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The equations taking into account refraction at the sample surface in grazing-

incidence small-angle X-ray scattering (GISAXS) when the angle between the

incoming beam and the sample surface is slightly larger than the critical angle

are derived and discussed. It is demonstrated that the refraction of both the

incoming and the scattered beam at the sample surface affects the GISAXS

pattern and that, when a planar bidimensional detector perpendicular to the

incoming beam is used, the effect depends on the azimuthal detector angle. The

smearing of the pattern depending on the size of the illuminated sample area in

grazing incidence is estimated by simulations with Cauchy functions of different

widths. The possibility of integrating the recorded intensities over a suitable

azimuthal angular range and then of making the correction for refraction is also

analysed, employing simulations involving the intensity function of mono-

disperse interacting hard spheres. As a case study, the refraction correction is

applied to the investigation of a Cu±Ni implant on silica glass.

1. Introduction

Grazing-incidence small-angle X-ray scattering (GISAXS)

(Levine et al., 1989) is a powerful tool for the structural

characterization of thin (micrometre scale) super®cial layers

containing nanosized particles. Samples can be obtained by

ion implantation (Babonneau et al., 1999; d'Acapito et al.,

1998; Cattaruzza et al., 2000), sol±gel synthesis (Kutsch et al.,

1997) or vapour deposition (Naudon & ThiaudieÁre, 1997).

Investigation of particles deposited on the surface is usually

performed at the critical angle �c; however, when dealing with

buried nanostructures, the working angle must be slightly

higher than �c to permit a controlled limited beam penetration

in the matrix. In the latter geometry, the refracted beam acts as

the effective primary beam of the SAXS experiment and the

scattered radiation is likewise refracted on leaving the sample.

Thus, correction is required in order to retrieve the actual

scattering angle 2� 0 from the measured 2� between the

incoming beam and the outgoing X-rays.

The use of an experimental setup consisting of a planar

detector perpendicular to the incident beam assures better

counting statistics, with respect to linear devices, and also

allows the investigation of anisotropic implants (Babonneau et

al., 1999). On the other hand, the scattered beams recorded at

the same 2� but at various azimuthal ' angles strike the

sample surface with different inclination, thus requiring

suitable correction for refraction. In the literature, the

correction is given only on the plane containing the incoming

beam and the surface normal of the sample, that is, at ' = 0

(Kutsch et al., 1997). The equations allowing one to obtain the

internal angles (2� 0, '0) from the detector angles (2�, ') are

derived in the next section of this paper.

Despite the small vertical size of the incident beam, its

projection on the sample surface is very long when working

in grazing incidence (typically a few centimetres), so that the

limits of the illuminated sample region are actually deter-

mined by the overall sample length. The smearing of the

recorded pattern arising from the sample size increases with

the scattering angle (becoming noteworthy in the wide-angle

region) and decreases with the distance of the sample from

the detector element. An estimate of the extent that

refraction and sample smearing can affect a pattern

recorded under grazing-angle geometry has been achieved

by simulations ranging from small to wide X-ray



scattering angles and involving Cauchy functions of different

widths.

In principle, the equations taking into account the refrac-

tion effect should be applied to every (2�, ') pair of detector

angles. However, it is shown by simulations involving the

scattering intensity of monodisperse interacting hard spheres

(Guinier & Fournet, 1955) that for isotropic implants a

simpli®ed procedure is allowed, consisting ®rst of azimuthal

integration of the recorded intensities and then correction for

refraction according to an average ' angle. An application to

the actual case of a Cu±Ni-implanted layer on silica glass is

also described.

2. Refraction correction

The correction for refraction at the sample surface of both the

incident and the scattered beams is based on the scheme

drawn in Fig. 1. The angles (2�, ') are measured at the

detector, whereas (2� 0, '0), the actual scattering angles, are

referred to a virtual detector placed within the implanted layer

and perpendicular to the refracted incoming beam. The

equations for the determination of (2� 0, '0) are based on

Snell's law and on three-dimensional trigonometry:

cos��0� � cos���=�1ÿ ��; �1�

sin��� � cos��� sin�2�� cos�'� ÿ sin��� cos�2��; �2�

cos��0� � cos���=�1ÿ ��; �3�

cos��� � �cos�2�� � sin��� sin����= cos��� cos���; �4�

cos�2� 0� � cos��0� cos��0� cos��� ÿ sin��0� sin��0�; �5�

cos�'0� � �sin��0� � sin��0� cos�2� 0��=�cos��0� sin�2� 0��; �6�
where (1 ÿ �) is the real part of the refractive index.

