DOI: 10.1016/S0039-6028(01)01081-0 PII: S0039-6028(01)01081-0 Copyright © 2001 Elsevier Science B.V. All rights reserved.
Elastic relaxation during 2D epitaxial growth: a study of in-plane lattice spacing oscillations P. Müller, , a, P. Turbanb, L. Lapenaa and S. Andrieub a Centre de Recherche sur les Mécanismes de la Croissance Cristalline,1 CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, Franceb Laboratoire de Physique des Matériaux, UMR7556, Univ. H. Poincaré, F-54506 Vandoeuvre, France Received 9 February 2001; accepted 6 April 2001. Available online 18 July 2001.
P. Müller, , a, P. Turbanb, L. Lapenaa and S. Andrieub
The purpose of this paper is to report some new experimental and theoretical results about the analysis of in-plane lattice spacing oscillations during two-dimensional (2D) homo and hetero epitaxial growth. The physical origin of these oscillations comes from the finite size of the strained islands. The 2D islands may thus relax by their edges, leading to in-plane lattice spacing oscillations during the birth and spread of these islands. On the one hand, we formulate the problem of elastic relaxation of a coherent 2D epitaxial deposits by using the concept of point forces and demonstrate that the mean deformation in the islands exhibits an oscillatory behaviour. On the other hand, we calculate the intensity diffracted by such coherently deposited 2D islands by using a mean model of a pile-up of weakly deformed layers. The amplitude of in-plane lattice spacing oscillations is found to depend linearly on the misfit and roughly linearly on the nucleation density. We show that the nucleation density may be approximated from the full-width at half maximum of the diffracted rods at half coverages. The predicted dependence of the in-plane lattice spacing oscillations amplitude with the nucleation density is thus experimentally verified on V/Fe(0 0 1), Mn/Fe(0 0 1), Ni/Fe(0 0 1), Co/Cu(0 0 1) and V/V(0 0 1).
Author Keywords: Growth; Molecular beam epitaxy; Reflection high-energy electron diffraction (RHEED); Surface stress
1. D.J. Duntan J. Mat. Sci.: Mat. Electron. 8 (1997), p. 33.
2. S. Jain and W. Hayes Semic. Sci. Techn. 6 (1991), p. 547. Abstract-INSPEC | Abstract-Compendex | $Order Document
3. J. Massies and N. Grandjean Phys. Rev. Lett. 71 (1993), p. 1411. Abstract-INSPEC | $Order Document | Full-text via CrossRef
4. J. Eymery, S. Tatarenko, N. Bouchet and K. Saminadayar Appl. Phys. Lett. 64 (1994), p. 3831.
5. J. Fassbender, U. May, B. Schirmer, R.M. Jungblut, B. Hiller Brands and G. Güuntherodt Phys. Rev. Lett. 751 (1995), p. 4476. Abstract-INSPEC | $Order Document | Full-text via CrossRef | APS full text
6. J.M. Hartmann, A. Arnoult, L. Carbonell, V.H. Etgens and S. Tatarenko Phys. Rev. B 57 (1998), p. 15372. Abstract-INSPEC | $Order Document | Full-text via CrossRef | APS full text
7. P. Turban, L. Hennet and S. Andrieu Surf. Sci. 446 (2000), p. 241. SummaryPlus | Article | Journal Format-PDF (755 K)
8. R. Kern and P. Müller Surf. Sci. 392 (1997), p. 103. Abstract-INSPEC | Abstract-Compendex | $Order Document
9. T. de Planta, R. Ghez and F. Piaz Helv. Phys. Acta 47 (1964), p. 74.
10. A. Yanase and H. Komiyama Surf. Sci. Lett. 226 (1990), p. L65.
11. H. Ibach, Surf. Sci. Rep. 29 (1997) 193; Erratum: Surf. Sci. Rep. 35 (1999) 71.
12. J.W. Gibbs, In The collected works of J.W. Gibbs, Longmans, Green, NY, 1928, p. 314.
13. J. Tersoff, R. Tromp, Phys. Rev. Lett. 70 (1993) 2782.
14. P. Müller, R. Kern, in: M. Hanbucken, J.P. Deville (Eds.), Stress and Strain in Epitaxy: Theoretical Concepts, Measurements and Applications, North-Holland, Amsterdam, 2001, p. 3¯61.
15. A. Love A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1944).
16. S. Timoshenko and J.N. Goodier In: Theory of Elasticity, McGraw Hill, New York (1970), p. 97.
17. W. Braun, Applied RHEED Springer Tracts in Modern Physic, 1999, p. 154.
18. J. Griesche J. Cryst. Growth 149 (1995), p. 141. Abstract | Journal Format-PDF (111 K)
19. Y. Horio and A. Ichimiya Surf. Sci. 228 (1993), p. 261. Abstract-INSPEC | $Order Document
20. F. Dulot, Etude par microscopie en champ proche et diffraction d'électrons rapides des premiers stades de croissance de systèmes métalliques. Application aux systèmes Fe/Cu(1 0 0), Cu/Fe(1 0 0) et Fe/Fe(1 0 0). Thesis Université Henri Poincaré, Nancy I, 29 septembre 2000.
21. F. Dulot, B. Kierren, D. Malterre, Eur. Phys. Lett., submitted for publication.
22. P.R. Pukite, C.S. Lent and P.I. Cohen Surf. Sci. 161 (1985), p. 39. Abstract-INSPEC | $Order Document
23. M. Horn and M. Henzler J. Cryst. Growth 81 (1987), p. 428. Abstract-INSPEC | $Order Document
24. B. Croset and C. de Beauvais Surf. Sci. 384 (1997), p. 15. Abstract | Journal Format-PDF (819 K)
25. P. Turban, F. Dulot, B. Kierren, S. Andrieu, Appl. Surf. Sci. 177 (2001) 282.
26. S.K. Sinha, E.B. Sirota, S. Garoff and H.B. Stanley Phys. Rev. B 38 (1988), p. 2297. Abstract-INSPEC | $Order Document | Full-text via CrossRef
27. J.A. Stroscio, D.T. Pierce and R.A. Dragoset Phys. Rev. Lett. 70 (1993), p. 3615. Abstract-INSPEC | $Order Document | Full-text via CrossRef
28. J.A. Stroscio and D.T. Pierce Phys. Rev. B 49 (1994), p. 8522. Abstract-INSPEC | $Order Document | Full-text via CrossRef
29. R. Shuttleworth Proc. Roy. Soc. Lond. 163 (1950), p. 644.
30. A. Guinier X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Freeman, San Francisco (1963).
31. J.W. Zachariasen Theory of X-Ray Diffraction in Crystals, Wiley, New York (1945).
1 Associated to the Universities of Aix-Marseille II and III.
Corresponding author. Fax: +91-41-8916; email: muller@crmc2.univ-mrs.fr
Send feedback to ScienceDirectSoftware and compilation © 2002 ScienceDirect. All rights reserved.ScienceDirect® is an Elsevier Science B.V. registered trademark.