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Abstract

The purpose of this paper is to report some new experimental and theoretical results about the analysis of in-plane
lattice spacing oscillations during two-dimensional (2D) homo and hetero epitaxial growth. The physical origin of these
oscillations comes from the finite size of the strained islands. The 2D islands may thus relax by their edges, leading to in-
plane lattice spacing oscillations during the birth and spread of these islands. On the one hand, we formulate the
problem of elastic relaxation of a coherent 2D epitaxial deposits by using the concept of point forces and demonstrate
that the mean deformation in the islands exhibits an oscillatory behaviour. On the other hand, we calculate the intensity
diffracted by such coherently deposited 2D islands by using a mean model of a pile-up of weakly deformed layers. The
amplitude of in-plane lattice spacing oscillations is found to depend linearly on the misfit and roughly linearly on the
nucleation density. We show that the nucleation density may be approximated from the full-width at half maximum of
the diffracted rods at half coverages. The predicted dependence of the in-plane lattice spacing oscillations amplitude
with the nucleation density is thus experimentally verified on V/Fe(00 1), Mn/Fe(00 1), Ni/Fe(00 1), Co/Cu(001) and
V/V(001). © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Considerable progress in growing thin films of
metals, oxides and semi-conductors have been
performed during the past 30 years, due to both
the richness in new fundamental phenomena and
the large potential of applications. Thin films are
often grown in a polycrystalline state, but single-
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crystalline films are sometimes needed for micro-
electronics for instance. On a fundamental view-
point, epitaxial systems are also needed since they
are model systems to study new physical and
chemical phenomena due to the interfaces, the
reduced size of the films and the presence of the
surface. The general problem of epitaxial growth
was thus largely investigated on films grown by
molecular beam epitaxy (MBE). Two general
processes may be distinguished in the epitaxial 2D
growth of a material A on a substrate B. A first
regime occurs at the beginning of the growth,
where A adopts the in-plane lattice spacing of B.

0039-6028/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0039-6028(01)01081-0



P. Miiller et al. | Surface Science 488 (2001) 52-72 53

This regime is usually called the pseudomorphic
regime, corresponding to the accumulation of
elastic energy when the thickness is increased.
When this elastic energy becomes higher than the
energy necessary to create dislocations (and if the
kinetics conditions allow to create them), the ma-
terial A relaxes towards its regular parameter so
that its in-plane parameter varies as a function of
the film thickness. This second regime is usually
called the relaxed regime associated to plastic re-
laxation (for a review see Ref. [1]). During the last
20 years, a lot of work have been devoted to the
understanding of the phenomena which occur
during such plastic relaxation. Because strained
crystals may have different structural or physical
properties than strain-free crystal, the pseudo-
morphic regime was also thoroughly studied (for a
review see Ref. [2]). In this case, owing to the
pseudomorphy, no in-plane lattice spacing varia-
tion was expected before the plastic relaxation
occurs. However, studying the epitaxial growth of
In,Ga;_,As on lattice mismatched GaAs(001)
where in the 2D pseudomorphic regime growth
takes place by birth and spread of 2D islands,
Massies and Grandjean [3] discovered, by using re-
flection high-energy electron diffraction (RHEED),
an associated in-plane lattice spacing oscillatory
behaviour. Such in-plane oscillations have been
confirmed by Eymery et al. [4], Fassbender et al.
[5], Hartmann et al. [6] and Turban et al. [7] on
many other systems.

The first qualitative explanation was given by
Massies and Grandjean [3]: In contrast to a con-
tinuous layer, 2D strained islands may elastically
relax by their free edges. As a consequence, during
lateral growth of 2D islands towards a continuous
layer, the mean in-plane lattice spacing oscillates.
For the authors [3] the surface parameter deviation
would be maximum (minimum) for half (complete)
coverage as the step density should be. Another
more quantitative approach [§], but based on a
phenomenological approach of the electron dif-
fraction, allowed us to predict that in-plane lattice
spacing oscillation might occur even for homo-
epitaxy (that means in absence of natural misfit
my) and/or at constant free edge density. Recent
experimental data confirm these points [7]. How-
ever, a quantitative treatment of the experimental

data and especially a comparison of the effect from
one system to another was difficult essentially be-
cause the islands size (or the nucleation density)
have to be known.

The purpose of this paper is to go further into
the description of in-plane lattice spacing oscilla-
tions, both on the experimental and theoretical
viewpoints. More precisely we want to give an
answer to the following questions: (i) What are the
physical origins of the oscillations of position and
width of the RHEED streaks? (ii)) Why homo-
epitaxial systems (that means with zero misfit) also
exhibits oscillations (iii) What are the dependence
of these oscillations with misfit, nucleation density,
island size ...? For this purpose in Section 1 we
reformulate the problem of elastic relaxation of
coherent 2D epitaxial deposits in a more complete
form than in Ref. [8]. For a good understanding of
the underlying physics we will prefer an analytical
formulation easier to discuss than simulation re-
sults. Thus we only consider the case of epitaxial
deposit that consists in periodic 1D ribbon (one
monolayer thick) where lateral growth takes place
at constant steps density (excepted at coalescence).
We believe that such model allows us to capture
the essential physics. In Section 2 we compare
the experimental data to theoretical one. First, we
demonstrate experimentally that the full-width
at half maximum (FWHM) is actually connected
with the nucleation density. Second, we show that
the amplitude of the detected relaxation effect
actually depends on the nucleation density, or in
other words, on the 2D islands size, in agreement
with the theory.

2. Model

In order to compare experimental data on
RHEED rod-spacing oscillations with calcula-
tions, we proceed in three steps: (1) we show how
the finite lateral size of the 2D islands plays on
the misfit definition. Moreover, we show that an
elastic misfit may be defined even for homoepitaxy
since a small 2D island has a different in-plane
lattice spacing than in the bulk (Section 2), (2) by
using the concept of point forces, we formulate
the problem of elastic relaxation of coherent 2D
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epitaxial deposits. The corresponding mean de-
formation in the islands actually leads to an os-
cillatory behaviour with coverage (Section 2.2), (3)
by using a mean model of a weakly deformed
layers pile-up, we calculate the intensity diffracted
by such coherently deposited 2D islands and give
analytical expressions of the rod-to-rod distance
oscillation of the corresponding RHEED pattern
(Section 2.3).

2.1. Epitaxial misfit

The natural misfit m, of two infinite cubic pha-
ses A (crystallographic parameter ay) and B (pa-
rameter by) is defined for parallel axis epitaxies as:

my = (bo - ao)/ao (1)

Thus the parameters ao and b, are linked by
bo = ap(1 + mp). However because of its broken
bonds, a small piece of matter cut in the infinite
phase A may relax to reach its own mechanical
equilibrium. In other words the crystallographic
parameter a of a finite-size crystal (volume V =
hf14y) cut in the infinite phase may differ from ay.
Let us note a = ap[l + ¢(h, ¢, 62)] where &(h, 41, 63)
is the size dependent strain with respect to the in-
finite “mother-phase”.

