Subject View: 
HomePublicationsSearchMy AlertsMy ProfileHelp
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
8 of 18 Result ListPreviousNext

This document
SummaryPlus
Article
Journal Format-PDF (443 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Surface Science

Volume 495, Issues 1-2
10 December 2001
Pages 68-76

DOI: 10.1016/S0039-6028(01)01504-7
PII: S0039-6028(01)01504-7

Copyright © 2001 Elsevier Science B.V. All rights reserved.

Morphology of epitaxial metallic layers on MgO substrates: influence of submonolayer carbon contamination

M. Rickart, B. F. P. Roos, T. Mewes, J. Jorzick, S. O. Demokritov, and B. Hillebrands

Fachbereich Physik and Forschungs- und Entwicklungsschwerpunkt Materialwissenschaften, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 56, D-67663 Kaiserslautern, Germany

Received 30 May 2001;  accepted 6 August 2001.  Available online 25 September 2001.

Abstract

By investigating the epitaxial growth of Ag(0 0 1) and Au(0 0 1) films and Fe/Ag(0 0 1) and Fe/Au(0 0 1) layered systems on MgO(0 0 1) the influence of carbon contamination of the MgO surface on the morphology of the obtained films is studied. A new technique for the preparation of carbon-free MgO(0 0 1) surfaces using ion beam oxidation is reported. This technique takes advantage of the high chemical activity of dissociated low energy oxygen atoms, which removes the carbon contamination from the MgO surface as confirmed by Auger electron spectroscopy. It is shown that metallic layers grown on carbon-free MgO substrates demonstrate reduced roughness, improved crystallographic quality and enhanced surface magnetic anisotropy compared to those grown on carbon contaminated substrates.

Author Keywords: Molecular beam epitaxy; Ion bombardment; Surface structure, morphology, roughness, and topography; Carbon; Magnesium oxides; Metal¯metal magnetic thin film structures

Article Outline

1. Introduction
2. Experimental procedure and preparation of the substrate surface
3. Results and discussion
3.1. Properties of the MgO substrates
3.2. Growth of the metallic non-magnetic layers
3.3. Fe films grown on Ag and Au layers
4. Conclusion
Acknowledgements
References


(7K)
Fig. 1. Auger electron spectra of MgO surfaces. Curve (a) shows a pre-heated substrate, (b) annealed at 600 °C for 3 h and (c) a substrate treated with an oxygen ion beam. No carbon contamination was detected in spectrum (c). All spectra are normalized to the Mg peak for comparison and vertically shifted for clarity.

(7K)
Fig. 2. Mean electron scattering coherence length obtained by evaluation of the LEED spot width of the MgO substrates, the Ag and Au layers and the Fe films for the different preparation methods of independent substrates. The vertical broken line separates regions with different substrate pre-treatment: annealed and pre-heated substrates.

(26K)
Fig. 3. AFM images of MgO substrates, (a) pre-heated substrate (type A), RMS=0.7 nm, (b) oxygen ion beam treated substrate (type C), RMS <0.1 nm. The insets show the corresponding LEED pattern at an energy of 107 eV.

(31K)
Fig. 4. RHEED images of a 50 nm Ag buffer layer grown onto the MgO substrate (a) without and (b) with a 1 nm Fe intermediate layer. The incident beam with the energy of E=15 keV was directed along the [1 1 0]-direction of the MgO substrate.

(28K)
Fig. 5. STM image of an Ag layer demonstrating monatomic steps. The inset shows for Ag a characteristic (1×1) LEED pattern.

(43K)
Fig. 6. STM images of an Au layer showing the (5×20) reconstruction and monatomic steps. The inset shows a LEED pattern at 75 eV of the (5×20) reconstruction.

(76K)
Fig. 7. (a) LEED pattern (E=180 eV) of a 3 nm thick Fe film, epitaxially grown on Au, (b) STM image of the same film showing islands, (c) large scale STM image of the same Fe film, (d) large scale STM image of a 3 nm thick Fe film, epitaxially grown on Ag. Note that in (c) the direction [1 0 0] on Fe corresponds to [1 1 0] on Au.

(6K)
Fig. 8. Evaluation of the uniaxial out-of-plane surface anisotropy constants in dependence of the carbon concentration. Spin wave frequencies were measured by means of Brillouin light scattering spectroscopy and the anisotropy constants calculated.

References

1. M.A. Herman and H. Sitter In: M.B. Panish, Editor, Molecular Beam Epitaxy, second ed., Springer, Berlin (1996).

2. J.A.C. Bland and B. Heinrich, Editors, Ultrathin Magnetic Structures, vols. I and II, Springer, Berlin (1994).

3. U. Gradmann , Magnetism in ultrathin transition metal films. In: K.H.J. Buschow, Editor, Handbook of Magnetic Materials, vol. 7, North-Holland-Elsevier, Amsterdam (1993).

4. P. Grünberg, S. Demokritov, A. Fuss, R. Schreiber, J.A. Wolf and S.T. Purcell J. Magn. Magn. Mater. 104¯107 (1995), p. 1734.

