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Abstract

The general situation with polarized neutron re#ectivity, di!raction on a crystalline structure and o!-specular
scattering from magnetic inhomogeneities in thin "lms is thoroughly discussed. It is argued that only a combination of
birefringence (spin-dependent refraction) of a neutron wave in the mean magnetic "eld of the "lm and spin-#ip magnetic
di!raction or scattering can lead to the splitting of the outgoing (di!racted or scattered) beam into two beams with
di!erent wave vectors and spin states. An e!ect of interplay between the lateral projection of the coherence length and the
in-plane extension of magnetic inhomogeneities (size of domains, roughness correlation length etc.) is outlined. � 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent spectacular achievements and bright
perspectives in polarized neutron (specular)
re#ectometry (PNR) applications for solution of
the variety of intriguing problems of thin-"lm mag-
netism have received exhaustive coverage in the
lecture by Felcher [1]. Among the advantages of
PNR method he pointed out its ability to probe the
magnetization depth pro"le and `unimpeachablya
deduce non-collinear magnetization arrangements
in magnetic multilayers. This was illustrated by the
famous results [2}3] (quoted earlier [5] from
Ref. [6]) on determination of the angles of 903 or
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503 between the magnetization directions in neigh-
boring Fe layers of Fe/Cr multilayers. It was also
demonstrated [1] that using supermatrix routine
[7] proposed in Ref. [8] one is able not only to
simulate the PNR data for 703 coupling angle ex-
pected at other thickness of the Cr layers [9], but
even to verify whether the magnetization of the
subsequent iron layers forms a spiral structure,
similar to that imprinted [10] into La/Fe system.

The only disadvantage of PNR mentioned in
Ref. [1] is that it is insensitive to the magnetization
component parallel to the momentum transfer
which under specular conditions is normal to the
surface. This missing information can be retrieved
from the experiments on grazing incidence neutron
di!raction (GIND) [11] carried out in addition to
PNR measurements. The other problem, which was
intentionally not touched in the overview [1], is
that PNR does not provide any direct information
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on lateral properties of the "lms, completely ignor-
es their crystalline structure and, what is more
important, possible large-scale inhomogeneities:
either in bulk of the layers, or/and at the interfaces.
The authors [1] are certainly aware of these prob-
lems [12], but left the opportunity to "ll the gap in
their review solely devoted to specular PNR.

In fact, considering PNR data, it is silently an-
ticipated that both, the nuclear and magnetic scat-
tering length density are essentially functions of
only the coordinate perpendicular to the surface,
while the layers are perfectly magnetized. The latter
assumption is rather inappropriate for any mag-
netic systems with spontaneous magnetization ex-
cept for a trivial case of full saturation in a strong
magnetic "eld parallel to the surface. Otherwise, in
order to reduce a demagnetizing "eld outside the
sample, in-layer magnetization is broken into do-
mains. Then the interpretation of the PNR data
invokes an additional hypothesis on the properties
of the domains. Indeed, if the domain size much
exceeds the lateral coherence length of a neutron
beam, then one should "rst calculate the re#ectivity
for each of these domains, assuming that, or an-
other type of magnetization arrangement in the
direction across the multilayer stack. After that,
the result should be incoherently averaged over the
domain-magnetization distribution along the sur-
face of the sample. All this, however, complicates
the modeling, and in Ref. [3] the domain distribu-
tion was "nally "xed, but the data were "tted by
varying the coupling angle.