In Fig. 2, the values of �Q/Q [Q = (4�sin�)/�, Q0 =

(4�sin� 0)/�, �Q = Q ÿ Q0] are drawn as a function of the

detector angle 2�, for the �, � and � values (� = 0.25�, � = 7.7�
10ÿ6, � = 1.49 AÊ ) of a previously reported experiment

(Cattaruzza et al., 2000). From inspection of Fig. 2, the �2�
correction is seen to be slightly dependent on ' and more

effective at the smaller 2� values; it is negative (that is, 2� 0 = 2�
ÿ |�2�|) and decreases in absolute value with 2�, whereas the

correction concerning the azimuthal angle ' is positive,

decreasing with 2� and increasing with '. This behaviour can

be understood qualitatively by inspection of Fig. 1. The

correction for refraction of the scattered beam can be

regarded, on the detector plate, as a shift parallel to ÿnsurf of

the intensity recorded at a given pixel. On a ®xed scattering

ring (that is, at constant 2�) the shift at ' = 0 concerns only 2�,

whereas at increasing ' values it tends to become tangential to

the scattering ring, thus giving rise to increasing |�'| and

decreasing |�2�| values.

From equations (1)±(6), the path p(2�, ') within the sample

of a scattered beam generated at depth z and detected at

(2�, ') can be easily calculated as

p�2�; '� � z= sin��0�; �7�

allowing the estimation of the correction for absorption of the

transmitted intensity without the approximation '0 ' '
(Kutsch et al., 1997).

3. Smearing effects and simulations

Equations (5) and (6) are valid under the assumption that the

illuminated sample has negligible size, so that unique (2�, ')

angles can be de®ned at each detector pixel. Whereas the

condition on ' is, to a fairly good approximation, ful®lled by

the narrow cross section of the incoming beam used for

grazing-incidence experiments, the 2� values may be subject to

an uncertainty increasing with 2� and decreasing with the

distance of the detector element from the sample. A scheme of

the experimental setup is shown in Fig. 3.

A normalized Cauchy function,

I0�2� 0� � 2=f2 � �2��2� 0 ÿ 2� 00��2g; �8�
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Figure 1
Scheme of directions and angles for refraction correction. nsurf is the unit
vector normal to the sample surface; ninc is the unit vector in the direction
of the incoming beam; nir is the unit vector in the direction of the
refracted incoming beam; nsc is the unit vector in the direction of the
scattered beam; nsr is the unit vector in the direction of the refracted
scattered beam; � is the angle between the planes (nsurf, ninc) and (nsurf,
nsc); 2� is the angle between ninc and nsr, measured at the detector; 2� 0 is
the scattering angle between nir and nsc; � and �0 are the angles of the
incoming beam at the sample surface before and after refraction,
respectively (notice that the angle �/2 + � is evaluated between the
positive directions of nsurf and ninc, so that the incoming beam actually
strikes the sample travelling from left to right in the ®gure); �0 and � are
the angles of the scattered beam at the sample surface before and after
refraction, respectively; ' is the azimuthal detector angle between the
planes (nsurf, ninc) and (ninc, nsr); '0 is the azimuthal scattering angle
between the planes (nsurf, nir) and (nir, nsc). The angles of the drawing are
not to scale, but the relations between them are in agreement with
equations (1)±(6): 0 < �0 < �, 0 < �0 < �, 2� 0 < 2�, ' < '0.
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was used to estimate the in¯uence of the size of the illumi-

nated area on the uncertainty of 2�. This function, although

not related to any actual SAXS application, can be subjected

to rigid translation and, therefore, retaining a constant shape,

can account for the mere smearing effects at different glancing

angles. The grazing incidence patterns were calculated for the

above-reported �, � and � parameters, for ' = 0 and for several

2� 00 values ranging from the small- to the wide-angle region.

Different values of , varying from 0.25 to 1�, were used to

investigate the dependence of the smearing effects on the

degree of sharpness of the scattering pro®le.

The smearing integral,

Ism�2�� �
RL=2

ÿL=2

dx I�2� 0�x��; �9�

is calculated by Gaussian quadrature. The integration range is

relative to an illuminated sample region of width L = 10 mm.

