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Abstract
We present ab initio spin-density-functional investigations of static long-period
spin-density waves (SDWs) in Cr. Calculations performed in the generalized-
gradient approximation (GGA) and using both projector-augmented-wave and
muffin-tin orbital techniques show that the overestimation of the strength of
the antiferromagnetism suppresses the formation of an SDW. In the local
density approximation we find that a static SDW is also higher in energy than a
commensurate antiferromagnetic structure, but with an energy difference that
tends towards zero as the lattice constant shrinks to its low-temperature limit.
A possible scenario for the origin of the observed SDW state is developed.

The incommensurate spin-density-wave magnetism of Cr has attracted great interest since its
discovery via neutron scattering [1, 2]. At low temperature, Cr exhibits a linearly polarized
incommensurate spin-density wave (SDW), which consists of a roughly sinusoidal modulation
of the magnetic moments:

�m( �R) = �m0 sin(�q · �R)

with an amplitude of m0 ∼ 0.5 µB and an incommensurate wavevector of

�q = 2πa(1 − δ)�ex = �G100(1 − δ).

δ measures the deviation from a commensurate antiferromagnetic structure. The period-
icity of the SDW is given by λ = a/δ and, since δ ∼ 0.05, the wavelength of the SDW
is about 60 Å (or 42 interlayer distances) in the low-temperature limit, increasing to about
78 Å at room temperature. At low T , the SDW is longitudinal (�q ‖ �m), but at Ts � 123 K
a spin-flip transition to a transverse SDW (�q ⊥ �m) occurs. Above the Néel temperature
of TN = 311 K, Cr is paramagnetic (for more details, we refer the reader to the reviews of
Fawcett [3] and Zabel [4]. The incommensurate SDW structure of Cr is very sensitive to elastic
strain or changes of the valence electron concentration, which may stabilize a commensurate
antiferromagnetic (AFM1) structure with a higher magnetic moment and Néel temperature.
Just 0.3 at.% Mn in Cr is sufficient to stabilize an AFM1 configuration with m0 � 0.8 µB and
TN = 600 K [5, 6].

The first explanation of the occurrence of an incommensurate SDW in Cr was given by
Overhauser [7]. He argued that the pronounced nesting properties of the Fermi surface of
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paramagnetic Cr lead to an instability against the formation of a spin-density wave. The
nesting vector �q connecting electron and hole surfaces couples eigenstates of electrons and
holes in such way that occupied states are lowered and unoccupied states are raised in energy.
The nesting vector is incommensurate because the hole Fermi surface is slightly larger than the
electron Fermi surface. At finite temperature, electrons are excited across the gaps creating
by the nesting, causing further reduction of the SDW amplitude. The nesting properties
of the experimental Fermi surface [8] have been confirmed in detail by density-functional
calculations [9–11], but attempts to determine the magnetic ground state have been restricted
to the commensurate antiferromagnetic (AFM1) state.

However, even spin-density-functional investigations of paramagnetic and commensurate
antiferromagnetic Cr are not entirely unproblematic, as evidenced by the large scatter of the
results reported in the literature [9–17]. Calculations performed in the local spin-density
approximation (LSDA) agree qualitatively on the fact that at the equilibrium density, Cr
is nonmagnetic or marginally antiferromagnetic, but disagree substantially on the magnetic
moment at equilibrium. For example Kübler [10, 11] used the augmented-spherical-wave
(ASW) method and predicted an equilibrium lattice constant of a = 2.854 Å (experiment: a =
2.884 Å) and a magnetic moment of m = 0.59 µB at equilibrium and of m = 0.71 µB at
the experimental density. Marcus et al [16], also using the ASW method and the LSDA,
found a = 2.842 Å and a nonmagnetic ground state; at equilibrium density their calculated
moment compares very well with Kübler’s value. Chen, Singh and Krakauer [13] reported
a = 2.798 Å, a nonmagnetic ground state and m = 0.70 µB at the equilibrium lattice constant.
Singh and Ashkenazi [15] used the full-potential augmented-plane-wave (FLAPW) method to
investigate the influence of nonlocal corrections to the exchange–correlation functional in the
form of a generalized-gradient approximation (GGA). With the GGA proposed by Perdew and
Wang [18], they found a lattice constant of a = 2.91 Å (i.e. larger than that from experiment)
for an antiferromagnetic ground state with m = 1.55 µB and m = 1.4 µB at the experimental
density. The huge increase in the stability of the antiferromagnetic state and of the magnetic
moment is not confirmed by the recent FLAPW calculations of Blügel and co-workers [17]
who found using the GGA a = 2.85 Å and m = 0.99 µB, the calculated LSDA lattice
constant being, at a = 2.79 Å, considerably smaller than the previous ASW predictions, but
in agreement with the earlier FLAPW results. The use of the gradient corrections improves
not only the prediction of the lattice parameter, but also leads to a much better bulk modulus;
the tendency to overestimate the magnetic moment, however, is obvious. This comparison
underlines the difficulty, already emphasized by Marcus et al [16], of accurately assessing the
ground-state properties of Cr. The comparison the LSDA and GGA for Cr is in contrast to the
results for other ferromagnetic (Fe) [19] and antiferromagnetic (Mn) [20] 3d metals where the
GGA not only improves the calculated mechanical properties, but is also essential for a correct
prediction of the magnetic ground state.