In the case of large domains almost no o!-specu-
lar magnetic scattering should be seen, and this
would deliver a direct proof of the hypothesis [3]. If
on the contrary, an amount o!-specular magnetic
signal is recorded [13}14], then one can, in prin-
ciple, determine their size and the lateral magnetiz-
ation distribution. Quantitative analysis of both,
PNR and o!-specular scattering collected over
a broad range of incident and scattering angles was
performed [14] for the Fe/Cr multilayer similar to
that investigated in Ref. [3]. This analysis has led
the authors to an alternative model of the magnetic
state in their sample. In accordance with Ref. [14],
lateral magnetization is decomposed into a set of
domains with dimensions of only few thousands of
Angstr+ms, remaining perfectly correlated antifer-

romagnetically across the multilayer. This result
was obtained due to unambiguous experimental
re"nement of true specular non-spin-#ip re#ection
from spin-#ip di!use scattering in the range where
they are totally overlapped [16]. We shall see, that
otherwise separation of non-spin-#ip signal from
spin-#ip scattering does not always make problems
due the e!ect of `autoseparationa in space, as ob-
served in Refs. [5,17,18]. Here it is only necessary to
underline that for this separation, one needs more
than only a Zeeman splitting of the neutron spin
states in a magnetic "eld. O!-specular scattering
[5,17,18] absolutely demands a cause by which the
translational symmetry in lateral direction is viol-
ated on the scale smaller than the lateral projection
of the coherence length. One of the causes can be
the formation of magnetic domains [19] of a
proper size.

2. From SchroK dinger equation to Larmor precession

Let us "rst guide the initial polarization vector
P
�

in the external magnetic "eld H(r) from the
polarizer to the sample. The coherence length l

�
of

a monochromatic neutron beam is usually esti-
mated via the uncertainty principle as l

�
&1/�k,

where �k"(2�/�)��, � is the wave length and
�� is the angular divergence de"ned by the col-
limation conditions. Typically, l

�
&10�}10� As .

However, this value is related to the coherence
across the beam, while at low angles of incidence
�
�
;1, an uncertainty in the lateral projection

of the incoming wave vector is proportional to
sin �

�
, and the lateral projection of the coherence

length l
��
&l

�
/�

�
<l

�
may reach a scale of mil-

limeters [21]. At a scale smaller than l
��

one can use
the plane wave approximation [20] for the incom-
ing neutron and should solve the SchroK dinger
equation

���#k�
�
!(2m/��)<K (r)���(r)�"0, (1)

where ��(r)� is two-component vector of spin
states, k

�
"2�/�, and the interaction operator

<K (r)"<
�

(r)!�( B(r) (2)

has 2�2 matrix representation in spin space. The
"rst term describes the interaction with nuclei (unit
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matrix for spinless nuclei is omitted), while
the second one corresponds to the magnetic part of
the interaction: B(r) is magnetic "eld, �("	� is
the neutron magnetic moment operator, 	"
	

�
,

	
�

is the nuclear magneton, 
"!1.91, �
�
�"s( is

the neutron spin operator, �"���,��,���, �� are the
Pauli matrices, and outside of the sample
B(r)"H(r).

Following customary procedure in re#ec-
tometry, one should "nd solutions of Eq. (1) in the
free space above the "lm and inside the substrate
and match them with solutions inside the "lm.
In the "rst approximation, it is assumed that
B(r)+B(z) depends on the only coordinate z, per-
pendicular the surface normal. Then Eq. (1) is easily
solved. However, the external "eld H(r) is often
a function of all three coordinates. This brings
enormous di$culties to "nding an exact solution of
Eq. (1). Nonetheless, due to the smooth variation of
H(r) on a scale of l

�
, one can employ a quasi-

classical approach and neglect very small devi-
ations of the incoming and re#ected beams in the
external "eld gradients. These deviations are cer-
tainly di!erent for di!erent spin components and
result in the Stern}Gerlah e!ect which is observed
at high-"eld gradients [22], but can be neglected
(except for that part of the neutron beam which hits
edges of a sample, where the gradients cause an
appreciable e!ect). Then, in Eq. (1), one can ap-
proximate H(r)+H(�), where �"(k

�
r)/k

�
)0,

k
�

is the incident wave vector, and r is a radius
vector pointing from the position of the sample to
the neutron beam source. At shallow incidence
�+x, where the x-axis is directed along the incom-
ing (re#ected) beam projection onto the surface
plane. Under these circumstances the initial spin
state vector, ��

�
�"��

�
(�)� is developed into the

vector

���(0)�"SK (�,�)��
�
�, (3)