According to Fig. 3, the glancing angle 2�(x) for the element x

is given by

2��x� � a tan�y=�D� x��; �10�
where y = D tan(2�), 2� � 2�(0) and D = 500 mm; 2� 0(x) in

equation (9) is then obtained from 2�(x) by equation (5). The

approximation introduced in equation (10) by ignoring the

angle of grazing incidence of the incoming beam with the

sample surface is negligible. At ®rst glance, the smeared

pro®les obtained by equation (9) are indistinguishable from

the unsmeared ones for 2� < 3�, whatever the value of ,

whereas the Cauchy functions, in particular the sharpest ones,

are severely distorted in the wide-angle region.

Because of the faint dependence of �2� on ', an effective

procedure seems to be, for suitable ' intervals and isotropic

implants, ®rst to integrate the two-dimensional detector

intensity values over ' and then to perform the correction on

2�. Possible smearing effects are estimated in the following

simulation. The function

I0�Q0� �  2�Q0R�=�1� �8V0=V1� �2Q0R��; �11�
proportional to the scattering intensity of monodispersed

interacting hard spheres (Guinier & Fournet 1955), is taken

into account; R is the particle radius, V0 its volume, V1 the

volume per particle, and

 �t� � 3�sin�t� ÿ t cos�t��=t3: �12�
The smearing integral (9) is calculated as a function of '; a

further integration on ' corresponds to summing the

`observed' intensity values on pixels equidistant from the trace

of the direct beam on the detector. In Fig. 4, two sets of

simulated data are drawn, relative to R1 = 30 and R2 = 60 AÊ ,

respectively. The other parameters are (8V0/V1) = 4 for both

the calculated patterns, L = 10 mm, D = 500 mm and 'min =

10�, 'max = 26.5�; the choice of 'min, 'max depends, as will be

discussed on the next section, on actual experimental limita-

tions. Furthermore, a ®tting to the `data' of the unsmeared

intensity has been performed, taking into account the refrac-

tion effects for 'av = 18� and re®ning an overall scale factor,

the particle radius R and the packing factor (8V0/V1). From

inspection of Fig. 4, it is evident that only on a logarithmic

intensity scale can some difference be appreciated between

the simulated data and the ®tted pattern; the broader minima

of the `data' arise mainly from the dependence on ' of the �2�
correction. The values of the optimized parameters, R1 = 30 AÊ

and (8V0/V1)1 = 4.0 for the ®rst ®tting run, R2 = 60 AÊ and

(8V0/V1)2 = 3.9 for the second, are very close to those of the

simulated data. Therefore, it is possible to conclude that one

can ®rst integrate the rough intensity values in suitable '
intervals and then correct for refraction according to an

average ' value. As the data have been simulated with a

sample-to-detector distance that is de®nitely smaller than

actual experimental con®gurations, the good ®ttings of

unsmeared functions demonstrate a fortiori that smearing

Figure 2
�Q/Q, as a function of the detector angle 2�, for the GISAXS
parameters: � = 0.25�, � = 7.7 � 10ÿ6, � = 1.49 AÊ . The different curves,
going downwards from the topmost, are relative to ' = 0, 10, 20, 30 and
40�.

Figure 3
Scheme of the GISAXS experimental setup. D is the distance from the
centre of the illuminated sample to the detector; y is the distance of the
pixel from the trace of the incoming beam. The small angle � (some
tenths of a degree, in grazing-incidence geometry) between the incoming
beam and the sample surface is approximated as � = 0�, so that in the
drawing the sample surface is parallel to the incoming beam.



effects caused by the size of the illuminated sample area can

be neglected in the analysis of GISAXS data.

4. A case study

Equations (5) and (6) give the correction �2� as a function of

the experimental parameters (incidence angle �, index of

refraction 1 ÿ �, incoming wavelength �), and of the (2�, ')

angles. To study how the correction for double refraction

affects experimental scattering data, we report here as a case

study the analysis of a silica slide sample containing Cu±Ni

alloy nanoclusters in a layer, of thickness 100 nm, below the

glass surface. The sample was prepared by double implanta-

tion of Cu+ and Ni+ ions in silica; details of preparation

parameters, transmission electron micrographs and proce-

dures for recording the GISAXS pattern of the sample

considered here are reported elsewhere (Cattaruzza et al.,

2000). While all the angles used for the correction are set out

by the scattering geometry with an accuracy that depends on

the experimental apparatus, the correction for the index of

refraction 1 ÿ � is calculated from the experimental deter-

mination of the critical angle �c of the composite system. �c is

calculated from the re¯ectivity curve as the angle corre-

sponding to the half maximum of re¯ected intensity. The

accuracy of its determination depends on the system, as the

presence of Kiessig fringes could introduce an uncertainty in

the determination. In the present case, the error was found to

be around 5%; thus negligible in the following analysis.