Obviously the smaller the crystal is, the greater
¢(h,¢;,¢;) as has been observed on many systems
(see, e.g., Refs. [9,10]). Therefore for a finite size
crystal A grown onto a semi-infinite substrate B,
the active misfit, m, has to be distinguished from
the natural misfit m, [8] as:

m:(bofa)/azmofs(h,&,ﬂz) (2)

from the natural misfit m,. It should be noted that
the active misfit may exist even in the case of ho-
moepitaxy (mo = 0). This means that a crystal A
of finite size has to be strained by the quantity
m = —e&(h, 41, 4;) to be accommodated on its own
substrate A. Obviously since ¢(k, ¢, ¢,) is size de-
pendent this effect only exists for islands of na-
nometric dimensions.

For small but macroscopic 3D crystals where
surface energy and surface stress quantities make
sense, ¢(h, 41, ¢,) only depends on the surface stress
of the lateral (s,) and basal (sa) faces of the

crystal. For instance, it reads for a quadratic

crystal V = hf? [8]
o 1 - VA 2SA 2S;X 1-— 3VA
e(h,l) = i ( PR 1VA> (3)

where Ep and v, are the Young modulus and
Poisson ratio of A, respectively. Thus a small crys-
tal of A having positive surface stress (as it is
generally the case for clean surfaces [9-11]) has a
smaller lattice spacing than the infinite phase. For
nanometric size the difference amounts 1%, whereas
for more than millimetric crystal there is no more
reason to discriminate m from my.

Since in-plane lattice oscillation occurs in the 2D
growth mode, we deal in the following with 2D
islands (7 = a) of finite lateral size £ where active
misfit m differs from natural misfit m,. Therefore

axp = ap(l + &(a, 1)) 4)

However the concept of surface stress (that is a
surface excess quantity [12]) for nano-crystals of a
few atoms is quite questionable so that Eq. (3)
cannot be extrapolated to define the crystallo-
graphic parameter a,p of 2D crystal of smallest
size. Nevertheless we show in Appendix A that the
finite size effect may always be written as:

S(CI,E) = C() + Cl/[ (5)

where Cy and C) can be estimated in a microscopic
(atomistic model). It should be noted that excepted
for very small lateral sizes (a few atoms), the term
C,/¢ is only a weak correction to the strain. In
the following (excepted when clearly mentioned
in the text), we take &(a,?¢) = C, which means that
the misfit is independent on the lateral size of the
island.

2.2. Equilibrium strain in deposited islands

2.2.1. Displacements and deformation fields

Owing to their active misfit (even in the homo-
epitaxial case), 2D islands have to be strained to be
put in coherence on their substrate. Obviously
these islands may elastically relax because of their
free edges. In this section, we calculate the equi-
librium strain in the deposited islands for a given
active misfit. For this purpose, we only consider
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Fig. 1. Sketch of the model: set of periodic (L apart) infinite
ribbons (width ¢) of material A deposited onto a mismatched
substrate B.

the case of coherent epitaxy which means that the
island—substrate interface is assumed to be coher-
ent and to remain coherent during the elastic
relaxation. In other words, a continuity of the
displacement across the island—substrate interface
is assumed (no dislocations in the islands). During
the elastic relaxation, the relaxing islands thus
drag the atoms at the contact area, producing a
strain field in the substrate. The elastic interaction
between the deposit and substrate is modelled by
point forces due to active misfit.

For the sake of simplicity, we only treat the case
of infinite ribbons of material A deposited onto a
mismatched substrate B (see Fig. 1). The elastic
interaction between such misfitted 2D islands and
the underlying coherent substrate is modelled by a
distribution of lines of point forces located at the
edges of the deposited islands on the substrate
surface. More precisely, the forces exerted on the
substrate by a set of periodic (L apart) 1D stressed
ribbons (width ¢) can be written as [13,14]:

F. = % (afxa) = Jf;a Z [0(x+nL+£/2)

n=—0o0

— 8(x +nL — £/2)] (6)

where & = Eam/(1 —v3) is the in-plane stress
before relaxation, é(x) the Dirac function and a
the atomic thickness of the deposited island A. The
in-plane stress distribution ¢® induced in the un-

derlying substrate B is connected to the force dis-

tribution F (F;,0,0) applied on the surface of B by
way of the 2D Green tensor [15,16]:

aB(x,z=0)=—3[C B 7)

T ) oX—U

By using this approach, the local atomic dis-
placement as well as the mean deformation over
the surface can be calculated. In the following, we
first calculate the local displacements needed to
calculate the diffracted response. Moreover, the
equations of the mean deformation are also nee-
ded in order to understand the interrelation be-
tween the strained islands and the underneath
layers.

Putting Eq. (6) in Eq. (7) in 1D geometry (more
precisely in plane strain conditions ¢,,(x,z) = 0 and
0.(x,z=0) =0 for mechanical equilibrium) and
since & = a;(1 — v?)/E;, the in-plane deformation
at the surface of B (z = 0) reads:

e® (x,2=0)
1
2 4& x+nL\?
_EK'”“Z"; ( (2 ) N 1
-

where K = {(1 —v)/Ea}/{(1 —V})/Eg} is the
relative rigidity of B with respect to A.

The corresponding in-plane displacement (at the
surface z = 0) uP(x) = [ &8 (x,z = 0) dx thus reads:

— J0o “xx

w (x) =l (x) + u™ (x) ©)

X

where the first term «’(x) is the displacement
field in absence of elastic interaction between the
islands (or in other words when there is a single
island), and the second term u!™(x) the part due to
the elastic interactions with the other islands. All
theses terms are given in Table 1.

It should be noted that there is some invariant
points u?(0) = uP(L/2) = 0 % due to the symme-

try (Fig. 1). Furthermore there is the asymptotic

2 It is not the case in Ref. [8] where displacement fields under
and outside the islands have not been obtained within the same
approximation.
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Table 1

Analytical expressions of the displacements fields at the surface z =0
) (x) " (x) u (x)
a x—1/2 a sin(n(x — ¢/2)/L) ,sin(n(x + £/2)/L) 2a sin((z/L)(x — £/2))
5&Kmn Lc T z/z} AL e ey )y e ey )y m KmIn | /L) o €/2))

The term #°(x) is the elastic field in absence of any elastic interaction and the term u?(x) = u°(x) 4 u!™(x) the total elastic field where
ul"'(x) is the contribution of the elastic interactions. Notice that these expressions are valid for -oo < x < oo expected at x = +£/2
where some local divergences occur because of the use of point forces.

behaviour lim,_; [u8(x) | = 0 which means that the
film becomes pseudomorphous to its substrate at
coalescence. This important behaviour originates
in the elastic interaction in between the islands via
the substrate deformation since lim,_;|u®(x)
u’(x)| #0 when the elastic interactions are ne-
glected. Also interesting for the following is to
calculate the mean deformations at the surface

z=0

2 l/2—a
G=7 [ S0

¢ Jo
and

2 L/2 8

g = e (x,0)dx
< >out L _ £ [/2+a xx( )

where (¢) is the deformation in B areas covered by
the A islands, and (¢),,, the deformation in B
uncovered areas. Moreover, a cut off distance a is
introduced to avoid local divergences. This also
allows us to recover that the mean deformation (g)
at the surface z=0 of B under the island A is
equal to the mean deformation in the island with
respect to the substrate B (epitaxial coherence).
Like for the local displacement, these quantities
read:

(&) =(&)" + (&)™ (Dow = Eow + Eow  (10)

Table 2

where (¢)! is the mean deformations in absence of
elastic interaction (subscript 0) and (a)ilm the in-

teraction contribution (subscript int). Their ana-
lytical descriptions are given in Table 2.