SK (�,�)"¹� exp�i�
�

�
d���k�

�
!p( �

�
(��)�, (4)

where ¹� is the `chronologicala operator and
��p( �

�
"2m�( B(��) is a function of the coordinate

along the beam trace. Like any 2�2 matrix, SK (�)
can be decomposed over orthogonal set of matrices

including three Pauli matrices and the unit matrix
[23]:

SK (�,�)"S
�

(�)#(�b)S
�
(�), (5)

where S
�
"(S�#S	)/2 and S

�
"(S�!S	)/2,

S� are the eigenvalues of the SK -matrix, which is
diagonal in the representation with the z-axis
pointing along the 3D unit vector b. Due to
the unitarity of the S-matrix its elements are not
independent and S

���
obeys the equation

�S
�
��#�S

�
��"1. Therefore, one can de"ne

S
�

(�)"cos � and S(�)"i sin �, (6)

where the phase �"�(�) is expressed via the
eigenvalues S�(�).

These eigenvalues and components of the vector
b, or directly all four elements of the SK -matrix, can
easily be computed numerically for any con"gura-
tion of the "eld, if one represents the integral
in Eq. (4) as a "nite sum of integrals over ranges
of �

�
)�)�

�	�
(1)l)¸,�

�
"0,�

�
"�), along

which B(�) does not signi"cantly change direction.
Then,

SK (�)"SK
�
(0,�

�
)SK

�
(�

�
,�

�
)2SK

�
(�

�	�
,�). (7)

At each of those intervals a quanization axis
z
�

can be chosen parallel to the direction
b
�
"B

�
/�B

�
� of the local "eld B

�
"B(�

�
), and then

SK
�
"�

�
�(e�(�

� #e�(	
� )#(�b

�
)(e�(�

� !e�(	
� )�, (8)

where ��
�

+�k�
�
Gp�

�
(�

�
)(�

�	�
!�

�
).

The Zeeman splitting of the neutron spin states
in the external "eld is usually rather small with
respect to the neutron kinetic energy. Con-
sequently, the eigenvalues $p�

�
(�

�
) of the ope-

rator p( �
�

(�
�
) are also rather small, and

�k�
�
Gp�

�
(�

�
)��
�+kG(�

�
/2v), where �

�
"	B

�
/� is

the Larmor frequency of neutron spin precession in
the "eld B

�
, and v"�k

�
/m is the neutron velocity.

Then Eq. (8) is substantially simpli"ed, and

SK
�
"cos �M

�
/2#i(�b)sin �M

�
/2, (9)

where �M
�
+�

�
(�

�	�
!�

�
)/v. As soon as the S-

matrix is computed, one can follow an evolu-
tion of the incoming polarization vector P

�
"P

�
(0),

which is de"ned as an expectation value P
�
"

���(0)�s���(0)�, averaged over the spin states
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produced by the polarizer. Taking into account Eq.
(3) one has

P
�
"�

�
Tr�SK (�)�(

�
(�)SK �(�)��"�

�
Tr��(

�
(0)��, (10)

where �(
�
"�

�
��

�
�"�1#(P

�
�)�/2 is the initial

density matrix and P
�
"P

�
(�) is the initial polar-

ization. Then, the initial density matrix �(
�
"�

�
(�)

is transformed into the matrix �(
�
"��

�
���

�
�"

�1#(P
�
�)�/2 with

P
�
"b(P

�
b)#[P

�
!b(P

�
b)]cos �#[b�P

�
]sin �.

(11)

This equation corresponds to the in-
homogeneous classical precession of the polariza-
tion vector P

�
around the vector b. The direction of

this vector, as well as the total precession phase
�(�), should be found via the routine proposed
above. The result of Eq. (11) should be averaged
over the "eld variation across the beam. This would
result in depolarization.