Only recently have attempts been made to apply density-functional theory (DFT) to
the incommensurate SDW state of Cr. Hirai [21] used the LSDA and the Korringa–Kohn–
Rostoker (KKR) Green’s-function method to calculate the total energy of a few commensurate
SDW states with wavevectors close to the experimental incommensurate wavevector �q =
a∗(0.952, 0, 0), with a∗ = 2π/a. At a density corresponding to the experimental lattice
constant, the total energy of a SDW with q = a∗(19/20, 0, 0) was found to be lower by
about �E ∼ 0.01 to 0.02 mRyd/atom than that for states with slightly different periodicities
(q/a∗ = 17/18 and q/a∗ = 21/22; the energy difference is reported only in a graph). No
energy difference between the SDW and the AFM1 states is reported in the published paper,
but according to Hirai [22] the energy differences are �E(SDW–AFM1) = 0.011 mRyd
and �E(AFM1–NM) = 0.097 mRyd/atom. One should note that the energy difference
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between the antiferromagnetic and the paramagnetic states corresponds to a temperature
of only T ∼ 15 K—this is hardly compatible with the observed Néel temperature. Very
recently, Blügel and co-workers [17] applied the FLAPW method within the GGA to the same
problem. However, since the FLAPW technique does not allow one to handle systems with
a periodicity that is as large as that found experimentally for the SDW state of Cr, only two
commensurate SDWs with q/a∗ = 11/12 and 13/14 were calculated. The energy difference
with respect to the AFM1 state was found to be �E = 0.71 mRyd/atom for q/a∗ = 12/13
and �E = −0.35 mRyd/atom for q/a∗ = 13/14. Note that the energy difference between
these two SDW states and the AFM1 state is more than an order of magnitude larger than
Hirai’s energy difference of 0.011 mRyd/atom between the q/a∗ = 19/20 SDW and the
commensurate antiferromagnetic state. On the basis of a rather daring interpolation between
these wavevectors and q/a∗ = 1 (the AFM1 state) it was concluded that the true energy
minimum occurs close to the experimentally observed SDW wavevector. The problematic
point with this result is that the large change in energy on going from q/a∗ = 12/13 to 13/14
would mean that there is already a relatively large energy gain when the nesting is still far
from perfect. This is hard to reconcile with the well-known sensitivity of the SDW state to
even small changes in the Fermi energy (alloying of just 0.3 at.% Mn is sufficient to stabilize
a commensurate AFM1 state [3]).

The aim of the present work was to perform a thorough analysis of the energetics of
SDW formation in Cr within DFT, using both the LSDA and the GGA and covering the
entire range of wavevectors of interest. This task goes to the very limits of the capability
of even the most advanced electronic structure codes, both because of the long wavelength
of the SDW and because of the smallness of the energy differences involved. In order to
consolidate our results, we used two different techniques: the projector-augmented-wave
(PAW) method, [23] as implemented in the Vienna ab initio simulation package (VASP) [24]
and the linearized muffin-tin orbital (LMTO) method in the atomic sphere approximation
(ASA) [25]. The PAW method is an extremely accurate, yet highly efficient all-electron
full-potential technique based on a plane-wave expansion of the electronic eigenstates. The
LMTO-ASA uses a simplified geometry of the effective one-electron potential and a minimal
s, p, d basis set. In all calculations we used the LDA exchange–correlation functional of
Perdew and Zunger [26], eventually supplemented with the generalized-gradient corrections
proposed by Perdew et al [27] and using the spin interpolation of Vosko, Wilk and Nusair
(VWN) [28] for all spin-polarized calculations. To achieve the accuracy necessary to obtain
reliable energy differences, it is very important to achieve full convergence of the Brillouin-
zone integrations. We used fine Monkhorst–Pack [29] grids with 28 special k-points within the
irreducible Brillouin zone for a cell containing 28 Cr atoms used for modelling a commensurate
SDW with q/a∗ = 13/14—this is the same set-up as is used in the FLAPW calculations
of Blügel and co-workers [17]—in combination with Methfessel–Paxton smearing [30]. A
corresponding set-up has been used for all other calculations.

