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Abstract. A new model for nuclear-resonant scattering of gamma radiation from resonant matter
has been developed and is summarized here. This “coherent-path” model has lead to closed-form,
finite-sum solutions for radiation scattered in the forward direction. The solution provides a unified
microscopic picture of nuclear-resonant scattering processes. The resonant absorber or scatterer is
modeled as a one-dimensional chain of “effective” nuclei or “effective” planes. The solution is
interpreted as showing that the resonant radiation undergoes sequential scattering from one ab-
sorber “nucleus” or “plane” to another before reaching the detector. For recoil-free processes the
various “paths” to the detector contribute coherently. The solution for this case gives calculated
results that are indistinguishable from those using the classical optical model approach, although the
forms of the solutions are completely different. The coherent-path model shows that the “speed-up”
and “dynamical beating” effects are primarily a consequence of the fact that the single “effective”
nuclear scattering processes are 180◦ out of phase with the incident radiation while the double nu-
clear scattering processes are in phase with the incident radiation. All multiple scattering paths are,
and must be, included. The model can also treat the incoherent processes, i.e., processes involving
gamma emission with recoil or conversion-electron emission. The source of the resonant gamma
radiation can be from a radioactive source or from synchrotron radiation: both cases are treated.
The model is used to explain and understand the results when each of the following experimental
procedures is applied: time-differential Mössbauer spectroscopy, time-differential synchrotron radia-
tion spectroscopy, enhanced-resolution resonant-detector Mössbauer spectroscopy, and the “gamma
echo”.
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1. Introduction

In recent years a new model for nuclear resonant scattering has been developed.
As the model evolved, the resulting solutions gave rise to a change in the name
of the model. It is now called the “coherent-path model”, because the form of
the solution consists of a summation over the various “paths” that the gamma
radiation takes to reach the detector. The model has been applied successfully to
various experimental and theoretical problems. These include; time differential
Mössbauer spectroscopy (TDMS), time differential synchrotron radiation spec-
troscopy, enhanced-resolution resonant-detector Mössbauer spectroscopy, and the
“gamma echo” effect. In this paper the results of the model will be reviewed and
summarized. The paper is divided into several sections. Each section deals with one
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of the particular topics noted above. The first section outlines the general approach
and treats the radioactive source case.

2. The general approach: the radioactive source case

The Mössbauer effect [1, 2] is due to the recoil-free emission and/or recoil-free
absorption of gamma radiation that can happen in solids. The experimental tech-
nique that the coherent-path model addresses in this section has been called time-
differential Mössbauer spectroscopy (TDMS) [3]. In this method a “lifetime curve”
of the first excited state in the source is obtained as done in nuclear physics but,
in this case, the resonant radiation must pass through a resonant absorber before
reaching the detector. The resulting “lifetime curve” does not show the expected
exponential behavior. This effect has been called “time filtering”. Hamermesh [3]
analyzed the recoil-free process using a classical optical model. Subsequently, Har-
ris [4], using methods developed by Heitler [5], was able to show that the quantum
mechanical treatment gives the same result. Using the same mathematical methods
as Heitler and Harris, with the added features that the resonant absorber is repre-
sented as a one-dimensional chain of N “effective” nuclei and only the resonant
radiation scattered in the forward direction is considered, allowed development of
the coherent-path model [6]. However, the model is deceptive. It only appears to be
one-dimensional. It actually treats the sample as a series of N “effective” planes.
A closed-form solution is found whose appearance is different from the classical
optical and other quantum mechanical solutions.

The problem addressed, in this section, is the one in which a radioactive source
nucleus emits gamma radiation and this radiation interacts with a polycrystalline
absorber containing resonant nuclei, which are initially in the ground state. The
time at which the source nucleus is in its first excited state is determined by a
precursor gamma ray and sets the time t = 0. The coherent-path model predicts
the shape of the lifetime curve, i.e., the time-dependent intensity of radiation from
that state, when the radiation passes through nuclear-resonant matter.

The general method used in developing the new model is discussed in Harris [4],
Heitler [5] and [6]. The method applies quantum mechanical time-dependent the-
ory in the frequency domain to obtain a set of coupled linear algebraic equations.
The Hamiltonian of the system is divided into two parts; H0 corresponding, in this
case, to the nuclear states and the free radiation field, taken as plane waves, and
H which is responsible for making transitions between the states |φp〉 of H0 by
allowing the nuclei to absorb and emit radiation. The state of the system |ψ(t)〉 can
be expressed as

|ψ(t)〉 =
∑
p

ap(t) e−i(Ept/h̄)|φ(0)〉, (1)

where |φp(0)〉 is an eigenstate ofH0. Solving the Schrödinger equation in the usual
way, one arrives at a set of coupled differential equations relating the expansion
coefficients ap(t).
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ih̄
dap
dt

=
∑
m

am(t) ei(ωp−ωm)t〈φp(0)|H |φm(0)〉 + ih̄δplδ(t). (2)

The Kronecker delta and the delta function on the right-hand side in Equation (2)
are needed to denote that at time t = 0 the system is in the state where p = l (i.e.,
for our case only the source nucleus is excited).

Now introducing the Fourier transform

ap(t) = − 1

2π i

∫ ∞

−∞
dωAp(ω) ei(ωp−ω)t (3)

into Equation (2) and writing δ(t) in an integral representation gives,

(ω − ωp)Ap(ω) =
∑
m

Am(ω)
〈φp(0)|H |φm(0)〉

h̄
+ δpl. (4)

However, in order for ap(t) = 0 for all p when t < 0, Ap(ω)must have a pole only
in the lower half of the complex plane. To ensure this, Equation (4) is re-written

(ω − ωp + iε)Ap(ω) =
∑
m

Am(ω)
〈φp(0)|H |φm(0)〉

h̄
+ δpl, (5)

where ε > 0. This formalism is now applied to study the problem where at t = 0
there is an excited source nucleus, and N resonant “absorber” nuclei, in the ground
state, located between the source and the detector.