As a conclusion one should admit that the Zee-
man splitting of the spin states, in the local (on
a scale of l

�
) magnetic "eld, results in a rather small

di!erence in the wave vectors k
�

"�k�
�
Gp�

�
(�)��
�

of the neutron wave components with the positive,
or negative spin projections onto the local "eld
direction. The associated slight di!erence in the
phase velocities v

�
"�k

�
/m and coherent transi-

tions between those components in a smoothly
varying "eld are resumed into the Larmor pre-
cession, but not into the splitting of the beam in
space. All the consideration above can, word by
word, be repeated for the re#ected or scattered
wave ��(r�)�, given by the equation

��(r�)�"��(��)�"SK (��,�)���(0)�, (12)

similar to Eq. (3), in which ���(0)� is substituted by
the vector of spin states in the re#ected (scattered)
wave just above the surface, k

�
is changed for the

outgoing wave vector k�
�

, ��"(k�
�
r�)/k�

�
*0 and r�

pointing from the sample position to the direction
of observation.

3. Refraction, re6ection and transmission

The situation is changing drastically at the sur-
face, which causes rapid variation of the potential

<K (r) along the z-coordinate normal to the surface
and almost perpendicular to the beam at shallow
incidence. If this variation occurs on a scale much
smaller than l

�
then the potential gradient in this

direction can be considered as an in"nite and this
corresponds to the de"nition of an ideal surface.
Such a surface can be regarded as ideally #at, if on
the scale greater than l

��
, the interaction operator in

Eq. (1) is <K (r)+<K
�

(z). Then, due to the transla-
tional invariance of Eq. (1) along the surface and
negligible splitting in the wave numbers $k

�
, the

solution of Eq. (1) just above the "lm (z(0) is to be
written as

��(r)�"exp(i��)�e����#RK e	�������(0)�, (13)

where � is the in-plane (conserving) projection
of wave vector k, � is the lateral coordinate,

p
�
"�k�

�
!�� is the normal to the surface com-

ponent of the wave vector k
�

, RK is the re#ectance
matrix, which transforms two-spin components of
the incoming wave function ��(0)� into the compo-
nents of the re#ected wave ��(0)�"RK ��(0)�. In-
side the material the exponential factor of the wave
function ��(r)� is exactly the same, as in Eq. (13),
while the vector of spin states ��(0)� at the front
face of the "lm is transformed into the vector

�(z)�"SK
�

(z,�)��(0)�, (14)

of states inside the "lm (z'0). The SK
�

-matrix has,
however, a form di!erent from that in Eq. (4). In
the simplest case of a homogeneous medium
<K
�

(z)"<K
�

at z'0, from Eqs. (1), (2), (13) and (14)
it immediately follows that the SK

�
-matrix is

written as

SK
�

(z,�)"tK e��( ���#r( e!i�( (z), (15)

where �( (z)"p( z. The `transmissiona, tK , and `re-
#ectiona, r( , operators are to be found from boun-
dary conditions, while the wave vector operator
p("�p�

�
!p( �

�
is determined by Eqs. (1), (2), where

p( �
�
"p�

�
#p( �

�
, ��p( �

�
"2m<K

�
, ��p( �

�
"2m�( BM , BM "

H#4�M is the mean magnetic "eld, M is the mean
magnetization (in-plane component), p�

�
"4�nb

�
,

and nb
�

is the nuclear scattering length density.
The operator p(

�
is diagonal in the representation

with the quantization axis along BM , and its eigen-
values are p�"�p�

�
!p�

�
Gp�

�
, where p�

�
"

4�nb
�

, and nb
�

"(m/2�)�BM is the magnetic
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scattering length density of the homogeneous
"eld BM .

We see that the presence of the sharp interface
produces, in contrast to the smooth "eld variation,
a dramatic e!ect at small p

�
. The wave at the

surface is birefringent, and the two di!erent spin
components have di!erent wave vector projections
normal to the surface, while their lateral projections
are equal. This situation is just opposite to the
Larmor precession case. If, in particular, one of the
normal projections becomes zero and the corre-
sponding spin component is totally re#ected then
the beam inside the material is completely polariz-
ed along the mean-"eld direction.