2.2.2. Discussion

First, it seems necessary to verify that the cal-
culated atomic displacements lead to appropriate
predictions according to the hypotheses. In Fig. 2
the displacement field u®(x) is plotted as the sum of
two contributions, one directly due to the islands
u’(x) and the other due to the elastic interactions
between islands u™(x). More precisely we plot
the normalised displacement u!(x)/(Kma/=) as a
function of 0 < x < L for various values of surface
coverage 0 = ¢/L. For our purpose we take L =
100 and 0 = 0.1 (Fig. 2a), 0.5 (Fig. 2b) and 0.99
(Fig. 2c). It can be easily seen in Fig. 2 that (i) the
displacement field u®(x) vanishes at x =0 and
x =L/2 (50 in Fig. 2) when the elastic interactions
are taken into account, (ii) an isolated island
having a positive (negative) misfit induces a com-
pression (dilatation), u°(x) < 0 (>0) of the under-
lying substrate, (iii) the elastic interaction opposes
to these behaviour since in all the cases u°(x) and
u™(x) have opposite sign. This can be easily un-
derstood since the substrate strains created by each
island in the substrate overlap near the coales-
cence, creating a back stress effect [8]. Obviously
the closer the islands are, the greater the back

Analytical expressions of the mean deformations inside and outside the islands, in absence of any elastic interaction (subscript 0), only

due to interactions (subscript int) and their sum

(e)" =% KmIn(a/l)

sin(rnl/LYL +1 4

sin(ra/L)L — 11+ a

Int
(&) o

_4a
=akmr—y

Int _ 4 sin(na/L
&) ‘:H—?Kmln{éis ( /)}

/

in(na/L
s () = n Sl
L—1l+a 4q . sin(nl/L)
n {m a } {hou = a7 Kmi1n [sin(na/L)}
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Fig. 2. Normalised displacement fields ! (x)/(Kma/n) where
u¥(x), (x)u(x) and uP(x) =u’(x) + u™(x), are the displace-
ment field in absence of elastic relaxation, the elastic relaxation
contribution and the total field, respectively (see Eq. (9) and
Table 1). (a)—(c) correspond to a coverage 0 = 0.1, 0.5 and 0.99,
respectively and are calculated for a coalescence size L = 100.
Owing to the elastic relaxation, the greater the coverage is, the
closer the border of the islands and the weaker the displacement

field.

stress effect. (iv) At the limit of a continuous layer
(see Fig. 2c where 0 = 0.99) there is no more
substrate deformation since the continuous layer
becomes pseudomorphous to its substrate.

Second, we are interested in the general predic-
tions using this elastic model. In Fig. 3a is plotted
the normalised displacement u?/(Kma/r) calcu-
lated at the island edge x = ¢/2 as a function of
0 for L =100 (more precisely we calculate u®(¢/
2 —a) = (¢/2){¢),, to avoid the local discontinuity
at x =//2). In addition to the above-mentioned
remarks (i) to (iv) we may see that when elastic
interactions are properly considered, the edge
displacement passes through an extremum (a
minimum for positive misfit, a maximum for nega-
tive misfit) at du®/d0 =0 for 6 = 1/2 according
to equations of Table 2. Once again such extre-
mum does not exist when elastic interactions are
neglected. According to elastic interactions in be-
tween islands via the underlying substrate, the
edge displacement is thus found maximum at half
coverage even when the growth takes place at
constant step density. In Fig. 3b the normalised
mean deformation in the island (¢)/(Kma/=) is
also reported as a function of coverage 6 for vari-
ous values of L. It is easy to see that the mean
deformation also exhibits an oscillatory behaviour.
For a given coverage 0 the greater the L value is,
the smaller the value of the mean deformation
since at the limit ¢ = LO — oo, the film becomes
pseudomorphous so that (¢) — 0. Obviously (¢)
and (&), behave in a complementary way since
the total mean deformation (¢), over a period L of
a complete substrate layer reads:

(), = 0(e) + (1 = 0) (e} = 0 (11)

In other words the mean deformation of the top
substrate layer is zero whereas the mean defor-
mation (with respect to the substrate parameter b)
of a coherently supported island (£ < L) is not.
The deformations in the underlying layers of the
substrate have to be calculated by using the z-
dependent Green tensor [15,16]. Nevertheless at
each level z, (¢(z)) and (¢(z)),,, behave in a com-
plementary way so that the mean deformation (¢),
of each substrate layer is in fact equal to zero.
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Normalised edge displacement
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Normalised mean deformation
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Fig. 3. (a) Normalised displacement u! /(Kma/n) calculated at the island edge x = ¢/2 as a function of coverage 0 for L = 100. u?, u™™

and u® = +u™

x

, obtained from Eq. (9) and Table 1, are the displacement field in absence of elastic relaxation, the elastic relaxation

contribution and the total field, respectively. Notice that u® reaches a maximum at half coverage. (b) Normalised mean deformation
(¢)/(Kma/m) as a function of coverage 6 for various values of the coalescence size L.

2.3. Diffracted intensity

Our purpose in this section is to determine the
electron intensity scattered by such deposited
islands which deforms the underlying substrate
during their elastic relaxation. In order to capture
the essential physic with analytical expressions (i)
we model the system by a pile-up of weakly de-
formed layers described from an average lattice
(see Fig. 4), (i1)) we use the kinematical scattering
theory which is valid for the determination of re-
flection positions even for electron diffraction but

Top growing layer —>

Substrate

Fig. 4. Model used to calculate the diffracted intensities: the
first growing layer is considered as a full weakly deformed layer
whose inner potential varies with coverage, the underlying
layers being considered as full nondeformed layers (see the end
of Section 2.3.1). The electron beams diffracted by each layer
interfere each other.

does not generally lead to accurate intensity cal-
culations [17], (iii) Nevertheless in order to restore
suitable usual RHEED oscillations intensity, we
will correct the classical kinematical theory by in-
cluding refractive corrections [18] and using the
top-layer interference model [19]. More precisely
in Section 2.3.1 we show that the substrate layers
behave (for diffraction) as nondeformed layers
because of their zero mean deformation, whereas
the growing layer behaves as a mean deformed
layer. In Section 2.3.2 we therefore consider the
diffraction properties of such a pile-up of layers
(substrate 4+ growing layer). At last in Section
2.3.3 we comment the oscillation of FWHM of the
RHEED rods.

2.3.1. Diffraction by a weakly deformed layer

The calculation of the scattered intensity is re-
ported in Appendix B. We consider a 2D imperfect
layer whose in-plane lattice spacing is referred to
the one of a perfect crystal as ¥, = nd + > (x =
na) - 2 (x = na) is the in-plane displacement vec-
tor (see formula (9)) induced in the surface of the
substrate B by the deposited islands. This intensity
thus reads (in Appendix B #® (x = na) is noted i,):



P. Miiller et al. | Surface Science 488 (2001) 52-72 59

I :fzz exp(2ins - X,,)
P

2Km \ 2
n 2472 2(_)
;;f wg | =

X % <Sm(;N9)) [exp(2in(5 + NK) - %,)

+ exp(2in(5 — Nk) - %,)]

It is the sum of 2N + 1 terms. The first term is the
regular diffraction of the average lattice. The N
other terms correspond to satellites whose posi-
tions are deduced from the node of the average
lattice by the translation +Nk with a structure
factor equal to

2Km\’ 1 (sin (zNO)\>
247207 1
Jramq T 2 N
The intensity ratio of the Nth satellite to that of
the average node thus reads

¢*K*m? ( sin (nN6) ) ?