For this case there are five amplitudes: A(ω) the source nucleus located at the
origin is excited (energy h̄ω0), all absorber nuclei are in the ground state, and no
photons or conversion electrons are present; Bk(ω) all nuclei are in the ground
state and a photon is present of wave number k and energy h̄ωk; Cm(ω) only the
absorber nucleus located at x = xm is excited (energy h̄ω′

0) and no photons or
conversion electrons are present; Dp(ω) a conversion electron from the source nu-
cleus is present having momentum p, all nuclei are in the ground state; and Emp(ω)
a conversion electron is present from the absorber nucleus located at x = xm, and
all nuclei are in the ground state. The photon polarization and the electron spin
are neglected because including these factors would only obscure the relatively
simple form of the final solution. Assuming that at time t = 0 the source nucleus
is excited, and substituting these amplitudes into Equation (5) gives the following
set of coupled linear equations,

(ω − ω0 + iε)A(ω) = 1 +
∑
k

Bk(ω)Hk

h̄
+

∑
p

Dp(ω)Hp

h̄
, (6)

(ω − ωk + iε)Bk(ω) = A(ω)H ∗
k

h̄
+

∑
m

Cm(ω)H
∗
k

h̄
e−ikxm, (7)
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(ω − ω′
0 + iε)Cm(ω) =

∑
k

Bk(ω)Hk

h̄
eikxm +

∑
p

Emp(ω)Hp

h̄
ei(p/h̄)xm, (8)

(ω − ωp + iε)Dp(ω) = A(ω)H ∗
p

h̄
, (9)

(ω − ωp + iε)Emp(ω) = Cm(ω)H
∗
p

h̄
e−i(p/h̄)xm, (10)

where Hk and H ∗
k are the matrix elements corresponding to absorption and emis-

sion of a photon, respectively. AlsoHp andH ∗
p are the matrix elements correspond-

ing to absorption and emission of a conversion electron, respectively.
The meaning of these equations can be made clear by considering, for example,

Equations (6) and (7). Equation (6) governs the amplitude for finding the source
nucleus excited, A(ω). Since this is the case at t = 0, that accounts for the “1” on
the right-hand side. The source can also get to the excited state, when in the ground
state, by absorbing a photon that is present. This is the meaning of the second term
on the right-hand side. Similarly, when the source nucleus is in the ground state, it
can be excited by absorbing its own conversion electron. Since the source nucleus
is at the origin of our coordinates, there are no spatial phase factors needed. On the
other hand consider Equation (7). This is the equation describing the situation in
which all nuclei are in the ground state and there is only a photon present, Bk(ω).
How can this happen? The source can emit a photon; that is the meaning of the
first term on the right-hand side. Also one absorber nucleus, located at xm, can
emit a photon. Now one must put in the phase factor, representing the fact that this
photon appears at x = xm. Furthermore, one must allow any other absorber nucleus
to do the same thing: the summation over all absorber nuclei is needed. The other
three equations can be understood in the same way. The solution to the problem
is obtained by solving this set of coupled linear equations. This problem is treated
and solved in [6].

The amplitude corresponding to the resonant gamma radiation being transmitted
through the absorber to the detector, when the source and absorber nuclei are in
exact resonance, is given by

ψr(t
′) = ψ source

r (t ′)

[
1 +

N∑
n=1

(
N

n

) (
− rt

′

2h̄

)n 1

n!

]
, (11)

where ψ source
r (t ′) is due to the source alone,  r is the radiative width, and t ′ is the

time measured from the time of formation of the first excited nuclear level in the
source. The right-hand side of Equation (11) contains all the amplitudes contribut-
ing to the total forward scattering amplitude. This solution can be understood by
identifying the various contributing amplitudes. First, there is the amplitude corre-
sponding to the probability amplitude that the source radiation reaches the detector
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without interacting with any absorber nuclei. This is the first term on the right-
hand side. There is another amplitude for the “path” in which the source radiation
is absorbed and re-emitted by one absorber nucleus before reaching the detector.
This single scattering process is termed the “one-hop” process. This amplitude
contributes N times since there are N absorber nuclei. This amplitude is the first
term involving the summation sign. There is another amplitude or “path” where the
source radiation makes two “hops” (double scattering) on absorber nuclei before
reaching the detector. This amplitude can occur according to the number of ways
two objects can be selected from N objects, i.e., the binomial coefficient N over 2:
the second term under the summation sign. The other “paths” involving more hops
(multiple scattering) are of a similar nature. It is important to take note that for each
hop (single scattering) there is an 180◦ phase shift, the minus sign, and a probability
given by the radiative width  r/2.

In the model the resonant gamma radiation is treated as a plane wave, and the
phase shift of the forward-scattered radiation due to a single “effective” nucleus
is found to be π , as noted by the minus sign in Equation (11) above. In X-ray
diffraction it is well known that a single resonant scattering gives a π/2 phase
shift and a further π/2 phase shift arises when a summation is made over the
whole plane of resonant scatterers. Noticing that the model gives such a π phase
shift, when scattering off a single “effective” nucleus, as seen by the minus sign
in Equation (11), suggests that the theory more appropriately corresponds to a
nuclear resonant sample represented byN “effective” parallel planes or slices. This
realization helps explain why the model works so well.

To summarize, one can say that the source emits recoil-free radiation and, when
the absorber nuclei do the same, it is impossible to distinguish which “path” was
taken for each photon that reaches the detector. Therefore, all paths must be added
coherently. Thus to obtain the time-dependent intensity of gamma radiation reach-
ing the detector, all the contributing amplitudes must be added before taking the
absolute value squared. The only modification needed in adapting Equation (11)
to this case is to realize that the probability for recoil-free gamma-ray absorption
or emission is not given by the radiative width  r alone. Now the radiative width
must be multiplied by the recoil-free fraction (f ). The time-dependent intensity of
radiation reaching the detector when the source nucleus and absorber nuclei are in
resonance is given by modifying Equation (11) accordingly. The result is

If r(t
′) = f r

2h̄
e−( /h̄)t ′

[
1 +

N∑
n=1

(
N

n

)(−f rt ′
2h̄

)n 1

n!