The continuity conditions for the wave function
at the front interface result in a pair of equations in
a customary form

1#RK "tK #r( and (1!RK )p
�
"(tK !r( )p( . (16)

To complete the set of equations one, as usual,
needs to match the wave function at the interface
with that in the substrate. If it is non-magnetic,
then the wave function in the substrate is
�

	
(z)�"¹K exp�ip

	
(z!z

	
)�, where ¹K is the trans-

mittance matrix, z
	

denotes an interface coordinate,
p
	
"�p�

�
!p( �

�	
��
�, and p(

�	
is the critical wave

number of the substrate material. A "nal pair of
equations also has a well-known form

¹K "tK e��(#r( e	��( and ¹K p
	
"(tK e��( #r( e	��( )p( , (17)

where �( "p( d, and d is the layer thickness.
Due to the fact, that all the matrices in Eqs.

(15}17) commute, they are diagonal in the repres-
entation with the quantization axis along the vector
b
�
"BM /�BM � and this set of equation has a rather

simple solution:

R�"�	�
�

�(p
�
!p�)(p�#p

	
)

#(p
�
#p�)(p�!p

	
)e�����,

�
�

"(p
�
#p�)(p�#p

	
)#(p

�
!p�)(p�!p

	
)e���( �,

t�"

2p
�

(p�#p
	
)

�
�

; r�"

2p
�

(p�!p
	
)e����

�
�

, (18)

¹�"4p
�
p�/�

�
, ��"p�d and d in the "lm

thickness.
If d;l

�
, then due to the reasons discussed above,

the beam transmitted into the nonmagnetic thick

substrate is not split, while inside the "lm there
exist a pair of transmitted waves with di!erent
wave vectors p

�
and, correspondingly, a pair of

re#ected ones. These waves are split in the recipro-
cal, but not in the real space. The eigenvalues R

�
,

¹
�

, t
�

and r
�

of corresponding matrices are sim-
ply the amplitudes of either re#ected or transmitted
waves with positive, or negative spin projections
onto the vector b

�
.

The situation is slightly more complicated for
multilayers with N layers whose magnetization is
not parallel to each other. In this case one should
introduce a set of S


�
-matrices similar to Eq. (15),

but with the matrices tK



and r(


, �(



(z)"p(



(z!z


	�
)

marked by the index 1)n)N numerating the
layers. Here z


	�
is the coordinate of the interface

between (n!1)	
 and nth layers, z
�
"0, p( �



"

p�
�
!p( �


�
and p(

�

is a critical wave number matrix

for nth layer.
Matching S


�
and S
��

�
matrices and their de-

rivatives at the interfaces between neighboring
layers, one derives a chain of coupled equations for
the matrices tK



and r(



:

tK


e��
#rL



e	��
"tK


��
#r(


��
,

(tK


e��( 
!r(



e	��( 
)p(



"(tK


��
!r(


��
)p(


��
, (19)

where �(


"p(



d


, and d



is the nth layer thickness.

A solution of these equations can be found via
the recursion Parrat procedure, or equivalently, via
the supermatrix formalism [8,7]. It should be no-
ticed that the matrices tK



, r(



and p(



are, in general,

not commutative, i.e. tK



and r(



are not diagonal in
the representation with the quantization axis paral-
lel to the in-layer "eld BM



. However, if the partial

SK

�

-matrix is written in a form similar to Eq. (5):

SK

�

"S

�

#(�S

�

) (20)

and the direction of the (complex) vector S

�

is
found (via the supermatrix routine), then the SK


�
-

matrix is diagonal in the coordinate system with
the quantization axis parallel to this direction, dif-
ferent for each layer and varying with p

�
. This

means, that re#ection and transmission are accom-
panied by spin-#ip transition between the states

with the eigenvalues p�



"�p�
�
!p�

�

Gp�

�

of the

wave vector operator p(


. As a result of that, as well

as of the interference between transmitted and
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re#ected waves (within the coherence length), the
expectation value P



"��s��



, i.e., the in-layer

`polarizationa undergoes rather complicated
evolution, which may be called `quantum Larmor
precessiona, but it does not resemble its classical
analogue guided by Eq. (13).