We begin with a brief look at the properties of bulk bcc Cr as described in the LSDA and
the GGA. The calculated lattice constants, bulk moduli and magnetic moments at equilibrium
and at the experimental density are summarized in table 1; figure 1 displays the variation of
the magnetic moment as a function of the lattice constant. The lattice constant calculated
in the GGA is about 1% smaller than that found in the experiment; the bulk modulus shows
excellent agreement. Our PAW results are almost identical with the FLAPW result of Blügel
and co-workers [17], but in disagreement with earlier the FLAPW–GGA results discussed
above. It is evident that at equilibrium the LSDA underestimates and the GGA overestimates
the magnetic moment of Cr and that the moments show a strong dependence on the lattice
constant (see figure 1). While the GGA predictions for the lattice constant and bulk modulus are
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Table 1. The lattice constant, cohesive energy, bulk modulus and magnetic moment of bcc Cr in
the paramagnetic and antiferromagnetic states.

a (Å) Ecoh (eV) B (Mbar) m (µB)a m (µB)b

LSDA PM 2.779 5.083 3.03 — —
AFM 2.778 5.681 2.92 0.00 0.67

GGA PM 2.836 4.147 2.61 — —
AFM 2.849 4.154 1.89 0.92 1.19

Experimentc AFM 2.884 4.095 1.90 0.60 0.60

a The magnetic moment at the theoretical equilibrium lattice constant.
b The magnetic moment at the measured lattice constant.
c Reference [3].
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Figure 1. The magnetic moment of commensurate antiferromagnetic Cr as a function of the lattice
constant, as calculated using the LMTO (full symbols) and VASP–PAW (open symbols) methods
plus the LSDA (circles) and the GGA (squares). Vertical arrows indicate the equilibrium and the
experimental lattice constants (cf. table 1).

definitely superior to the LSDA values, we have to note that the GGA moment is about twice
as large as the experimentally determined amplitude of the SDW. Close to the breakdown
of antiferromagnetism, the full-potential PAW calculations tend to predict larger magnetic
moments than the LMTO calculations using the atomic sphere approximation—evidently this
is due to the spherical averaging over spin densities and exchange potentials. At lower densities
where the antiferromagnetism is stabilized, this difference gradually vanishes. Figure 2
shows the Fermi surfaces of paramagnetic and antiferromagnetic Cr, calculated using the
GGA. The nesting vector associated with SDW formation is �q1; its length is calculated to be
q1/a

∗ = 0.952, in excellent agreement with the experimental Fermi surface. Both the Fermi
surface and the nesting vectors are almost identical in the GGA and LSDA; hence the nesting
mechanism is not affected by the choice of the exchange–correlation functional.

Figure 3 shows the difference in total energy between the SDW and AFM1 states as a
function of the wavevector �q, as calculated using the VASP–PAW and LMTO-ASA methods
and using the experimental lattice constant in both cases. In the LMTO-ASA the calculations
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Figure 2. Fermi surface contours of paramagnetic Cr in the (001) plane (right panel); the left panel
shows the same contours downfolded to the Brillouin zone of the commensurate antiferromagnetic
structure. GGA calculations using the LMTO-ASA. The calculated magnitude of the nesting vector
�q1 shown in the graph is q1/a

∗ = 0.952.
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Figure 3. The variation of the energy difference between the SDW and the commensurate AFM1
state of Cr as a function of the wavevector. Full dots: LMTO-ASA results; empty circles: VASP–
PAW results; squares: FLAPW results of reference [17]. All calculations use the GGA.