]2

, (12)

where  is the total decay width. Using Equation (12), one can see “speed-up” and
“dynamical beat” effects familiar [3, 7] from experimental results and the classical
optical model. It appears that the source nucleus is initially decaying more rapidly
than normal, i.e., the speed-up effect. Also the time-dependent intensity using thick
absorbers shows local maxima at times different from zero, i.e., dynamical beats.
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In this coherent-path model the explanation of the speed-up and the dynamical
beat effects can be seen by looking at the phase of each contributing amplitude in
Equation (12). It is the factors inside the square brackets of Equation (12) that need
to be studied. Each term, corresponding to a particular value of n, contributes an
“n-hop path” amplitude. The numberN , the effective “thickness” of the “absorber”,
determines the total number of different n-hop processes.

It is interesting to point out that the calculated results using the coherent-path
model are identical to those obtained using the classical optical model when N is
correlated with the usual nuclear-resonant thickness parameter β. The thickness
parameter β is equal to N0f σ0d, where N0 is the number of resonant nuclei/cm3

f is the recoil-free fraction, σ0 is the maximum cross section evaluated on reso-
nance, and d is the thickness of the sample. This agreement is shown in Figure 1.

To understand the coherent-path model results, consider an iron “absorber”
whose resonant thickness can be correlated with N = 50, as shown in Figure 1.
In this case we will have 50 one-hop processes, 1,225 two-hop processes. . . up to
and including one 50-hop process where all absorber nuclei participate. An infor-
mative way to show the various contributions is to plot each individual term in the
sum, i.e., the result for each “n” multiplied, for convenience, by the exponential
function. Figure 2 shows the no-hop, the one-hop, and the two-hop amplitudes
each multiplied by the exponential factor for the case when the absorber contains
N = 50 effective nuclei. Notice that the one-hop amplitude is 180◦ out of phase
with respect to the no-hop and the two-hop amplitudes. When these amplitudes are
added and then squared, the one-hop amplitude causes the resulting curve to decay
more rapidly near t = 0, the speed-up effect. At later times the contribution from

Figure 1. A comparison of the coherent-path model with the classical optical model assuming
recoil-free processes for 57Fe. The model withN = 50 agrees with the classical optical model
for β = 8. The result for β = 7 does not agree. The result for β = 9 does not agree either, but
this is not shown to keep the figure legible. Notice the speed-up effect and dynamical beat.
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Figure 2. The “amplitudes” (see the text for explanation) for the no-hop (solid line), one-hop
(longer dashed line), and two-hop (shorter dashed line) multiple scattering processes are
shown multiplied by the decaying exponential. The case chosen is forN = 50. Notice that the
one-hop amplitude is negative, while the no-hop and two-hop amplitudes are both positive.
For coherent processes one must add amplitudes before squaring to obtain an intensity.

the two-hop processes helps produce the local maximum near time t = 1.5τ (τ is
the natural lifetime of the first-excited state) seen in Figure 1. The exact result must
be computed by considering all such “paths”.

Reference [6] contains a complete treatment of the problem. In particular, the
off-resonance result is given, as well as the results for the so-called incoherent
processes such as emission with recoil and conversion-electron emission. In the
next section a similar problem is treated, but now the source of the resonant radia-
tion is from a synchrotron.

3. Synchrotron radiation as a source

Since 1985, when the first unambiguous observation of nuclear-resonant excita-
tion of nuclei using synchrotron radiation (SR) [8] was achieved, there has been
significant progress made in this field. A review [9] of this subject area contains
a summary of experimental results, as well as many references to the original
important papers in the field.

When applying the coherent-path model to this case, several modifications need
to be made. In the first place, one needs to determine the relevant amplitudes. Now,
at time t = 0 the synchrotron radiation is present and all absorber nuclei are in
the ground state. This condition is given an amplitude Ak(ω) = A, i.e., a constant
having the dimensions of seconds. The frequency dependence of the synchrotron
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radiation is taken as constant because the synchrotron radiation pulse is essentially
a delta function in time for the cases we treat here. The amplitude corresponding
to excitation of the mth absorber nucleus located at xm to one of its excited states
h̄ωj and no photons or conversion electrons present is Bm,j (ω). At this stage of
the analysis just one excited state is considered. This means that quantum beats
are not yet considered. It will become clear, later, how quantum beats can be in-
cluded in the model. Another amplitude Ck′(ω) corresponds to the situation when
all absorber nuclei are in the ground state, there are no conversion electrons, and
a non-SR-pulse photon is present. The final amplitude Dm,p(ω) corresponds to
the presence of a conversion electron from the mth nucleus, all absorber nuclei in
their ground state and no photons are present. The coupled equations relating these
amplitudes in one dimension are

Ak(ω) = A, (13)

(ω − ωj + iε)Bm,j (ω) = A
∑
k

Hk,j

h̄
eikxm +

∑
k′
Ck′(ω)

Hk′,j
h̄

eik′xm

+
∑
p

Dm,p

Hp

h̄
ei(pxm/h̄), (14)

(ω − ωk′ + iε)Ck′(ω) =
∑
m

Bm,j (ω)
H ∗
k′,j
h̄

e−ik′xm, (15)

(ω − ωp + iε)Dm,p(ω) = Bm,j (ω)
H ∗
p

h̄
+ e−i(pxm/h̄), (16)

whereHk,j corresponds to absorption andH ∗
k,j corresponds to emission of a photon

in the j th transition, and a similar notation is used for the conversion electron.
Solving this set of linear coupled equations gives the result for the scattered

intensity in the forward direction

I (z, t ′) = π 2
r

2h̄2)ωp
e− t ′/h̄

∣∣∣∣∣N +
N−1∑
n=1

(− r
2h̄

)n (
N

n+ 1

)
t ′n

n!