Each of the matrices tK



and rL



can be represented
similar to Eq. (20) and, in particular,

RK "R
�
#(�R), (21)

where R
�
"Tr�RK /2� and R"Tr��RK /2� are to be

found via the supermatrix routine [8,7].
The re#ectance matrix RK transforms the inci-

dent vector of states ��(0)� into the "nal vec-
tor ���(0)�"RK ��(0)�, which is then guided to
the point of observation by Eq. (12), and
���(��)�"SK (��)RK SK (�)�

�
�. The polarization vec-

tor P
�
(0)"��s��

�
of the re#ected beam just above

the surface, but beyond the interference zone (co-
herence length) with the incoming beam, can be not
collinear with the polarization P

�
(0) and with the

external "eld. Then it experiences the Larmor pre-
cession, on the way to the analyzer accounted for in
the equation

P
�
(��)"

1

2

Tr��(
�
(�)RK ��(��)RK �

Tr��(
�
(�)RK �RK �

, (22)

where �(��)"SK �(��)�SK (��).
In fact, one can simply calculate the polarization

vector P
�
(0) and then rotate it around the unit

vector b� for the angle �� according to Eq. (11),
but for the neutron path from the sample to the
analyzer.

The ratio P
�
(0)"P(0)/R(0) in Eq. (22) contains

in the denominator the re#ectivity

R"��R
�
��#�R���#2 Re�(P

�
R)RH

�
�

# Im�(P
�
[R�RH])�, (23)

for the case with no polarization analysis. The
nominator in Eq. (22) has the form

P(0)"P
�
��R

�
��!�R���#2 Re�R[RH

�
#(P

�
RH)]�

# 2 Im�[P
�
�R]RH

�
!�

�
[R�RH]�. (24)

This equation contains three di!erent types of
terms. The "rst one corresponds to the component
of the re#ected polarization vector parallel to the

vector P
�
, while the others are either parallel or

perpendicular to the vector R, and in general, are
not collinear with the incoming polarization. These
components will be precessing in the "eld guiding
the polarization to the analyzer, and "nally one
may detect some spin-#ip signal, which originated
not in the re#ection process, but totally due to this
precession. It is important to note that among
di!erent terms in Eq. (24) there are two which are
independent of the incident polarization and de-
scribe part of the polarization arising at re#ection.
The most interesting is the last one, which is absent
at a collinear magnetization arrangement, but
which should be present if [b



�b

�
]O0.

In the collinear case R
�
"�R

�
#R

	
�/2 and the

vector R"b
�
�R

�
!R

	
�/2, where R

�
"�R

�
� exp(i�

�
)

are complex eigenvalues of the re#ectance matrix
RK , b

�
"BM /�BM � is not necessarily collinear with P

�
.

Indeed, in the case of domains larger than the
lateral projection of the coherence length one
should be able to calculate the re#ectivity for each
of them, and then average over the lateral distribu-
tion of the magnetization direction b

�
. The re#ec-

tivity R and the vector P(0) for each of domains
looks quite simple:

R"�
�
��R

�
��(1#P��

�
)#�R

	
��(1!P��

�
)�, (25)

P(0)"�
�
�b

�
[�R

�
��(1#P��

�
)!�R

	
��(1!P��

�
)]

# 2�R
�

��R
	

�[P� cos �!P � sin �]�, (26)

where P��
�
"(P

�
b
�

)"P
�

cos 
 is the incoming polar-
ization vector projection onto the direction b

�
,

P�"[P
�
!b

�
(P

�
b
�

)] is the a component of P
�

per-
pendicular to b

�
, P �"[P

�
�b

�
] is a vector perpen-

dicular to both the incoming polarization and the
"eld, and �"�

�
!�

	
is a phase shift. The polar-

ization at re#ection P
�

is then de"ned as a ratio
P
�
"�P(0)��/�R�� of the quantities given in

Eqs. (25) and (26) averaged over the angle 
.

