Subject View: 
HomePublicationsSearchMy AlertsMy ProfileHelp
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
14 of 124 Result ListPreviousNext

This document
SummaryPlus
Article
Journal Format-PDF (75 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Surface Science

Volumes 482-485, Part 2
20 June 2001
Pages 850-853

PII: S0039-6028(00)01086-4
Copyright © 2001 Elsevier Science B.V. All rights reserved.

Surfactant properties of oxygen in the homoepitaxial growth of Fe: a MDS study

R. Moroni, F. Bisio, A. Gussoni, M. Canepa and L. Mattera,

Dipartimento di Fisica, Unità INFM and CFSBT, Università di Genova, via Dodecaneso 33, I-16146 Genova, Italy

Available online 6 July 2001.

Abstract

The growth of ultra thin iron films (up to a thickness of 5¯6 ML) on O(1×1)¯Fe/Ag(0 0 1) has been investigated by means of He reflectivity (RHe) and metastable de-excitation spectroscopy. The presence of oxygen induces a quasi-ideal layer-by-layer growth at variance with the case of the homoepitaxial growth of iron on Fe(0 0 1). The surface electronic density of states suddenly changes upon the deposition of the first half of a monolayer. After the sudden change in the first stages of the growth, the surface density of states of both O2p and Fe3d states remains essentially unchanged, irrespectively of the thickness of the deposited film. This provides a clear indication that oxygen floats at the surface acting as a surfactant for the growth of iron on O(1×1)¯Fe/Ag(0 0 1). The stationary fraction of oxygen that remains on the topmost layer as growth proceeds depends on the substrate temperature. Post-growth annealing up to 650 K restores the initial coverage of oxygen and the ordered O(1×1) phase.

Author Keywords: Chemisorption; Growth; Iron; Oxygen

Article Outline

References


(8K)
Fig. 1. Energy distribution curves for O(1×1)¯Fe/Ag(0 0 1) (panel a) and after the deposition of 0.5 ML of Fe on the substrate held at room temperature (panel b) and at 150°C (panel c). The experimental data are represented by dots while the continuous lines provide the fit to the data (see text).

(9K)
Fig. 2. Density of states obtained by fitting the experimental data relative to the O(1×1)¯Fe/Ag(0 0 1) (panel a) and after Fe deposition at room temperature (panel b) and 150°C (panel c).

References

1. J.A.C. Bland, B. Heinrich (Eds.), Ultrathin Magnetic Structures, vols. I and II, Springer, Berlin, 1994.

2. Q.Y. Jin, R. Vollmer, H. Regensburger and J. Kirschner. J. Appl. Phys. 85 (1999), p. 5288. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

3. F. Bisio, R. Moroni, M. Canepa, L. Mattera, R. Bertacco and F. Ciccacci. Phys. Rev. Lett. 83 (1999), p. 4868. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

4. J.A. Stroscio, D.T. Pierce and R.A. Dragoset. Phys. Rev. Lett. 70 (1993), p. 3615. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

5. S. Esch, M. Hohage, T. Michely and G. Comsa. Phys. Rev. Lett. 72 (1994), p. 518. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

6. J. Camarero, J. Ferron, V. Cros, L. Gomez, A.L. Vazquez de Parga, J.M. Gallego, J.E. Prieto, J.J. de Miguel and R. Miranda. Phys. Rev. Lett. 81 (1998), p. 850. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

7. P. Bonanno, M. Canepa, P. Cantini, R. Moroni, L. Mattera and S. Terreni. Surf. Sci. 454¯456 (2000), p. 697. SummaryPlus | Article | Journal Format-PDF (138 K)

8. H. Hagstrum. Phys. Rev. 96 (1954), p. 336.

9. H. Hagstrum. Phys. Rev. 139A (1965), p. 526.

10. H. Hagstrum. Phys. Rev. 150 (1966), p. 495.

11. M. Canepa, C. Guarnaschelli, L. Mattera, M. Polese, S. Terreni and D. Truffelli. Rev. Sci. Instrum. 62 (1991), p. 1431. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

12. M. Canepa, P. Cantini, L. Mattera, S. Terreni and F. Valdenazzi. Physica Scripta T41 (1992), p. 226. Abstract-INSPEC |  $Order Document

13. M. Salvietti, R. Moroni, P. Ferro, M. Canepa and L. Mattera. Phys. Rev. B 54 (1996), p. 14758. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

14. M. Canepa, E. Magnano, A. Campora, P. Cantini, M. Salvietti and L. Mattera. Surf. Sci. 352¯354 (1996), p. 36. Abstract | Journal Format-PDF (329 K)

15. M. Salvietti, R. Moroni, M. Canepa, P. Ferro and L. Mattera. J. Magn. Magn. Mater. 165 (1997), p. 230. Abstract | Journal Format-PDF (318 K)

16. R. Kunkel, B. Poelsema, L.K. Verheij and G. Comsa. Phys. Rev. Lett. 65 (1990), p. 733. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

17. P. Ferro, R. Moroni, M. Salvietti, M. Canepa and L. Mattera. Surf. Sci. 407 (1998), p. 212. SummaryPlus | Article | Journal Format-PDF (204 K)

18. H. Huang and J. Hermanson. Phys. Rev. B 32 (1985), p. 6312. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

19. C.M. Fang, R.A. de Groot, M.M.J. Bischoff and H. van Kempen. Surf. Sci. 445 (2000), p. 123. SummaryPlus | Article | Journal Format-PDF (198 K)

Corresponding author. Tel.: +39-103-536-287; fax: +39-10-311-066; email: mattera@fisica.unige.it
This document
SummaryPlus
Article
Journal Format-PDF (75 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Surface Science
Volumes 482-485, Part 2
20 June 2001
Pages 850-853


14 of 124 Result ListPreviousNext
HomePublicationsSearchMy AlertsMy ProfileHelp

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.