∣∣∣∣∣
2

. (17)

Here )ωp is the effective bandwidth of the synchrotron radiation pulse.
If one is considering a recoil-free process, then  r in Equation (17) must be

multiplied by the recoil-free fraction f . Again each term in the sum, contained in
the square brackets of Equation (17), corresponds to a particular hopping sequence
or “path” the radiation takes to reach the detector. If we consider only the recoil-
free processes, i.e., the Mössbauer effect in which radiation is absorbed and re-
emitted by the nuclei without recoil, it is impossible to determine which path was
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taken for each count recorded in the detector. Therefore, each path of this recoil-
free type must be considered as coherent with all other such paths. The result is
then

I (z, t ′) = πf 2 2
r

2h̄2)ωp
e− t ′/h̄

∣∣∣∣∣N +
N−1∑
n=1

(−f  r
2h̄

)n (
N

n+ 1

)
t ′n

n!

∣∣∣∣∣
2

. (18)

There are several parameters in Equation (18); the recoil-free fraction (f ), the ra-
diative width ( r ), and the effective number of resonant nuclei (planes) in the sam-
ple (N). This number N is associated with the thickness of the resonant medium
since it is related to the length of the one-dimensional chain of effective nuclei,
or alternatively, the number of stacked effective planes. N is the only unspecified
parameter in the expression for the intensity.

Using Equation (18) model-calculations are presented in Figure 3 for the case
of 57Fe. The calculations have been normalized to one at time t ′ = 0. Actually the
value of the forward scattered intensity at t ′ = 0 is proportional to the thickness
squared (N2). The results in Figure 3 show the effect of increasing the thickness of
the resonant medium. Notice the experimentally observed “speed-up” effect where
the intensity radiated in the forward direction decays faster than one would expect
according to the lifetime of an isolated nucleus. This effective lifetime (of the
exciton in other theories [10–18]) decreases as the sample thickness increases. In
fact, when the sample reaches a certain thickness, the decay curve exhibits a local
maximum at a time greater than zero. This effect has been termed “dynamical
beating” [7]. To see this more clearly, the lower portion of Figure 3 shows the
results on an expanded scale. In principle, as the sample becomes even thicker,
more local maxima appear in the time-dependent intensity curve. These results
agree with those found earlier, both theoretically [18] and experimentally [19, 20].
The advantage of the new approach is that it gives new insights into the origin of
the speed-up and dynamical beating effects.

To treat quantum beats we need to consider situations in which the nuclei emit
radiation from recoil-free transitions at two or more frequencies that have the
same polarization. Under such conditions these frequencies will interfere produc-
ing quantum beats in the time-dependent forward-scattering intensity [7, 20–22].
Of course polarization of the incident synchrotron radiation, as well as the polariza-
tion of the emitted radiation must be considered. *j corresponds to the amplitude
for emitting radiation at frequency ωj . If two or more transitions emit radiation in
recoil-free processes at different frequencies having the same polarization, these
amplitudes must be added due to their coherence before the intensity is calculated.
This leads to the well-known phenomena of quantum beats.

The counting rate at the detector assuming that all paths are coherent is given
by,

I (z, t ′) = c

∣∣∣∣∑
j

*j (z, t
′)
∣∣∣∣
2

, (19)
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Figure 3. The time-dependent forward scattering intensity for three different values of the
sample thickness, i.e., effective number of resonant nuclei N = 5 (solid line), 20 (shorter
dashed line), and 45 (longer dashed line), is shown. Time is measured in units of the natural
lifetime. Notice the “speed-up” effect and, in the lower portion of the figure, the “dynamical
beat”. The intensity for each case is normalized to 1 at time t ′ = 0.

where the sum over j is taken for those transitions that produce radiation having
the same polarization. Modifying Equations (18) and (19) accordingly gives

I (z, t ′) = πγ 2
R

2h̄2)ωp

∣∣∣∣∣
∑
j

fje
−i(ωj−i /(2h̄))t ′

×
[
N +

N−1∑
n=1

(−fjγR
2h̄

)n(
N

n+ 1

)
t ′n

n!
]∣∣∣∣∣

2

, (20)

where an fj has been inserted to account for the specific transition probability.
In order to be specific, consider the synchrotron radiation interacting with an

iron foil that is polarized so that the internal magnetic field is in the same direction
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as the synchrotron beam. The synchrotron radiation is almost completely linearly
polarized in the plane of the synchrotron ring. This polarization can be expressed
in terms of a superposition of right and left circularly polarized states. For the case
under discussion the emitted radiation is composed of only right and left circularly
polarized components also. If one labels the transitions from 1 to 6 according to
their increasing frequencies ωi (i = 1–6), then line 1 and line 4 will have one
polarization while line 3 and line 6 will have the other. Assuming no electric-field
gradient at the sites of the 57Fe nuclei, the difference in each pair of frequencies
is the same. Thus there will be only one beat frequency corresponding to about
14 ns appearing in the time-dependent intensity spectrum. As mentioned above,
one needs to incorporate the transition probability for each transition considered.
In this case it is well known that lines 1 and 6 have relative intensities of 0.75 and
lines 3 and 4 have relative intensities of 0.25. The resulting time-dependent forward
scattering intensity is then given by Equation (20) specialized for this case

I (t ′) = π 2
r

2h̄2)ωp

∣∣∣∣∣3f

8
e−i(ω1−i /(2h̄))t ′

N−1∑
n=0

(
N

n+ 1

) (
3f  rt ′

8h̄

)n
(−1)n

n!

+f

8
e−i(ω4−i /(2h̄))t ′

N−1∑
n=0

(
N

n+ 1

) (
f  rt

′

8h̄

)n
(−1)n

n!

∣∣∣∣∣
2

.