5. T. Leeb, M. Brockmann, F. Bensch, S. Miethaner and G. Bayreuther J. Appl. Phys. 85 (1999), p. 4964. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

6. J.J. Krebs, B.T. Jonker and G.A. Prinz J. Appl. Phys. 61 (1987), p. 2596. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

7. Y.C. Lee, P. Tong and P.A. Montano Surf. Sci. 181 (1987), p. 559. Abstract-INSPEC |  $Order Document

8. C. Li, R. Wu, A.J. Freeman and C.L. Fu Phys. Rev. B 48 (1993), p. 8317. Full-text via CrossRef

9. F. Didier and J. Jupille Surf. Sci. 307¯309 (1994), p. 587. Abstract-INSPEC | Abstract-Compendex | Abstract |  $Order Document

10. G. Gewinner, J.C. Peruchetti, A. Jaegle and R. Riedinger Phys. Rev. Lett. 43 (1979), p. 935. Abstract-INSPEC |  $Order Document

11. J.B. Zhou, H.C. Lu, T. Gustafsson and P. Häberle Surf. Sci. 302 (1994), p. 350. Abstract-INSPEC | Abstract-Compendex | Abstract |  $Order Document

12. G. Fahsold, A. Priebe, N. Magg and A. Pucci Thin Solid Films 364 (2000), p. 177. SummaryPlus | Article | Journal Format-PDF (163 K)

13. C. Duriez, C. Chapon, C.R. Henry and J.M. Rickard Surf. Sci. 230 (1990), p. 123. Abstract-INSPEC |  $Order Document

14. T. Suzuki and R. Souda Surf. Sci. 445 (2000), p. 506. SummaryPlus | Article | Journal Format-PDF (217 K)

15. F. Klinkhammer, Ch. Sauer, E.Yu. Tsymbal, S. Handschuh, Q. Leng and W. Zinn J. Magn. Magn. Mater. 161 (1996), p. 49. Abstract-INSPEC | Abstract-Compendex |  $Order Document

16. L.W. Guo, T. Hanada, H.J. Ko, Y.F. Chen, H. Makino and T. Yao Surf. Sci. 445 (2000), p. 151. SummaryPlus | Article | Journal Format-PDF (561 K)

17. S.S. Perry, H.I. Kim, S. Imaduddin, S.M. Lee and P.B. Merril J. Vac. Sci. Technol A 16 6 (1998), p. 3402. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

18. J. Dekoster, S. De Groote, T. Kobayashi and G. Langouche J. Magn. Magn. Mater. 148 (1995), p. 93. Abstract-Compendex | Abstract-INSPEC | Abstract |  $Order Document

19. S.M. Jordan, J.F. Lawler, R. Schad and H. van Kempen J. Appl. Phys. 84 (1998), p. 1499. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

20. M. Weiler, K. Lang, E. Li and J. Robertson Appl. Phys. Lett. 72 (1998), p. 1314. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

21. M.P. Seah In: D. Briggs and M.P. Seah, Editors, Practical Surface Analysis, Wiley, New York (1983), p. 181. Abstract-Compendex |  $Order Document

22. S. Demokritov, E. Tsymbal and J. Phys Cond. Mat. 6 (1994), p. 7145. Abstract-Compendex | Abstract-INSPEC |  $Order Document

23. B. Hillebrands, Brillouin light scattering from layered magnetic structures, Topics Appl. Phys. 75 (2000) 174.

24. M. Henzler Appl. Surf. Sci. 11/12 (1982), p. 450. Abstract-INSPEC |  $Order Document

25. H.N. Yang, G.C. Wang and T.M. Lu Diffraction from Rough Surfaces and Dynamic Growth Fronts, World Scientific, Singapore (1993).

26. P.W. Palmberg, T.N. Rhodin and C.J. Todd Appl. Phys. Lett. 11 (1967), p. 33.

27. T. Suzuki, S. Hishita, K. Oyoshis and R. Souda Surf. Sci. 442 (1999), p. 291. SummaryPlus | Article | Journal Format-PDF (351 K)

28. P. Etienne, J. Massies, S. Lequien, R. Cabanel and F. Petroff J. Crystal Growth 111 (1991), p. 1003. Abstract-INSPEC | Abstract-Compendex |  $Order Document

29. M.A. van Hove, R.J. Koestner, P.C. Stair, J.P. Biberian, L.L. Kesmodel, I. Bartos and G.A. Somorjai Surf. Sci. 103 (1981), p. 189. Abstract-INSPEC |  $Order Document

30. D.E. Bürgler, C.M. Schmidt, J.A. Wolf, T.M. Schaub and H.-J. Güntherodt Surf. Sci. 366 (1996), p. 295. Abstract | Journal Format-PDF (916 K)

31. M.L. Neel J. Phys. Rad. 15 (1954), p. 376.

32. P. Bruno J. Phys. F: Met. Phys. 18 (1988), p. 1291. Abstract-INSPEC |  $Order Document

33. B. Heinrich, Z. Celinski, J.F. Cochran, A.S. Arrott and K. Myrtle J. Appl. Phys. 70 (1991), p. 5769. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

Corresponding author. Tel.: +49-631-205-4075; fax: +49-631-205-4095; email: demokrit@physik.uni-kl.de
This document
SummaryPlus
Article
Journal Format-PDF (443 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Surface Science
Volume 495, Issues 1-2
10 December 2001
Pages 68-76


8 of 18 Result ListPreviousNext
HomePublicationsSearchMy AlertsMy ProfileHelp

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.