I/l =
/o 2 N

It is misfit square dependent and increases with the
diffraction order as ¢*>. The diffracted spectrum
exhibits no satellite around the centre (¢ = 0) but
exhibits very weak satellites for ¢ = +1 order
(which is the single order generally recorded with
the RHEED experiment). For usual misfit (m =
1072) the more intense satellite N = 1 (located at
+1/L with respect to the peak g = +1) scale as
I/l = 10~*. However these weak satellites cannot
be observed in usual RHEED experiments * be-
cause of the poor resolution of usual RHEED
detectors. In the following, we consequently con-
sider that the RHEED intensity scattered by a
weakly deformed layer is the one of the average
lattice. Indeed, as the mean deformation of a full
layer is zero (see previous section), all the substrate
layers behave as perfect (nondeformed) layers
from a diffraction viewpoint. On the contrary, as

3 Furthermore we will see in Section 2.3.3 that such satellites
should be hidden by the supplementary satellites due to the
mean correlation between the deposited islands that exist even
in absence of misfit.

the mean deformation in the islands (¢) does not
vanish before coalescence (see Section 2.3) the
islands behave as a mean deformed layer of in-
plane lattice spacing:

a=bo(1+ (&) (12)

2.3.2. Diffraction of the whole system: an interfer-
ence average model

A first approximation of a dynamical scattering
model valid for RHEED can be achieved by in-
cluding in the classical kinematical theory the re-
fractive effect of the average crystal potential
[18,19], leading to the structure factor /' =}, f; x
exp(—2ins - ¥) exp(—iA®P;) where s(s,,s,,s.) is the
scattering vector, f; the atomic scattering factor of
the jth scatterer, and A®; = @,(V,) — ®,;(0) with

2me 2me
@j(Vn) :anj<\/si+7Vn+ \/SE+7V;1)

a supplementary phase shift due to refraction [17].
In the previous equation s, and s/, are the surface
regular components of the incident and diffracted
vector, d; the distance from the jth scatterer to the
surface and ¥, the crystal potential within the layer
n to which belongs the jth scatterer. Following
Horio et al. [19] we assume a constant average
crystal potential ¥, =, within each whole layer
(n=2,3,...) but a coverage dependent potential
for the growing layer (n=1): V,_; = 0V,. For a
pile-up of homogeneous layers the structure factor
thus reads:

F =S Fexp(~ie(1;)) (13)

where F, is now the structure factor of the nth
layer and the summation is performed for all the
layers. In Eq. (13) @;(V;,) = ®(V,) is constant for
all the scatterers that belong to the same layer n,
with in fact d; = nd where d is the inter-layer dis-
tance. * This last equation only means that the
electron beam diffracted by the top layer (charac-
terised by the inner-potential V; = V) interferes

4 Let us note since that for such a pile-up S.d; = &(V = 0),
the terms @(0) disappeared in Eq. (13).
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with the electron beams diffracted by the under-
lying layers characterised by the constant inner-
potential ¥ (see Fig. 4).

It should be noted that, for a 1D crystal, the
structure factor of a layer n (nondeformed lattice
spacing ay) with lateral number of atoms A and
mean deformation (&) so that a=ap(l + ()
reads:

F(A,(g)) = > _fexp(—2inska)

1 — exp(—2inS, Aag(1 + (¢)))
1 — exp(—2inSao(1 + (¢)))

=f

Thus for a pile-up of n nondeformed substrate
layers (lateral size A, mean deformation (g) , = 0)
supporting a deformed layer (lateral size A, mean
deformation (&) , = (¢)), (see Section 2.3.1) the
total structure factor (13) can be written as:

Fioo = F(A, (g)) (1 + 1" exp( — i®(0)))
+ 1" exp(—i®(0))> F(4,0)r"

x exp(—in®(0 = 1)) (14)

2
with  @(0) = dnd, /2 + % V0

where we choose s, = s/, for the sake of simplicity
and without any loss of generality. Let us note that
we introduce some damping parameter 0 < 7 < 1
for the complete layer and 7 for the incomplete
layer with coverage 0 < 0 < 1. In the following, we
note the usual phase shift @(6 = 1) as @ since it is
not coverage dependent.

Eq. (14) then reads, with s,ay = ¢ the diffraction
order (referred to the undeformed crystal):

sin (ngA(1 + (¢)))
sin (ng(1 + (&)))

Fo=/f (1+ " exp(—i9(0)))

+ £ exp(—i(@(0) + @)) %
1 — v exp(~in®)
1 — texp(—i®)

(15a)

In some peculiar cases, for instance for an odd
number of layers and in out-of phase conditions

(¢ = (2k+1)n) and 7 =1 (no damping) F sim-
ply reads:
sin (mgA(1 + (e)))

Fo =150 (nq(1 + (e)))

(I +exp( —i9(0)))
(15b)

In Eq. (15b), the physical origin of the RHEED
intensity oscillations is contained in the coverage
dependent phase shift @(0) as depicted by Horio
[19]. Moreover, the oscillations of the diffracted
peak position originates in the coverage dependent
mean deformation (¢). Furthermore this approxi-
mated expression (15b) allows us to obtain an
analytical expression for the position shift of the
diffracted intensity maximum measured at half
coverage 0 = 0.5. For this purpose we derivate the
diffracted intensity / = \Ftot|2 with respect to the
diffraction order ¢g. This derivative becomes equal
to zero for the value ¢ = gmay = k(1 + (&))" ~
k(1 — (g),5) with k an integer and (e), 5 the mean
deformation calculated for half coverage 6 = 1/2.
Using thus the analytical expression of the mean
deformation given in Table 2, the position shift of
the diffracted peak calculated at half coverage
reads (with & = 1 since we only consider the first
order peak):
8 a .

Ag = - sz In(sin(na/L)) (15¢)
It is thus easy to see that the shift of the peak
position depends linearly on the misfit and varies
with the nucleation density 1/L. It should be noted
that Eq. (15¢) only gives an overestimation of the
true shift. Indeed when taking into account some
electron absorption (t # 1), Fi, given by Eq. (15a)
contains in fact two contributions: an island con-
tribution depending on the mean deformation in
the island (&) and a substrate contribution centred
at integer values of ¢ as suggested by Kern and
Miiller [8]. Generally, because of the poor resolu-
tion of the RHEED detector, the two contribu-
tions are not resolved and only one diffracted peak
is recorded whose position is intermediate between
the one given by Eq. (15¢) and the regular one due
to the nondeformed substrate. In other words in
order to obtain the true position shift the overes-
timated position shift given by Eq. (15¢) should be
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Fig. 5. Diffracted intensity calculated from Eq. (15a) as a function of ¢ for various values of coverage 0 = 0.1, 0.2, 0.4, 0.5, 0.6, 0.8
(with « = 1.4°, n =5; 7= 0.5 and ¥ = 10 V). Notice the intensity oscillation and the position oscillation as well.

multiplied by an unknown coefficient depending
on the electron absorption coefficient .