(21)

Figure 4 gives an example of the quantum-beat effect. In Figure 4 the result is
calculated for the case when N = 45. This result agrees precisely with that ob-
tained using the classical optical model [23]. The time dependence of the forward-
scattered intensity is complicated here because of the combination of effects due
to quantum beats (the factors e±i(ω1−ω4)t in Equation (21)) and to speed-up and
dynamical beats (the sum over n, which reflects the multiple scattering, as has
been discussed above).

Reference [24] gives a detailed analysis of synchrotron radiation problem. Both
the elastic and inelastic channels are treated in depth according to the coherent-path
model.

4. Enhanced-resolution resonant-detector Mössbauer spectroscopy

As will be seen in this section, the coherent-path model can be used to predict the
enhanced resolution capability of Mössbauer spectroscopy when using a resonant
detector. The result of the analysis will show that, by using a resonant detec-
tor in Mössbauer spectroscopy, the spectral line width can be as small as 1.46 ,
where  is the line width of the excited-state nuclear level. As is well known,
the minimum line width obtained in conventional Mössbauer experiments is 2 .
The coherent-path model is applied here to a model system consisting of a source
nucleus, an absorber nucleus, and the resonant-detector nucleus. This corresponds
to the case of a thin absorber [25]. A more general treatment is found in [26].
As noted, the minimum line width obtained in a Mössbauer spectrum taken under
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Figure 4. Calculated results for the iron foil case when the magnetic field is in the direction of
the synchrotron-radiation beam. Lines 1 and 4 have the same polarization. Lines 3 and 6 also
have the same polarization but different from that of lines 1 and 4. In the absence of an electric
field gradient at the 57Fe nuclei, there is only one beat pattern corresponding to a beat period
of about 14 ns. These results are for the case when the effective number of resonant nuclei is
N = 45. The lower portion of the figure shows, on an expanded scale, the rather complicated
structure in detail.

these conditions is found to be appreciably smaller than the line width obtained in
a conventional Mössbauer set-up. Thus the conversion-electron resonant-detector
scheme may be used to advantage in experiments requiring the highest possible
energy resolution.

A conventional Mössbauer-effect apparatus [27] consists of a radioactive source,
an absorber containing the same type of nuclei in the ground state, and a radiation
detector such as a proportional counter. One measures the transmitted gamma
radiation as a function of the relative velocity of the source with respect to the
absorber. The difference, between the proposed experimental set-up and a con-
ventional Mössbauer set-up, is due to the nature of the detector. Instead of a con-
ventional radiation detector, such as a proportional counter or a NaI detector, one
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uses a nuclear “resonant” detector. The resonant detector contains ground-state
nuclei, which are in resonance with the stationary excited-state source nuclei. In
this experimental configuration the absorber is moved with respect to the source
and the detector which are both stationary. The experiment proceeds by detecting
the conversion electrons generated in the resonant detector as a function of the
velocity of the absorber.

Consider a system whose initial condition is as follows. There is: an excited
nucleus, having energy h̄ω0, at the origin of a coordinate system, an absorber
nucleus, whose excited-state energy is h̄ω′

0, in the ground state (nucleus 1) situated
at position x1, and another ground-state nucleus, having an excited-state energy
h̄ω0, at position x2 (nucleus 2). The last nucleus, nucleus 2, represents the reso-
nant detector. The absorber nucleus is situated between the source nucleus and the
resonant-detector nucleus. The evolution of the quantum system composed of the
three nuclei, the radiation field and the conversion electrons will be investigated
below. In the following, the recoilless fractions for emission and absorption are set
equal to one for convenience.

One can apply the same mathematical formalism to this system as developed
in Section 2. The following amplitudes can be defined; A(ω) is the amplitude
corresponding to the source nucleus excited (h̄ω0), the other two nuclei in the
ground state, and no photons or conversion electrons present; Bk(ω) is the am-
plitude corresponding to all nuclei in ground state, a photon of wave number k and
energy h̄ωk present, and no conversion electrons present; Ci(ω) (i = 1, 2) is the
amplitude corresponding to nucleus at position xi excited, all other nuclei in ground
state, and no photons or conversion electrons present; Dp(ω) is the amplitude cor-
responding to having a conversion electron from the source nucleus present, having
momentum p, all nuclei in the ground state, and no photons present; Eip(ω) is the
amplitude corresponding to having a conversion electron from nucleus i (i = 1, 2)
present, all nuclei in ground state, and no photons present. Notice the similarity
of these amplitudes to those used in Section 2. In fact, the set of coupled linear
equations are almost identical. At t = 0, only the source nucleus is excited, so we
have the following set of coupled equations

(ω − ω0 + iε)A(ω) = 1 +
∑
k

Hk

h̄
Bk(ω)+

∑
p

Hp

h̄
Dp(ω), (22)

(ω − ωk + iε)Bk(ω) = H ∗
k

h̄
A(ω)+ H ∗

k

h̄
e−ikx1C1(ω)+ H ∗

k

h̄
e−ikx2C2(ω), (23)

(ω − ω′
0 + iε)C1(ω) =

∑
k

Hk

h̄
eikx1Bk(ω)+

∑
p

Hp

h̄
eipxi/h̄E1p(ω), (24)

(ω − ω0 + iε)C2(ω) =
∑
k

Hk

h̄
eikx2Bk(ω)+

∑
p

Hp

h̄
eipx2/h̄E2p(ω), (25)
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(ω − ωp + iε)Dp(ω) = H ∗
p

h̄
A(ω), (26)

(ω − ωp + iε)Eip(ω) = H ∗
p

h̄
e−ipxi/h̄Ci(ω), i = 1, 2, (27)

where all the quantities have been previously defined in one dimension.
One can proceed to solve these equations. After making various substitutions,

the resulting summations can be converted to integrals and evaluated using well-
known prescriptions [4–6]. In reference [6] the problem corresponding to an ini-
tial condition of an excited source nucleus and N resonant absorber nuclei in
the ground state has been treated. It has been shown [6] that this problem has a
closed-form solution if one restricts the calculation to forward scattering.