4. Di4raction and o4-specular scattering

All the consideration above was essentially based
on the assumption that the domain size is greater
than l

��
. This assumption should be proven by ab-

sence of scattering in o!-specular directions. If it is
detected then one may expect that there exists
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a certain amount of small domains or of other
magnetic inhomogeneities smaller than l

��
. A

presence of domains can also a!ect the grazing
incidence magnetic di!raction on the crystalline
structure.

If o!-specular scattering is small with respect to
the incoming intensity, then it can be regarded as
a perturbation and accounted for in the framework
of the distorted wave Born approximation
(DWBA) using the reference wave functions from
the previous Section. Due to the perturbation inter-
action potential operator VK (r)"<K (r)!<K

�
(z),

where <K
�

(z)"�<K (r)�� is operator averaged over
the lateral coordinate �, the initial state with the
wave vector k�"���;p�

�
� may be scattered into the

state with the wave vector k�"���;p�
�

�, where p���
�

are de"ned by the same equations as p
�

with p
�

substituted by the normal to the surface compo-
nents p���

�
of the initial or "nal wave vectors

k���
�

"�����;p���
�

�. These scattering processes may be
accomplished by the transitions between neutron
spin states.

Within the "rst order of DWBA the scattering
amplitude fK (k�,k�) (operator in spin space) is propor-
tional to the matrix element: ����VK (�, z)����,
where the vectors ������"exp(i�����)����(z)� and
����(z)� depend only on the coordinate z normal to
the surface. Due to this factorization, the scattering
amplitude is written as

f (Q
��

;p�, p�)"�(Q
��

)��
�
�FK ����

�
�, (27)

where Q
��
"��!�� is the lateral momentum trans-

fer, �(Q
��

)"�

e�Q��

�
 , �


are the lateral coordinates

of atoms, and at a
�
p���
�

;1, FK ��"FK (Q
��

;p�, p�) is de-
"ned as

FK ��"�


SK �
�

(z

)FK (Q

��
)SK �

�
(z


). (28)

Here, SK
�

(z)-matrices are given in Eq. (15),
z

"a

�
j are atomic coordinates and a

�
is the unit

cell constant in the direction perpendicular to the
surface, FK (Q

��
)"FK (Q

��
,0)+FK (Q), and

FK (Q)"F
�

(Q)#(�m
�

)F
�

(Q). (29)

In Eq. (29), F
�

"b
�
F

�
(Q) is a product of the

nuclear scattering length b
�

and the nuclear struc-
ture factor F

�
(Q), while F

�
"b

�
F

�
(Q) is a prod-

uct of the magnetic scattering length b
�

and the

magnetic cell form factor F
�

(Q), m
�

"m!e(em)
is the component of the unit vector m"M/M per-
pendicular to the momentum transfer direction
given by the unit vector e"Q/�Q�.

Substitution of Eq. (15) into Eq. (28) yields

FK ��"�
�
�G

��
[1#�b]FK (Q)[1#�b]

#G
�	

[1#�b]FK (Q)[1!�b]

#G
	�

[1!�b]FK (Q)[1#�b]

#G
		

[1!�b]FK (Q)[1!�b]�, (30)

where G��"G���� , 	"$, �"$, and

G����"t��t��g

��#r��r��g����#r��t��g�
��#t��r��g
��� ,

g

��"
exp[i(���#���)]!1

i(���#��� )
,

g
���"
exp[i(���!���)]!1

i(���!��� )
,

g����"g

�� exp[!i(���#��� )],

g�
��"g
��� exp[!i(���!��� )], (31)

with ������� "p������ a
�

;1, ������� "p������ d.
The Laue functions g



��
correspond to non-

spin-#ip processes in which the wave with # or
! spin projection is transmitted into the "lm,
scattered by inhomogeneties, and the scattered
wave is transmitted out of the "lm. The functions
g��
��

correspond to non-spin-#ip transitions be-
tween re#ected waves. If d/a

�
<1, then each of

these functions reveal two sharp maxima at
p�
�

#p�
�

"0. Two other functions, g


��

an g��
��

,
reach their maximum values d/a

�
at p�

�
#p�

�
cor-

responding to spin-#ip scattering in o!-specular
directions. The other Laue functions g
��� and
g�
�� correspond to the processes with transitions
between transmitted and re#ected waves. They
show maxima at p�

�
!p�

�
(non-spin-#ip), or at

p�
�

!p�
�

(spin-#ip).
Calculating further products of the Pauli ma-

trices in Eq. (30) one has

FK ��"F
�
#(F�), (32)

where F
�
"Tr�FK ��/2� and F"Tr��FK ��/2�.

