|
|
|
||
| 10 of 39 |
![]() |
This Document | ||||
![]() |
|||||
![]() |
SummaryPlus | ![]() |
|||
![]() |
Full Text + Links | ![]() |
|||
![]() |
PDF (277 K) | ![]() |
|||
![]() |
|||||
![]() |
Actions | ||||
![]() |
|||||
![]() |
Cited By | ||||
![]() |
Save as Citation Alert | ||||
![]() |
E-mail Article | ||||
![]() |
Export Citation | ||||
![]() |
|||||
Spatial coherence measurement of X-ray undulator radiation
D. Paterson
,
, a, B. E. Allmana, P. J. McMahona, J. Lina, N. Moldovanb, K. A. Nugenta, I. McNultyb, C. T. Chantlera, C. C. Retschb, T. H. K. Irvinga and D. C. Mancinib
a School of Physics, University of Melbourne, Vic. 3010, Australia
b Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
Received 7 March 2001; accepted 3 May 2001. Available online 20 July 2001.
We measure the spatial coherence function of a quasi-monochromatic 1.1 keV X-ray beam from an undulator at a third-generation synchrotron. We use a Young's slit apparatus to measure the coherence function and find that the coherence measured is poorer than expected. We show that this difference may be attributed to the effects of speckle due to the beamline optics. The conditions for successful coherence transport are considered.
Author Keywords: Undulator radiation; X-ray region; Spatial coherence measurement; Young's experiment; Speckle size
PACS classification codes: 41.50.+h; 42.25.Kb; 42.30.Rx; 41.60.−m
m×700
m. The detector was an APD with 5
m slit placed directly in front of the detector window.
m slit and APD detector. The monochromator entrance slit was 50
m and exit slit was 200
m. The data points are represented with crosses, whose size represents one standard deviation uncertainty. The solid line is a theoretical fit to the data used in the determination of the spatial coherence. (a) Young's slit separation of 20
m and (b) Young's slit separation of 50
m.
m with two exit slit settings. The theoretical profile is for an incoherent top-hat shaped source located at the exit slit. Gaussian fits to the data are shown in both plots. (a) Measured with exit slit at 200
m (
), theoretical profile for 220
m and (b) measured with exit slit at 100
m (
m.
m at an X-ray energy of 1.5 keV. Image size is 0.82 mm by 0.42 mm and the fringe separation is 90
m. The shift in the fringes which occurs between upper and lower regions of the image is evidence of the possible effect of speckle. The secondary fringes are due to interference between the diffracted beam and the weak beam transmitted through the incompletely opaque slits at this energy.
1. W.S. Haddad et al.Science 266 (1994), p. 1213. Abstract-EMBASE | Abstract-INSPEC | $Order Document
2. F. Polack, D. Joyeux, J. Svatos and D. Phalippou Rev. Sci. Instrum. 66 (1995), p. 2180. Abstract-Compendex | Abstract-INSPEC | $Order Document | Full Text via CrossRef
3. S. Brauer et al.Phys. Rev. Lett. 74 (1995), p. 2010. Abstract-INSPEC | $Order Document | Full Text via CrossRef
4. K.A. Nugent, T.E. Gureyev, D. Cookson, D. Paganin and Z. Barnea Phys. Rev. Lett. 77 (1996), p. 2961. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef
5. B.E. Allman et al.J. Opt. Soc. Am. A 17 (2000), p. 1732. Abstract-Compendex | Abstract-INSPEC | $Order Document
6. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov and I. Schelokov Rev. Sci. Instrum. 66 (1995), p. 5486. Abstract-Compendex | Abstract-INSPEC | $Order Document | Full Text via CrossRef
7. V. Kohn, I. Snigireva and A. Snigirev Phys. Rev. Lett. 85 (2000), p. 2745. Abstract-INSPEC | $Order Document | Full Text via CrossRef
8. M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge 1998, 6th corrected edition, p. 265.
9. P. Lu et al.Phys. Rev. A 58 (1998), p. 628. APS full text | Full Text via CrossRef
10. M.C. Marconi et al.Phys. Rev. Lett. 79 (1997), p. 2799. Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef
11. T. Ditmire et al.Phys. Rev. Lett. 77 (1996), p. 4756. Abstract-Compendex | $Order Document | APS full text | Full Text via CrossRef
12. J.E. Trebes et al.Phys. Rev. Lett. 68 (1992), p. 588. Abstract-INSPEC | $Order Document | Full Text via CrossRef
13. Y. Kunimune et al.J. Synchrotron Radiat. 4 (1997), p. 199. Abstract-INSPEC | $Order Document | Full Text via CrossRef
14. E. Gluskin, E.E. Alp, I. McNulty, W. Sturhahn and J. Sutter J. Synchrotron Radiat. 6 (1999), p. 1065. Abstract-INSPEC | $Order Document | Full Text via CrossRef
15. C. Chang, P. Naulleau, E. Anderson and D. Attwood Opt. Commun. 182 (2000), p. 25. SummaryPlus | Full Text + Links | PDF (494 K)
16. A.Q.R. Baron et al.Phys. Rev. Lett. 77 (1996), p. 4808. Abstract-Compendex | Abstract-INSPEC | $Order Document | APS full text | Full Text via CrossRef
17. Y. Takayama, et al., Nucl. Instr. Meth. 59 (2000) 7128.
18. K. Fezzaa, F. Comin, S. Marchesini, R. Coisson, M. Belakhovsky, X-ray Sci. Technol. 7 (1997) 12.
19. W. Leitenberger, S.M. Kuznetsov, A. Snigirev, Opt. Commun. 191 (2001) 91.
20. I. McNulty et al.Rev. Sci. Instrum. 67 (1996), p. 3372. Full Text via CrossRef
21. W.H. Carter and E. Wolf J. Opt. Soc. Am. 67 (1976), p. 1219.
22. K.A. Nugent Opt. Commun. 118 (1995), p. 9. SummaryPlus | Full Text + Links | PDF (402 K)
23. A.S. Marathy, Elements of Optical Coherence Theory, Wiley, New York, 1982, p. 98.
24. J.W. Goodman, Statistical Optics, Wiley, New York, 1985.
Corresponding author. Fax: +61-3-9347-4783; email: paterson@optics.ph.unimelb.edu.au
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume 195, Issues 1-4 , August 2001, Pages 79-84 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 10 of 39 |
| Copyright © 2005 Elsevier B.V. All rights reserved. ScienceDirect® is a registered trademark of Elsevier B.V. |