The fundamental equation for the source radiation is(
ω − ω0 + i

 

2h̄

)
A(ω) = 1, (28)

where the total width of the excited state  is the sum of the conversion-electron
and radiative widths

 =  c +  r. (29)

The radiative width in this one-dimensional problem is

 r = 2L

h̄c

∣∣Hk(ω)
∣∣2
. (30)

The simple form of Equation (28) is due to the fact that, when the radiation goes
from the source nucleus to one of the ground-state nuclei, it is very unlikely that
radiation is re-radiated back to the source nucleus. Macroscopic distances separate
the absorber and detector nuclei from the source nucleus thus any such processes
are extremely rare. Going back to time domain, it can be easily shown using
Equation (28) that

a(t) = e− t /(2h̄). (31)

The source nucleus decays in the normal exponential fashion uninfluenced by the
absorber and detector “nuclei”. The remaining equations become(

ω − ω′
0 + i

 

2h̄

)
C1(ω) = − i r

2h̄
ei(ω/c)x1A(ω), (32)(

ω − ω0 + i
 

2h̄

)
C2(ω) = − i r

2h̄
ei(ω/c)x2A(ω)− i r

2h̄
ei(ω/c)(x2−x1)C1(ω). (33)

The physical reason why Equation (32) is different from Equation (33) is due to
the locations of the absorber nucleus and the detector nucleus relative to the source
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nucleus. The radiation coming from the detector nucleus, which is “downstream”
with respect to the positive direction of the x-axis from the absorber nucleus,
does not “return” to re-excite the absorber nucleus. The conclusion of a careful
analysis shows that only radiation coming from nuclei “upstream” from a given
nucleus can give a contribution to the excitation of that nucleus, i.e., the radiation
effectively only goes forward. When considering an absorber having many nuclei,
the same conclusion holds [6]. The fact, noted above, that radiation coming from
the absorber nuclei does not get back to the source nucleus is consistent with this
conclusion.

Summarizing the results gives

A(ω) = 1

ω − ω0 + i /(2h̄)
, (34)

C1(ω) = − i r
2h̄

1

ω − ω′
0 + i /(2h̄)

ei(ω/c)x1A(ω), (35)

C2(ω) = − i r
2h̄

1

ω − ω0 + i /(2h̄)
ei(ω/c)x2A(ω)

− i r
2h̄

1

ω − ω0 + i /(2h̄)
ei(ω/c)(x2−x1)C1(ω). (36)

Substituting (34) and (35) into (36) gives

C2(ω) = − i r
2h̄

1

(ω − ω0 + i /(2h̄))2
ei(ω/c)x2

[
1 − i r

2h̄

1

ω − ω′
0 + i /(2h̄)

]
.(37)

The probability of having nucleus 2, the “detector nucleus”, excited is found from
Equation (37).

∣∣C2(ω)
∣∣2=  2

r

4h̄2

1

[(ω − ω0)2 +  2/(4h̄2)]2

+ 3
r ( r − 2 )

16h̄4

1

[(ω − ω0)2 +  2/(4h̄2)]2

1

[(ω − ω′
0)

2 +  2/(4h̄2)] .
(38)

The probability of having a conversion electron produced in the “detector” is∫ +∞

−∞
|C2(ω)|2 dω=  2

r

4h̄2

∫ +∞

−∞
1

[(ω − ω0)
2 +  2/(4h̄2)]2

dω

+ 3
r ( r − 2 )

16h̄4

∫ +∞

−∞
1

[(ω − ω0)2 +  2/(4h̄2)]2

× 1

[(ω − ω′
0)

2 +  2/(4h̄2)]dω. (39)
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The first integral is a standard integral. One finds for the first integral a constant
value πh̄ 2

r /  
3. This constant value does not depend on ω′

0, the frequency corre-
sponding to the absorber nucleus. This contribution corresponds to the conversion-
electron production due to radiation coming directly from the source to the detector
nucleus without interacting with the absorber. In the recorded spectrum this will
give a constant background analogous to the background observed in a conven-
tional Mössbauer experimental result. The second integral, which will be denoted
I (ω0, ω

′
0), can be calculated by means of contour integration. One finds

I (ω0, ω
′
0) = π 3

r ( r − 2 )

4h̄ 3

12a2 +)ω2
0

(4a2 +)ω2
0)

2
, (40)

where a and )ω0 are defined as

a =  

2h̄
, (41)

)ω0 = ω0 − ω′
0. (42)

Equation (40) gives the conversion-electron distribution as a function of the relative
frequency of the absorber nucleus relative to the source (and resonant detector)
nucleus. This distribution looks like a Lorentzian, although it is not a real one. The
full width at half maximum of this distribution can be calculated easily. One finds
a value 1.463 . This value is close to 1.47 , advanced in [28], where a heuristic
approach has been given based on the calculation of the transmission integral. Also
in [28], experiments are presented where this narrowing was confirmed using 119Sn.
More recently, this narrowing has been observed [29] again with 119Sn.

In order to check the consistency of the model, one can calculate the resulting
line width in a conventional Mössbauer procedure using this approach. To do this,
consider only the source and absorber nucleus. Then imagine doing the conven-
tional experiment by detecting the conversion electrons produced in the absorber as
a function of ω′

0. The result is obtained by solving Equation (32) for C1(ω), finding
the absolute value squared and integrating over ω, as done above for C2(ω). The
full width at half maximum is found to be 2 as expected.

