (440 kB)   GZipped PS  ]    Order

Influence of x-ray beam spatial coherence on the diffuse scattering from multilayer mirrors

V. A. Chernov
Institute of Catalysis, Novosibirsk, Russia
Siberian Synchrotron Radiation Center, Budker Institute of Nuclear Physics, 11 Lavrentiev Prospect, Novosibirsk, Russia
V. I. Kondratiev
Siberian Synchrotron Radiation Center, Budker Institute of Nuclear Physics, 11 Lavrentiev Prospect, Novosibirsk, Russia
N. V. Kovalenko
Budker Institute of Nuclear Physics, 11 Lavrentiev Prospect, Novosibirsk, Russia
S. V. Mytnichenko and K. V. Zolotarev
Institute of Solid State Chemistry, Novosibirsk, Russia
Siberian Synchrotron Radiation Center, Budker Institute of Nuclear Physics, 11 Lavrentiev Prospect, Novosibirsk, Russia

(Received 2 April 2002; accepted 10 September 2002)

The improved spatial coherence of a synchrotron radiation beam was shown experimentally to stimulate additional diffuse scattering of x rays diffracted from x-ray multilayer mirrors. Although the large-scale (tens of microns) roughness does not affect Bragg diffraction from multilayers, its presence causes phase shifts at the wave packet front. This leads to partial decay of the coherent wave packet and creates additional diffuse scattering. Additional scattering from this mechanism was observed at angles of incidence corresponding to the Bragg and Kiessig maximum angles. The properties of this scattering caused by large-scale roughness, observed due to improved x-ray beam spatial coherence, were shown experimentally to be different from those of diffuse scattering previously reported when the incoming or outgoing angle is equal to the Bragg angle. Typical breaks in the diffuse scattering intensity due to the standing-wave effect are absent, and there is obvious asymmetry of the diffuse scattering cross section around the incoming and outgoing angles. Due to the small angle of incidence, the coherently irradiated area has very different dimensions parallel and perpendicular to the beam, which leads to the observed scattering being concentrated in the specular diffraction plane defined by the incident and reflected wave vectors. ©2002 American Institute of Physics.


doi:10.1063/1.1518131
PACS: 07.85.Fv, 42.79.Bh, 42.79.Wc, 07.85.Qe        Additional Information


Full Text:  [  HTML    Sectioned HTML    PDF (440 kB)   GZipped PS  ]    Order

References

Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
  1. A. V. Andreev, A. G. Michette, and A. Renwick, J. Mod. Opt. 35, 1667 (1988). [INSPEC]
  2. D. G. Stearns, J. Appl. Phys. 71, 4286 (1992).
  3. A. Bruson, C. Dufour, B. George, M. Vergant, G. Marchai, and Ph. Mangin, Solid State Commun. 71, 1045 (1989). [INSPEC]
  4. D. E. Savage, J. Kleiner, N. Schimke, Y.-H. Phang, T. Jankowski, J. Jacobs, R. Kariots, and M. G. Lagally, J. Appl. Phys. 69, 1411 (1991).
  5. J. B. Kortright, J. Appl. Phys. 70, 3620 (1991).
  6. O. Renner, M. Kopecky, E. Krousky, F. Schufer, B. R. Muller, and N. I. Chkhalo, Rev. Sci. Instrum. 63, 1478 (1992).
  7. J. B. Kortright and A. Fischer-Colbrie, J. Appl. Phys. 61, 1130 (1987).
  8. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988). [MEDLINE]
  9. V. Holy and T. Baumbach, Phys. Rev. B 49, 10668 (1994). [MEDLINE]
  10. T. Salditt, T. H. Metzger, and J. Peisl, Phys. Rev. Lett. 73, 2228 (1994). [MEDLINE]
  11. T. Salditt, D. Lott, T. H. Metzger, J. Peisl, G. Vignaud, J. F. Legrand, G. Grubel, P. Hoghoi, and O. Scharpf, Physica B 221, 13 (1996). [INSPEC]
  12. A. I. Volokhov, E. P. Kruglyakov, and N. I. Chkhalo, Surface 1, 130 (1999). (in Russian).
  13. S. J. Sulyaev, N. V. Kovalenko, and V. A. Chernov, Surface 1, 74 (2001) (in Russian).
  14. L. G. Parrat, Phys. Rev. 95, 359 (1954).
  15. S. K. Sinha, M. K. Sanyal, S. K. Satija, C. F. Majkrzak, D. A. Neumann, H. Homma, S. Szpala, A. Gibaud, and H. Morkoç, Physica B 198, 72 (1994). [INSPEC]
  16. D. K. G. de Boer, Phys. Rev. B 53, 6048 (1996). [MEDLINE]
  17. E. A. Kondrashkina, S. A. Stepanov, R. Opitz, M. Schimidbauer, R. Kohler, R. Hey, M. Wassermeier, and D. V. Novikov, Phys. Rev. B 56, 10469 (1997).
  18. V. A. Chernov, E. D. Chkhalo, N. V. Kovalenko, and S. V. Mytnichenko, Nucl. Instrum. Methods Phys. Res. A 448, 276 (2000). [INSPEC]

  The American Institute of Physics is a member of CrossRef.


Full Text:  [  HTML    Sectioned HTML    PDF (440 kB)   GZipped PS  ]    Order

[ Previous / Next Abstract | Issue Table of Contents | Top of Page ]


Article Collection:  View Collection   Help (Click on the COLLECT ARTICLE to add an article.)

[JAP Home] [All Online Issues: Browse | Search] [SPIN Database: Browse | Search] [HELP] [EXIT]

Copyright © American Institute of Physics
Copyright Statement : Rights & Permissions : Permitted/Prohibited Uses