In the previously reported study (Cattaruzza et al., 2000),

only the scattering data relative to the smallest available '
angle were analysed. According to the simulations reported in

the previous section, the experimental intensities are now

radially integrated in the range 10 � ' � 26.5� and then

corrected for refraction according to 'av = 18�. The integration

range is limited to the ' values available for all the relevant 2�

angles, taking into account that recording at ' < 10� is

hindered by the beam stop, while intensities at ' > 26.5� are

affected by the Yoneda peak (Yoneda, 1963; Babonneau et al.,

1999). The correction for absorption does not produce

appreciable effects, owing to the very small thickness of the

implanted layer (about 1000 AÊ ).

In Fig. 5, a comparison of the integrated scattered intensity

with and without refraction correction is presented (Figs. 5a

and 5b, respectively); ®ts to the experimental scattering curves

are also shown. The model of interacting spherical clusters

used for the ®tting procedure is based on the local mono-

disperse approximation [LMA, which assumes complete

correlation between particle size and position within the

sample (Pedersen, 1994)], on a Weibull-like cluster size

distribution and on a Perkus±Yevick structure factor; all these

hypotheses are valid for these composites (Cattaruzza et al.,

2000).

Fitting parameters are reported in Table 1; the correction

for refraction essentially affects the parameters that are

involved in the structure factor and are therefore related to

the position of the maximum of the scattering curve. In

particular, the large decrease in the hard-sphere volume

fraction �HS (Pedersen, 1994) is evident; this is caused by the

shift of the GISAXS pattern towards smaller scattering angles,

which results in the estimation of larger distances between the

interacting objects. The difference between �HS = 0.24

reported in Table 1 and �HS = 0.28 previously assessed

(Cattaruzza et al., 2000) can be ascribed to the better signal-to-

noise ratio achieved by use of the ' integration. As the

refraction correction involves a roughly rigid translation of the

GISAXS pattern, it is not surprising that the form factor is not

concerned very much; indeed, the average radius of the clus-

ters is nearly constant in ®tting runs (a) and (b).

5. Conclusions

The correction for refraction of the incoming beam and of the

scattered beam at the sample surface in GISAXS patterns has
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Figure 4
GISAXS intensities of interacting monodispersed hard spheres [equation
(11)]. Details around a minimum for the pro®les corresponding to hard-
sphere radii R = 60 AÊ and R = 30 AÊ , respectively, are shown. Exp30 and
Exp60 (heavy lines) are the simulated data from equation (11) taking into
account sample smearing [equation (9)], refraction and ' integration
from ' = 10� to ' = 26.5�. The dashed lines (Fit30 and Fit60) are relative
to ®tted pro®les calculated without sample smearing and taking into
account the refraction correction at 'av = 18�.

Figure 5
Scattered intensity of Cu+ + Ni+ implanted silica obtained by radial
integration of the two-dimensional scattering pattern (a) with or (b)
without correction for double refraction of the X-ray beam. Best ®tting
curves (within the LMA approximation) are also reported.
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been derived under the assumption of a point-like sample and

for an experimental setup consisting of a planar detector

perpendicular to the incoming beam. It has been demon-

strated by the simulations reported in x3 that the smearing

effects arising from the ®nite size of the illuminated sample are

negligible in the small-angle scattering region. The parameters

of the simulations are those of a GISAXS experiment

previously carried out by the authors (Cattaruzza et al., 2000),

but for a shorter sample-to-detector distance, thus ensuring an

overestimation of the sample smearing effects. Therefore,

equations (5) and (6) can be directly applied to the experi-

mental data to obtain the corrected intensity values.

Furthermore, it has been demonstrated that, whereas for

anisotropic implants the correction given by equations (5) and

(6) should be applied for each (2�, ') pair of angles, for

isotropic implants a simpli®ed procedure can be exploited in

limited ' ranges, consisting of azimuthal integration of the

recorded intensities followed by correction for refraction

according to an average ' angle.
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Table 1
Fitting parameters within the LMA of the scattering curve (a) after and
(b) before correction for double refraction of the X-ray beam impinging
on the sample.

�HS is the hard-sphere volume fraction in the structure factor; a and b
are the parameters that de®ne the Weibull function W(R) = (a/b)(R/b)aÿ1

exp[ÿ(R/b)a].

Experimental
scattering
curve a b (AÊ )

Mean
cluster
radius (AÊ )

Mean
intercluster
distance (AÊ ) �HS

(a) 2.48 21.5 19.1 87 0.24
(b) 2.35 21.5 21.0 68 0.39
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