The results of this section are as follows. The coherent-path model has been
applied to a particular type of Mössbauer-effect set-up that makes use of a con-
ventional source, a conventional absorber and a resonant detector consisting of
ground-state nuclei with the same environment as the source nuclei. The equa-
tions for the complete system of resonant nuclei, gamma radiation, and conversion
electrons have been solved. When counting conversion electrons, produced by the
resonant detector nuclei, as a function of the Doppler velocity of the absorber with
respect to the source and resonant detector, the minimum line width is 1.463 .
This line width is appreciably less than the minimum line width of 2 obtained
in a conventional Mössbauer-effect experiment. Thus, for those experiments that
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profit from obtaining the highest possible energy resolution, the proposed exper-
imental configuration can be used to advantage. The theory can be extended to
the case where both the absorber and detector have an arbitrary thickness. Under
such conditions, line broadening will naturally occur, as in conventional Möss-
bauer spectroscopy, but the advantage of relatively narrower lines, compared to the
conventional set-up, will remain.

5. The gamma echo: π phase-shift induced transparency

In the gamma-echo technique the time-differential Mössbauer spectroscopy
(TDMS) method is applied. However, in this case the radioactive source is moved,
with respect to a nuclear-resonant absorber, during the lifetime of first-excited
nuclear state. This introduces a phase shift between the source radiation and the
radiation from the absorber. If the source is moved abruptly, introducing a π -
phase-shift, the time-dependent intensity shows a sharp increase in the intensity
at that time, the “gamma echo”. Using the coherent-path model, the gamma-echo
effect is seen to be a phase-shift-induced transparency. A closed-form solution
for the time-dependent transmitted intensity has been obtained. The solution has
the form of a sum over coherent paths that the radiation takes in going from the
radioactive source through the absorber to the detector. The model shows that the
sharp increase in the intensity, the “gamma-echo”, at the time when the source is
moved abruptly is due to constructive interference, starting at that time, between
the source radiation and the radiation from the absorber. The exact form of the
gamma-echo spectrum depends on the movement of the source. Shapes having
multiple peaks are possible.

Soon after Rudolph Mössbauer discovered the recoil-free emission and absorp-
tion of gamma radiation, the Mössbauer effect was applied to many branches of
physics. In fact TDMS experiments were done in 1960–70’s and a number of
interesting results were obtained [3, 30–33]. Starting in the 1980’s a number of
more complicated experiments [34–37] were performed based on modifications of
the TDMS technique. The “gamma-echo” effect [36, 37] was observed in the early
1990’s. All of the above mentioned experiments were analyzed using the semi-
classical optical model [3, 23, 38–40] originally due to Hamermesh. More recently
a generalization of the semi-classical optical model, using space–time theory [41],
has been developed to address the nuclear resonant forward scattering problem.

The semi-classical optical model has proven to be very useful. However, the
model does not usually provide a clear physical explanation of the phenomenon
being studied. This perhaps explains why the Finnish group [36, 37] coined the
term “gamma echo” although they were quite aware that the “gamma echo” was
an interference effect. It is not at all clear that there is an “echo” involved in these
experiments. The coherent-path model provides a clear physical explanation of the
“gamma-echo” phenomenon as simply due to constructive interference between
coherent amplitudes.
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In order to start on the “gamma-echo” problem, consider the standard TDMS
experiment as done in Section 2. Assume the source and absorber nuclear transi-
tions have a single frequency and they are in exact resonance. Then, if the scattering
is forward, the time-dependent amplitude for recoil-free radiation reaching the
detector according to the coherent-path model is given by Equation (11) above.
If all the numerical factors are now included in Equation (11) one finds

amprecoil-free(t) =
√
fs r

2h̄
e− /(2h̄)t e−iω0t

[
1 +

N∑
n=1

(
N

n

)(−fa r t
2h̄

)n 1

n!

]
, (43)

where all the factors have been previously defined except; fs which is the recoil-
free fraction in the source, and fa which is the recoil-free fraction in the absorber.

As indicated above, the gamma echo is produced using a TDMS technique in
which the source is moved during the lifetime of the first-excited nuclear state.
In the pioneering work of the Finnish group [36, 37] a number of different cases
of source modulation were presented. Of course there are an infinite number of
possibilities. For the purposes of this paper, only the simple idealized case will be
considered where the source is moved instantaneously to a new position. A more
general treatment of this problem is found in [42].

Assume that the instantaneous source displacement moves the source a distance
equal to one-half of the wavelength of the source radiation. It will be seen below
that this causes the gamma echo to be a maximum. The wavelength of the radiation
from the 14.4 keV transition is 0.086 nm. So now assume that at some instant of
time, after time t = 0 during the decay of the source, the phase of the source
radiation is changed by π . This corresponds to a change in the optical path length,
from the source to the detector, by 1/2 the wavelength. To include this source
modulation, we need to incorporate the new situation into our coherent-path model.

The condition, that the phase of the source radiation is instantaneously changed
by π at a time t = tswitch, can be treated by introducing two amplitudes. The first
amplitude corresponds to the source radiating up to time tswitch and then changing
phase. So this can be written as

amp1(t)=
√
fs r

2h̄
e− /(2h̄)t e−iω0t

×
[

1 −1(t − tswitch)+
N∑
n=1

(
N

n

)(−fa r t
2h̄

)n 1

n!

]
. (44)

Here 1(t − tswitch) is the Heaviside step function that is 0 for t < tswitch and 1
for t > tswitch. Thus amp1(t) corresponds to the usual TDMS situation up to time
tswitch when the source changes phase. The absorber continues to radiate due to its
excitation by the source from time t = 0.

The second amplitude corresponds to the situation when the source continues
radiating at time tswitch but now the radiation has a π phase shift. The second
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amplitude is given by

amp2(t)=
√
fs r

2h̄
e− /(2h̄)te−iω0t2(t − tswitch) eiπ

×
[

1 +
N∑
n=1

(
N

n

)(−fa r(t − tswitch

2h̄

)n 1

n!

]
. (45)

For this second amplitude the source has decayed to its value at time tswitch and
continues radiating. However, the source radiation amplitude has now acquired a
negative value at that time. Also the absorber continues to be excited starting from
time tswitch. It is the interference between these two amplitudes that gives rise to the
“gamma-echo” effect. In order to calculate the final time-dependent intensity, one
adds the two amplitudes and then takes the absolute value squared.