If the coordinate system is "xed by three ortho-
gonal vectors b"BM /�BM �, b

�
"m

�
!b(m

�
b), and
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b
�
"[b�b

�
], then the vector F is decomposed as

follows:

F"F
��
b#F

�
b
�

#F
�
b
�
. (33)

Finally, the zero matrix element F��
�

and the com-
ponents of the vector F�� can be written explicitly as

F
�
"�

�
�(G

��
#G

		
)F

�

#(G
��

!G
		

)F
�

(bm
�

)�,

F
��
"�

�
�(G

��
!G

		
)F

�

#(G
��

#G
		

)F
�

(bm
�

)�,

F
�

"�
�

(G
�	

#G
	�

)F
�

,

F
�
" �

�
(G

�	
!G

	�
)F

�
, (34)

where (bm
�

)"(bm)!(eb)(me). From these equa-
tions it follows that the amplitudes F

�
and F

��
in

Eq. (33) do not contain terms responsible for
transitions between the states with p

�
and p

	
,

while the other two, F
�

and F
�
, correspond to

purely magnetic scattering and provide such
transitions.

Substitution of Eq. (33) into the de"nition of the
polarization and scattering cross section

d�
d�

"�� f (k�,k�)���,

d�
d�

P"� f�(k�,k�)s f (k�,k�)�, (35)

immediately yields the "nal equations which be-
come identical with Eq. (23) and (24), if R

�
and

R are substituted by F
�

and F, respectively, and the
additional factor ��(Q

��
)�� is introduced.

If the periodical crystalline lateral structure
is regarded as a perturbation, then ��(Q

��
)��"

(2�)�/s
�
N

�
�(Q

��
!�), where � is the in-plane recip-

rocal vector, s
�

is the area of the unit cell cross
section by the "lm surface, N"S

�
/s

�
and S

�
is the

foot print of the beam.
In the saturated state and at the incident polar-

ization parallel to the magnetization any spin-#ip
signal and, correspondingly, splitting of the di!rac-
ted beam is totally due to the local atomic "eld
components perpendicular to the mean magnetic
"eld direction. Then the e!ect is usually small due
to the atomic magnetic form factor F

�
(�O0);1

[11]. All the considerations above are actually
valid for a large domain, and in multidomain sam-
ples, the scattering cross section and polarization
should be averaged over domains. This will dra-
matically increase the spin-#ip signal at specular
re#ection and at di!raction, but it does not increase
a contribution from the two last terms in Eq. (33)
responsible for the spatial splitting of the di!racted
beam. If, on the contrary, there exists an amount of
small domains, then the splitting is determined by
the mean magnetic "eld, BM averaged over domains.
It may be slightly smaller, than at saturation, but
the transitions between the states with p

�
and

p
	

are more e$ciently provided by the domain
"eld components perpendicular to BM , than by the
local atomic scale "elds [11]. In this case, magnetic
scattering contributes not only into the true di!rac-
tion, but rather to di!use scattering concentrated
around the Bragg peak positions. In particular,
relatively small domains (on a scale of large lateral
coherence length) create low angle scattering mani-
fested in o!-specular directions. This can, in
principle, explain the experiments [17}18]. Corre-
sponding equations have exactly the same structure
as the equation for the Bragg di!raction discussed
above. The only di!erence is that the �(Q

��
!�)

function should be substituted for the lateral do-
main form factor [16] ���(Q

��
)���

�����	
.
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