We can use the total structure factor given by
Eq. (15a) to plot the diffracted intensity /(g) =
FioFpo, as a function of the diffraction order ¢ for
various values of coverage 0. In Fig. 5 we plot I(g)
for various values of the coverage 0 and for L = 20
where the mean deformation in the islands is large
(see Fig. 3b). (We also take A =20 giving a
broadening of the diffracted peak compatible with
experiment.) As RHEED intensity oscillations are
phase dependent with the incident angle [19], the
incidence angle is adjusted in the calculation re-
ported in Fig. 5 in order to obtain a minimum of
intensity for roughly zero coverage 0 (furthermore
we take V5 =10 V). A single diffraction peak is
obtained, whose intensity and position vary with
the coverage as reported in the various experi-
ments [3-7]. The maximum shift is obtained for
0 = 0.2 (see Fig. 3(b)) since the substrate does not
contribute to the diffraction signal. In Fig. 6 is
reported the shift of the maximum of intensity (Agq)
as a function of the coverage calculated from Eq.
(15a) with t=0.5 for L =20 and L =100 and

m = 5%. The position oscillations clearly pass
through a maximum at roughly 6 = 0.4-0.5 since
now the single peak results from the two non-
resolved contributions of the substrate and of the
island. As we will see in the following the smaller is
L, the greater the displacement. Furthermore let us
note that, as in experiments (see Refs. [3-7] and
also our experimental results on Fig. 9), the os-
cillation is not symmetric with respect to the
maximum value 0 ~ 0.4. The intensity value at
zero coverage only depends on the relative fraction
of substrate felt by the electrons or in other words
on the factor 7" (for fixed diffusion factor f and
lateral size L). In Fig. 7 we report the position shift
of the diffraction peak as a function of the misfit
for L =20 (Fig. 7a) and of the nucleation den-
sity 1/L for m = 5% (Fig. 7b). We also report on
the same figure the overestimated shift obtained
from the approximated expression (15b). We see
that, as predicted by Eq. (15b), the amplitude of
the oscillation of position depends linearly on the
misfit m (more precisely on the product Km).
The dependence of the oscillation of position
with the nucleation density is more complicated.
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Fig. 7. (a) Shift of the diffracted intensity maximum versus misfit calculated for L = 20. (b) Shift of the diffracted intensity maximum
versus nucleation density calculated for m = 5%. In a large domain of nucleation density the variation is linear. (The diffracted intensity
maximum are calculated for 6 = 0.5.) In both cases the fat line corresponds to the overestimated shift calculated by Eq. (15¢) whereas
the squares linked by the thin line corresponds to the true shift calculated from Eq. (15a) (see text).
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Nevertheless in a large domain of nucleation
density it can be considered to depend roughly
linearly on the nucleation. Thus one can conclude
that in a large range of nucleation density:

Aq x Km/L (16)

2.3.3. Comments about FWHM oscillations

The simple analytical approach we develop al-
lows to describe intensity and position oscillations
as well, but not the oscillations of FWHM re-
ported in Refs. [4-7] and usually attributed, but
without any proof, to a size effect (Debye effect). In
fact, this FWHM oscillations may be explained by
taking into account the diffuse scattering which is
mixed with the specular diffraction in RHEED
experiment. Indeed, if the contribution of the dif-
fuse scattering in X-ray or neutron diffraction [26]
is quite easy to separate from the specular scat-
tering (because of the good resolution in the re-
ciprocal space that can be achieved with these
techniques), this is however not so easy with reg-
ular electron diffraction apparatus. The diffuse and
specular scattering are thus often mixed into one
peak. The determination of both contributions
may be achieved by measuring only one peak or
spot as shown a long time ago by Henzler with
the LEED technique [23], and more recently by
Stroscio et al. [27,28] and Dulot et al. [20,21] using
RHEED in the case of the Fe homoepitaxy. More
precisely the intensity of these satellites varies with
the coverage (in opposite phase with respect to the
Bragg peak) whereas the FWHM of both satellites
and Bragg peak remains roughly constant what-
ever coverage. In absence of a good enough reso-
lution (due to the apparatus) the diffracted profile
can be fitted by a single Lorentzian peak whose
FWHM then oscillates with coverage as numeri-
cally shown in Ref. [21]. In other words, the
FWHM oscillations are an artefact due to the poor
resolution of the RHEED instrument.

Such satellites have been reported and exten-
sively studied by many authors in the case of dif-
fraction by a surface with random terraces
distribution [22-24]. Analytical calculations have
been performed for 1D geometry and in the
framework of a two-level model [22,24]. In Ap-

pendix C, following [22-24] and in the case of a
Lorentzian distribution > of terrace lengths with
same variance in both level, we show that the first
satellites positions are s, = +1/L for 6 = 1/2 with
a weak variation of position when the coverage
varies in the range 0.1 < 0 < 0.9. The satellites
intensities roughly vary as s_* leading to a strong
attenuation of the satellites intensity with the dif-
fraction order. It can be numerically checked that,
as in experiment, the Bragg peak and the first
satellites intensities oscillate with coverage but in
opposite phase and with constant FWHM. It is
important to note that at 6 = 1/2 where in this
simple two-level model the Bragg peak intensity
vanishes (see Appendix C in the out-of-phase
condition of the RHEED experiment), the distance
in between the satellites, analogous to the FWHM
of a mean poorly resolved peak, is 2/L and thus
gives access to the nucleation density 1/L as:

FWHM(0 = 0.5) o 1/L (17)

2.4. Conclusion

The main conclusions of the theoretical part are
the following:

1. The in-plane lattice spacing oscillations origi-
nate from the edge elastic relaxation of 2D
islands even in the case of homoepitaxy where
the active misfit only originates from size effect.

2. Owing to the elastic relaxation, the displace-
ment of the island edges is maximum at half
coverage even when the growth takes place at
constant step density.

3. The mean deformation in the island reads
(¢) = Kmf (¢,L) where K is the relative rigidity,
m the so-called active misfit and f(¢,L) a func-
tion of the island size ¢ and the nucleation den-
sity 1/L.

4. Because of the interference between the elec-
trons scattered by the growing layer and the
underlying layers, the RHEED rod-spacing

% In fact, the position of the first satellite does not depend
upon the form of the distribution probability provided the
variance ¢ does not exceed 20% of the mean length Ref. [24].
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oscillations does not give directly access to the
in-plane lattice spacing oscillation.

5. The displacement of the RHEED rods mea-
sured at half coverage varies linearly with the
product Km and varies roughly linearly with
the nucleation density.

6. The FWHM measured at half coverage gives
access to the nucleation density 1/L, if the ex-
periments are strictly performed in anti-Bragg
geometry.

Consequently, the detected relaxation is only a
small part of the true relaxation. In other words, as
we have shown in another paper [8] (but from a
phenomenological viewpoint), there is some in-
strumental distortion of the rod displacement with
respect to the true deformation. In Ref. [8] we
proposed a phenomenological expression of the
transfer function by which the experimental re-
laxation has to be multiplied to obtain the true
relaxation. In order to establish such a transfer
function we assumed that the RHEED intensity
could be written as the sum of two terms. A first
term originates from the nondeformed substrate
and a second one from the deformed island but
furthermore modulated in intensity by some oscil-
latory function of coverage to account for the usual
RHEED intensity oscillations. All these seminal
ideas are now justified, but when the interferences
in between the growing layer and its underlying
substrate are properly considered there is no more
simple transfer function. In other words the ex-
perimental results of rod displacements have to be
fit by Eq. (15a) to extract the true mean defor-
mation. Nevertheless let us note that stricto-sensu
(15a) is only valid for 1D islands. Finally, deduc-
ing the true relaxation effect from the measure-
ments is also complicated by their dependence on
the nucleation density.