Iπ phase shift(t) = |amp1(t)+ amp2(t)|2. (46)

Figure 5 shows the two calculated amplitudes for the 57Fe case when the size
of the phase shift is π . The lifetime of the nuclear first-excited state of 57Fe is
141 ns. The nuclear-resonant absorber is characterized by the thickness parameter
β = 16 which corresponds to N = 98 in the coherent-path model. The time of
the phase shift is fixed at 100 ns. Notice that, in Figure 5, amp1(t) shows the usual
initial speed-up and then at t = tswitch the amplitude jumps to a large negative
value. This is because the source amplitude is no longer canceling the amplitude
of the absorber radiation. As the source continues to radiate from time tswitch the
amplitude has a negative value and the absorber continues to be excited. Thus

Figure 5. The two amplitudes are shown corresponding to the case when the source is moved
instantaneously a distance of 1/2 of the radiation wavelength. The solid curve is amp1(t) and
the dashed curve shows amp2(t). Notice how the phase of amp1(t), just after the source is
moved, is the same as that of amp2(t). These two amplitudes must be added to obtain the final
result.
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Figure 6. The solid curve shows the “gamma-echo” spectrum. The dashed curve shows the
result in the absence of the instantaneous π phase shift of the source. The two curves agree
up to the time of the phase shift. Notice the increased area under the gamma-echo spectrum
compared with the spectrum without the phase shift. The π phase shift causes the absorber to
appear to be somewhat transparent.

amp2(t) has the form of a normal TDMS shape, starting at time tswitch, but now
with a negative value. It is clear that, when one sums the two amplitudes and takes
the absolute value squared to obtain the intensity, there is a large peak at time
tswitch. This is shown in Figure 6. Figure 6 shows the gamma-echo spectrum and
the ordinary TDMS spectrum for comparison.

6. Summary and conclusions

A relatively new field of research is emerging called quantum nucleonic. It deals
with coherence and interference effects using resonant gamma radiation. The plan
of such research is to approach the success achieved by quantum electronics in the
atomic physics field. The ultimate goal would be the development of a gamma-
ray laser. In order to succeed one needs to understand nuclear resonant gamma-
ray processes as completely as possible. The development of the coherent-path
model for nuclear resonant scattering allows one to view nuclear resonant gamma
phenomena from a very different point of view. This may provide some new insight
that will prove helpful in the development of quantum nucleonics.

The coherent-path model provides a mechanism for understanding the interac-
tion of recoil-free gamma radiation with nuclear resonant matter. The model is so
physically transparent that it is easy to understand the main features of nuclear
resonant scattering and to apply the theory to new situations, as done here for
time-differential Mössbauer spectroscopy, time-differential synchrotron radiation
spectroscopy, enhanced-resolution resonant-detector Mössbauer spectroscopy, and
the “gamma echo”. It is seen that the well-known features, the “speed-up” and
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“dynamical-beat” effects, are due to the destructive and constructive interference
between coherent amplitudes. The amplitudes that must be summed over corre-
spond to all the indistinguishable paths the recoil-free radiation takes in going
from the source through the absorber to the detector. In the theory each path is
labeled by the number of effective absorber nuclei encountered in the forward-
scattering path. The number of ways each path can occur is given by the appropriate
binomial coefficient, which then weights each path. To simplify the language, we
describe the multiple recoil-free scattering processes as “hopping” processes. So,
for example, the “no-hop” process corresponds to the path when the radiation goes
directly from a source nucleus to the detector. For the “one-hop” path, the source
radiation interacts with only one effective nucleus. All multiple hopping paths must
be considered. The single most important result of the theory is the fact that the
odd-numbered-hop amplitudes are 180◦ out of phase with respect to the source
radiation, while the even-numbered-hop amplitudes are in phase with the source
radiation. It is interesting to note that, according to the model, it is the one-hop
amplitude that is responsible for most of the absorption of radiation by an absorber.

Using the coherent-path model, it has been shown that the energy resolution
in Mössbauer spectroscopy experiments can be improved by using the resonant-
detector method. Instead of the usual limiting line width of 2 , the limiting line
width, using the resonant-detector technique, is 1.46 .

The coherent-path model can also explain the “gamma-echo” effect in terms
that are physically understandable. The phenomenon is simply due to the construc-
tive interference of coherent amplitudes. With this new interpretation we see that
there is no “echo”. In this paper only one type of source modulation has been
considered. If the source displacement is applied instantaneously, one can draw the
following conclusions. The closer to t = 0 the displacement occurs, the larger the
size of the gamma-echo peak. The size of the gamma-echo peak is greatest for a
source displacement that corresponds to a π phase shift in the emitted radiation.
This is because the phase of the source-radiation amplitude, after the phase shift,
is in phase with the amplitude of the radiation coming from the absorber that
was excited previously at t = 0. An interesting observation in the “gamma-echo”
technique is that by applying a π phase shift to the source radiation, early in the
decay of the source, one can recover a large portion of the radiation that is incident
on the absorber. Thus the absorber appears to be almost transparent. So instead
of speaking of a gamma echo, one can say that the phenomenon is due to a π
phase-shift-induced transparency.

Using the coherent-path interpretation, which amounts to a sum over indistin-
guishable paths, it appears that certain recoil-free gamma-ray scattering paths give
rise to absorption while others do not. If fact, in the usual transmission experiments,
it is the “one-hop” paths that contribute most to absorption, while the “two-hop”
paths do not. In the more complicated gamma-echo experiments one can say that,
after the π phase shift of the source radiation, the source radiation stimulates the
absorber to radiate forward. This is a type of self-stimulated emission. Without
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the π phase shift of the source radiation, absorption clearly takes place and the
radiation reaching the detector is greatly reduced.
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