3. Comparison with experimental data

Since the distance in between islands (L) is an
open parameter in the theoretical relations of Sec-
tion 2, a comparison between experiments and
theory may be convincing only if the nucleation
density is known. Consequently, after a short de-

scription of the experiments (Section 3.1), we show
that, in agreement with Section 2.3.3, the measured
FWHM gives access to the nucleation density in
good approximation (Section 3.2). By varying the
nucleation density using impurities adsorption or
by varying the substrate temperature, the theoreti-
cal prediction are thus tested in Section 3.3.

3.1. Description of experiments

Let us stress on four points:

(i) The epitaxial films are grown by MBE on
MgO substrates for typical growth rates ranging
from 1 to 10 A/min and substrate temperatures
from 300 to 1100 K. The in-plane lattice spacing
variations are measured by using RHEED. The
experimental details concerning the growth of the
epitaxial films and the measurement of RHEED
intensity, FWHM and in-plane lattice spacing
variations ({(g|)) were already given in a previous
paper [7]. We just want to give the general method
and some additional information about the cali-
bration of the (¢)) and FWHM quantities. The
measurement is performed by recording during the
deposit a profile on a RHEED pattern perpen-
dicular to the streaks and including the (0-1) (00)
and (01) streaks. This profile is fitted by using
three lorentzian peaks. We thus get the intensity,
FWHM and position of each peak. The inverse of
the distance between two peaks is converted into
experimental in-plane lattice spacing (it is not the
true lattice spacing (see previous section remark
4)), which is calibrated by fixing the initial distance
between two streaks of the substrate surface to
unity. In order to improve the sensitivity on the
distance measurement, we always measure the
distance between (0-1) and (01) peaks. Conse-
quently, we only report the relative variations of
the in-plane lattice spacing during the growth
compared to this initial substrate in-plane lattice.
We thus not obtain an absolute measurement of
the in-plane lattice spacing, since the in-plane lat-
tice spacing of the initial surface could be different
from the bulk, especially when surface recon-
struction takes place. However, the difference be-
tween this surface lattice spacing and the bulk, if
it exists, is small. Consequently the FWHM is
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calibrated by considering that the distance be-
tween two streaks on RHEED patterns of the
substrate is proportional to the inverse of the bulk
distance.

(i1) As shown in Section 2.3.3, the determination
of the nucleation density by using the FWHM of
RHEED rods is in theory possible, but with the
condition that we are looking at a peak in anti-
Bragg condition. It should be noted that the anti-
Bragg geometry is not necessarily the same for a
(00) peak as for a (01) peak. In other words, if we
are looking at a profile that crosses the (00) streak
in specular geometry with an incident angle cor-
responding to the anti-Bragg condition for this
(00) streak, it is not necessarily the same for the
(01) peak. For instance, if the experiment is per-
formed on a bee or fee (00 1) surface in Ref. [10]
azimuth of the square lattice, an anti-Bragg con-
dition on the (00) peak is a bragg condition on the
(01) peak. On the contrary, the anti-Bragg condi-
tion is valid for both (00) and (01) streaks in
specular geometry in Ref. [11] azimuth of the
square lattice. This important point is taken into
account in our experiments. In that case, the nu-
cleation density is given by the square of FWHM/
47n. However the FWHM of a RHEED streak re-
sults from the convolution of the diffracted peak
and instrumental peak coming from the limited
resolution of the apparatus. This resolution is
limited by the angular divergence of the electron
beam but also by the resolution of our CCD
camera. The total FWHM is thus the addition
(because a diffracted pattern is in reciprocal space)
of the FWHM of the apparatus and the FWHM
coming from the surface. The total FWHM due to
the apparatus is easy to determine by using a
surface with large terraces. A STM analysis shows
that the size of the terraces on the (00 1) V and Fe
buffer layers used in this study are larger than 500
A [25]. In that case, the FWHM of the peaks
measured on the initial RHEED patterns is es-
sentially due to our system resolution. Conse-
quently, getting the FWHM coming from the
surface is easy: the initial FWHM measured before
the deposit is started is subtracted to the total
FWHM curve versus time deposition.

(iii) For studying the nucleation density effect on
(a)), the nucleation density has to be varied. In

practice the nucleation density can be varied in
three ways, (i) by changing the incoming flux, (ii)
by varying the substrate temperature, (iii) by ad-
sorbing some impurities on the surface before the
growth, which act as nucleation centres. The
variation of the substrate temperature is used in
the case of the homoepitaxy of (001) V, Fe and
Nb. In the case of heteroepitaxy, however, the
variation of the nucleation density by varying the
temperature is not a suitable method since inter-
diffution often takes place. We consequently use
the adsorption of oxygen to vary this nucleation
density. The oxygen contamination of the surface
is achieved by heating the buffer layer at elevated
temperatures (applied for Mn/Fe) or by exposing
the surface to O, (applied for V/V(001)). This
oxygen adsorption is controlled by Auger spec-
troscopy. However, we do not calibrate the oxygen
surface concentration, since quantitative Auger
analysis is always difficult and this is not necessary
for our purpose.

(iv) Finally, the relative rigidity K we define is
the one of the substrate with respect to the one of
the 2D island. In the case of heteroepitaxy this
relative rigidity cannot be the same if the substrate
is B or if the substrate is a composite of n
pseudomorphous layers of A deposited on B. The
relative rigidity thus may vary from one deposited
layer to the other. We believe that this effect is of
second order but in the following we will only
discuss the case of the first oscillation where K is
then the real relative rigidity of the substrate B
with respect to the island A.

3.2. FWHM versus nucleation density

According to the discussion in Section 2.3.3, the
maximum FWHM near half coverage is first as-
sumed to be proportional to the inverse distance
between 2D islands (keeping in mind that the ex-
periments are performed in anti-Bragg geometry).
From an experimental viewpoint we measure sys-
tematically the variation of the FWHM of the (0-
1) and (01) peaks (but not of the (00) peak) and
experimentally show that the FWHMs measured
on these peaks (substracting the width of the
electron beam and detector) effectively give values
close to the nucleation densities observed by STM.
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Fig. 8. Variation of the nucleation density (calculated from the
RHEED peak FWHM) with the substrate temperature, and
comparison to the nucleation density obtained by Stroscio et al.
[27,28] using STM.

For this purpose we report in Fig. 8 the variation
of the nucleation density calculated by using the
maximum FWHM of the (01) peak with tempera-
ture for the homoepitaxial Fe, V and Nb systems.
In the case of Fe, the results are compared to the
data obtained by Stroscio et al. [27,28] on Fe(00 1)
using STM. The agreement between STM and
FWHM nucleation density determination is very
good, in agreement with results reported in Ref.
[21]. In the case of V and Nb, it should be noted
that the variation of the nucleation density
strongly depends on the initial oxygen surface
coverage, as shown in the following in the case of
V. The results reported in Fig. 8 correspond to an
initial surface reconstructed in 5 x 1 with a con-
stant oxygen coverage. Finally, it should be noted
that two slopes are observed in the Arrhenius plots
of V and Fe. This behaviour is due to the well
known change of the critical size of stable nuclei
[27,28]. This is another proof that the maximum
FWHM measured on the (01) peak in the corre-
sponding anti-Bragg geometry gives a good ap-
proximation of the nucleation density.

3.3. (ay) oscillations amplitude versus nucleation
density

The estimation of the nucleation density now
allows us to understand why the amplitude of the

(a)) oscillations may vary from one experiment to
another for a given system as mentioned in Ref.
[7]. We show for instance in Fig. 9 two experi-
ments performed on the systems Mn/Fe(001), V/
Fe(001) and Co/Cu(001). The difference in these
experiments is the amount of oxygen detected on
the surface before each experiment. We first dis-
cuss the case of Mn/Fe(001). For very small
amount of oxygen (undetectable by AES), the
amplitude of the in-plane lattice oscillations is
around 0.8%. However, it drops up to more than
3% when oxygen is present on the surface. Simul-
taneously, we observe that the FWHM increases.
The cases of V/Fe(001) and Co/Cu(00 1) systems
are also very interesting. Indeed, for small nucle-
ation densities (large islands at half coverage), no
relaxation effects are detected in both cases.
However, some detectable relaxation effects are
recorded when the FWHM (proportional to the
nucleation density) increased. Finally, a similar
behaviour is observed in the case of the V(00 1)
epitaxy [25].

These results are simply explained by the fact
that oxygen atoms play the role of nucleation
centres and multiply the number of stable nucleus.
Consequently, the nucleation density is increased,
and the 2D islands size at half coverage is de-
creased. On a quantitative view-point, we observe
for five systems a linear variation of the amplitude
of the first in-plane lattice spacing oscillation with
the amplitude of the first FWHM oscillation (Fig.
10). This means that the (g)) oscillations ampli-
tude is proportional to the inverse distance be-
tween 2D islands as numerically shown in Fig. 7b.
Let us underline that such linear dependence over
all the nucleation density range is not in perfect
agreement with theoretical expressions of Section
2.3.2. In fact, the deviation to a linear behaviour
depicted by relation (15c¢) depends upon the dis-
tribution of islands and is maximum for a periodic
pattern of islands. Furthermore, we believe that
the reduced dimensionality of our model also
contributes to the weak discrepancy.

3.4. Elastic relaxation and effective misfit

In our previous paper [7], a quantitative com-
parison of the relaxation amplitude with the misfit
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Fig. 9. FWHM and in-plane lattice spacing oscillations (IPLOSs) obtained without (bottom) and with initial oxygen surface con-
centration (top) during the growth of Mn on (00 1) Fe (left), V on (001) Fe (middle), and Co on (00 1) Cu (right). The FWHM is
increased in presence of oxygen due to the increase of nucleation centres. As a consequence, the 2D islands size decreases and the

relaxation effect occurring at the islands edge is easier to detect.

for all the studied systems was not possible. In-
deed, the detected relaxation effect depends on the
size of the 2D islands, and consequently on the
nucleation density, which was not a parameter
under control. Since now the nucleation density is
available, we propose to reconsider this particular
point. Since we have shown that the maximum
shift of the rod can be roughly written Agpax
x Km/L (see Eq. (16)) one can obtain by simple
differentiation of Eq. (16):

Km < Aay,x/FWHM (18)

where Adan., 1S the maximal detected relaxation
and FWHM given by Eq. (17) is the full width at
half coverage. For heteroepitaxial system with
misfit greater than the percent, the active misfit m
must roughly be equal to the natural misfit my. In
order to verify relation (18) we thus have to plot

Kmy as a function of Aa,,x/FWHM (proportional
to the slope of the straight lines in Fig. 10) for the
various systems under study. Nevertheless it is not
trivial since for these systems the structure of the
material A deposited on B is generally not its
regular structure stable in regular conditions of
pressure and temperatures (metastable structure).
For instance, Ni is known to grow on Fe (2.866 A)
in its bee structure (@ = 2.773 A), Co on Cu (3.615
A) and Ni (3.52 A) in its fec structure (3.545 A),
Fe on Cu in its fce structure (3.59 A), Mn on Fe in
its bee structure (2.92 +0.03 A). Thus, since to the
best of our knowledge the elastic constants of these
structures are not available, the relative rigidity K
appearing in Eq. (18) cannot be estimated! The
case of V homoepitaxy is peculiar since in this
case K =1 and mg should be zero whereas in Fig.
10 the slope of the corresponding straight line,
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proportional to Km, is far from being zero. Such
behaviour could be attributed to the difference
between the natural misfit my and the active misfit
m we define in Section 2.1. Nevertheless, we have
shown in a previous paper [25] that the recon-
structed vanadium surface has a lattice spacing 6%
larger than pure V. This corresponds to a misfit of
6%, which explains why so large surface relaxation
effects are observed in this special case of homo-
epitaxy. In summary, we can say that, in order to
thoroughly check the theoretical expressions, one
has to study some other systems for which the
anisotropic elastic constants and natural misfit are
well known. In the case of homoepitaxy, the true
natural misfit, that means taking into account the
eventual surface reconstruction, has also to be
perfectly known.

4. Conclusion and perspectives

In this paper, we unambiguously demonstrate
the elastic origin of the in-place lattice spacing
oscillations. We find some analytical equations
driving the oscillation amplitude that can be ex-
perimentally checked. Though based on simple
arguments in 1D geometry, the calculations are in
good semi-quantitative agreement with experi-
mental data obtained on many metallic systems
(though 2D). Another interesting result is the
connection between the detected relaxation effect
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and the nucleation density, both on the theoretical
and experimental points of view. As a conse-
quence, two in-plane lattice spacing experiments
cannot be compared without knowing the nucle-
ation density. This certainly explains some ap-
parent discrepancies in the literature. For example,
the fact that we do not detect any relaxation effect
in the case of Cu(00 1) epitaxy [7], on the contray
to Fassbender et al. [5], may probably be explained
by some differences in the nucleation densities in
both experiments.

Obviously some other experiments have to be
performed in order to check the validity of the
assumptions used in the calculations. First, it
seems important to check other systems and in
particular homoepitaxial systems for which a for-
eign adsorption may play a role on the nucleation
density and the active misfit as well (by incorpo-
ration or simple adsorption). Particularly, the lat-
eral size effect contained in the ¢ /¢ contribution to
the effective misfit (see relation (5)) should play an
important role especially when the 2D islands are
laterally small at the beginning of the nucleation
process (where nevertheless the nucleation density
is not constant). Second, it should be interesting to
use the analytical equations obtained in Section 2
in order to extract (by a fitting procedure) the true
mean deformation from experimental data on rod
shift and compare it to relaxation measurements
that may be obtained by other techniques, like
STM for instance. Likely one must go beyond this
ID theory and then develop a more complete
approach. Third, the effect of some experimental
parameters that appear in the analytical formula-
tion have to be checked. It is for example the case
of the incident angle influence.
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Appendix A

For the sake of simplicity we only consider a
simple cubic crystal described by a pair potential
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@(r). The cohesion energy per atom U3P of a 3D
crystal (parameter a°P) thus reads

UL :% [6@(513‘3) + 12q5(a3D\/2’)}

where we only consider 6 first and 12 second
neighbours. At the same the cohesion energy per
atom U?® of a 2D (100) free standing crystal
(parameter a*P) reads with the same approxima-
tion

U® = % [4¢(a2D) 4 Ad(aP \/2’)} .
At equilibrium there is furthermore: 0U'/0a’ = 0
where i = 3D or 2D so that &' (a}°) = —2V2'
(a3PVv2)and @' (aiP) = —V2®'(a2P/2) respectively
when a, are the equilibrium parameters. (¢'(r) and
@"(r) are the first and second derivative of the
potential, respectively).

For an infinitely large 2D crystal, one can define
a® = aiP (14 &2) where & is thus the relative
deformation of the 2D infinite crystal with respect
to the 3D one. We can thus write the last equation
under the form

& (a0 (1+ %)) = =20 (P (1 +63)v2)

that gives after development (to first order in
strain):
1 &' (aP
T3 e (A
aiP [@" (aiP) + 20" (aiP+/2)]

For a 2D ribbon of finite lateral size L, (£, being
infinite ) there is to consider the step energy p of
the edges (parallel to axis y):

p= % {d)(ax) + 2¢I>(1 /a2 —|—af>]

y

where we make a distinction between a, and a,
the crystallographic parameter perpendicular and
parallel to the edges respectively, because of the
stressed edges a, # a, = aZP. Usually surface stress
and surface energy are connected by way of the
Shuttleworth equation [29]. Here we generalise this
former equation by defining a step stress r con-

% Our model in the following is a 1D model of islands.

nected to the step energy p by some Shuttleworth
relation

r=p+0p/d¢, = p+a,0p/0a,

so that
1 (D)
2 &P

Defining then a 2D Young modulus as
27%P = d*U /d(a°)’

= az% [tﬁ" (ag”) + 20" (aﬁD\/Z)}
0

one can define similarly to Eq. (2) the deformation
due to the unique size effect as & = (1/Y?P)(r/4,)
(there is no more Poisson effect for 2D crystal) so

that

6o 1 djl(agD)

1
T T2 (0@ + 207 (@PV2)] b

(A.2)

Summing up the two effects (a) and (b) the strain
of a 2D ribbon of lateral size ¢ with respect to a 3D
crystal reads: &(a,f) =& + ¢ which is of the
form ¢(a, ) = Cy + Cy/X.

Appendix B

Let us recall the classical formulation of dif-
fraction by an imperfect crystal [30,31]. For a
perfect crystal where each unit cell repeats peri-
odically, all unit cells have the same diffraction
properties described by the structure factor F. For
an imperfect crystal, derived from the same lattice,
each unit cell has its own structure factor F,. The
diffracted intensity of the imperfect crystal thus
reads:

1= ZZEE;‘, exp[—2ins - (%, — Zy)] (B.1)

n n

where x, characterises the position of the nth cell.

In the perturbation theory of imperfect lattice
[30,31], one introduces an average structure factor
over N cells (F) = (1/N)>_ F, and its perturbation
under the form F, = (F) + ¢,. The diffracted in-
tensity thus reads [30]
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I=(F)(F")) Vexp(2in5s-%,)
+ ) V{(0,0,.,) exp(2ins - X)) (B.2)

where the first term describes the intensity scat-
tered by the average lattice (with s a reciprocal
vector) and the second term which depends on the
correlation function (¢,¢,,) describes the devia-
tion from the average lattice.

In our case, we only consider one atom per unit
cell of structure factor F = f, and we calculate the
average structure factor as:

(Fy) = (f exp(—2irs - ii,))

~ f(1 = 215 - i, — 27°(5 - ii,)°) (B.3)
where, f'is the diffusion factor, u, the displacement
field of the nth atom (see Eq. (9)) and where we
have neglected higher powers of (5 ii,). Since the

mean displacement (i,) is zero, Eq. (B.3) thus
becomes

(F) = f|1 - 2ns(iiy) | (B.4)
and
¢, = F, — (F)

= flexp(=2ins - ii,) — 1 + 2n*s* (ii2) |

We use then a Fourier development of the dis-
placement field (9) given in Table 1,

2 in (7NO) . - -
B (x) = —7’”;% Sin(2aNk - %,) - 1

(B.5)
where 7 is a unit vector perpendicular to the rib-
bons (see Fig. 1), k = 1/L the wave vector of the

displacement wave and 6 = ¢/L the coverage.
One can thus calculate

(i) =

(27m)2<z<mgvﬂ)z(sm(znzw}' : fn))2>

N=1
or owing to sinus average properties

= () o (St (B.6)

N=1

We thus obtain the correlation function ¢,¢,,, =

f*—2in5 - i,][2in5 - i, ,) whose average value is

<(pn(p:+p> = f24n2S2 <1'_in : ﬁr1+p> (B7)

Then writing X,;, = X, + X, one obtains

iy - Ty) = <2%>2<;<M(NM)2

x sin(2zNk - X,) sin(2zNk - (%, + z,,))>

which gives after development of sin(2zNk - (%,+
Xuip)) With X, = nd,

2 21 1 0 2
(0u0y,) = 12477 (:) ZZ(SIH(NW)

N

x cos(2nNk - Xp) (B.8)

where we write §- d = ¢ the diffraction order. The
diffracted intensity (B.1) thus reads:

I=/>> exp(2ins - %,)
p

2
EN § (‘24 2q2(2”)
Y4

1 <sin (TN )

2
) N ) cos(2nNk - X,) exp(2ins - X,,)

or when using Euler formulae:
I= fzz exp(2ins - X,)
P
Py Y (2
N p n
1 ( sin (7N 0)

“2\T N
+ exp(2in(5 — Nk) - %,)]

) [exp(2in (s + N/:) -Xp)

Appendix C

For 1D geometry and in the framework of a two-
level model the intensity diffracted by a surface
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with random terrace distribution reads in out of
phase conditions (2ns.d = ) [22,24]:

I = Ibragg + Idiffus

oc (1= 20)*5(s:) + Cls:) (1 = 8(sy))-

This intensity is a delta function term (Bragg peak)
to which is added a non singular term depending
on the reduced correlation function of the distri-
bution of terraces C(s,). This last term can also be
written:

0 (1 _Pl(Sx))(l _PZ(SX))
fams o G Re| =7 (5:)Pa(sx)

X

where P;(s,) is the Fourier transform of the prob-
ability P,(x) of finding a terrace of length x at the
ith level and where Re(Y) is the real part of the
complex function Y. Obviously these expressions
have to be convoluted by an instrumental func-
tion.

If one chooses a Lorentzian distribution of ter-
races with the same variance in the two levels that
means the probabilities P.(x) = ((x —£,)° + %)~
having the Fourier transform F(s,) =p; exp(—is.¢;)
with p, = p, = (n/0g) exp(—s,0) = p, the previous
equation becomes with ¢, =L+ AL and ¢, =
L—AL

0 1 —cos (s,AL)
s2 1 —p2—2pcos(s.L)

1 + cos (s,AL) 1—p?
1 — p?+2pcos(s.L) 2

Tdifrus o

which is analogous to the Eq. (36) of Ref. [24] but
corrected from a typing error.

It is thus easy to develop this last equation
around 6 =0.5 that means around AL = L(1—
20) = 0 up to the second order so that

0 1—p?
s2 11— p2+2pcos(s.L)

Liitrus ¢ + O, (AL)

having a maximum for s, =+(2k+1)/L. We
verify by numerical calculations that the maximum
of the first satellite s, = +1/L remains roughly the
same for 0.1 < 6 < 0.9. This is essentially due to

the absence of a first order in the just-above de-
velopment.
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