have been extended to q/a∗ = 39/40, i.e. to very elongated tetragonal cells with one atom
in the (100) plane but containing altogether 80 atoms. Both methods predict an almost linear
dependence of the energy difference on the wavevector of the SDW—the close agreement
between the results obtained with two radically different techniques should be noted. For
q/a∗ = 11/12 the VASP–PAW result is in excellent agreement with the FLAPW result of
Blügel and co-workers [17], but we are unable to reproduce their negative energy difference
for q/a∗ = 13/14. Our result means that the GGA fails to produce a stable SDW for Cr. The
almost linear dependence of the energy difference on the wavevector indicates that the energy
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loss disfavouring the SDW state arises from the necessity to quench the magnetic moments
in the vicinity of the node in the SDW. As the moments calculated in the GGA are too large,
this energy loss is too large to be overcompensated by a gain in nesting energy. The extension
of the region in which the moments are quenched varies only little with �q—this explains the
linear variation of the energy difference with the length of the supercell. The profile of the
SDW is not exactly sinusoidal, but—especially for very long wavelengths—more rectangular,
corresponding to a sin(3�q · �R) overtone out of phase with the basic sin(�q · �R) SDW, in agreement
with experiment [3]. Details will be reported elsewhere.

Figure 4 analyses the variation of the amplitude of the magnetic moment as a function of q.
We find that the creation of a SDW reduces the magnetic moment, but at the experimental value
of q/a∗ � 0.952, the calculated moments are still larger (m0 � 0.8 µB) than the experimentally
determined amplitude of the SDW. At smaller wavevectors the magnetic moments calculated
using the LMTO decrease very rapidly, because the frustration becomes too strong. In the PAW
and FLAPW calculations, larger moments persist at smaller q, although the energy differences
relative to the AFM1 state are almost the same in the PAW and LMTO methods. The difference
between the PAW/FLAPW and LMTO calculations is clearly related to the use of the ASA for
potentials and charge densities in the LMTO. The spherical averaging in overlapping atomic
spheres has a tendency to smooth gradients in the exchange potential and spin densities.
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Figure 4. The variation of the amplitude m0 of the SDW as a function of the wavevector q

as calculated in the GGA. Full dots: LMTO-ASA results; empty circles: VASP–PAW results;
squares: FLAPW results (reference [17]).

The instability of SDWs result suggests seeking for an SDW solution in the LSDA,
which produces significantly lower magnetic moments around the equilibrium density. As
the magnetic moment calculated in the LSDA shows almost critical behaviour in this range,
we performed the LSDA calculations at different lattice constants. At the experimental lattice
constant of a = 2.884 Å where the LMTO moment is found to be only m = 0.33 µB,
magnetism disappears at q/a∗ � 0.97, and therefore an SDW solution with the experimental
wavevector is unstable. Hence we have to look for a possible SDW solution at slightly
larger lattice parameters where the AF moment is larger. Figure 5 shows the variation of
the total energy, figure 6 that of the amplitude of the SDW with the wavevector, for lattice
constants that are between 0.4% and 0.8% larger than the experimental value. Although



Letter to the Editor L245

0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99 1,00 1,01

0,00

0,05

0,10

0,15

0,20  r
ws

= 2.694 a.u.
 r

ws
= 2.699 a.u.

 r
ws

= 2.704 a.u.

e
n

e
rg

y 
[m

R
y/

a
to

m
]

q/a*

Figure 5. The variation of the energy difference between the SDW and the commensurate AFM1
state of Cr as a function of the wavevector q as calculated in the LSDA with the LMTO-ASA.
Squares: a = 2.895 Å; circles: a = 2.900 Å; triangles: a = 2.906 Å.

the energy difference �E(SDW–AFM1) is strongly reduced compared to the GGA solution,
the qualitative result remains the same: no minimum representing a stable SDW state could
be detected. At the lattice constant of a = 2.895 Å with an AFM1 moment of 0.50 µB,
magnetism disappears at q/a∗ � 0.95. A further expansion of the bcc lattice by �0.4%
stabilizes the magnetic order, but even at a = 2.906 Å the magnetic moments break down at
SDW wavevectors that are only slightly smaller than the experimental value. Parallel to the
increasing magnetic moment, the energy difference between the incommensurate SDW and
the AFM1 states increases from �E(SDW–AFM1) � 0.01 mRyd/atom at a = 2.884 Å to
�E(SDW–AFM1) � 0.17 mRyd/atom at a = 2.906 Å (both referring to q/a∗ = 0.952).
The reason is again that with increasing amplitude the energy loss from the frustration in the
regions of the node increases. The important message is that in no case is the nesting energy
sufficient to stabilize a SDW with a periodicity in the range between 30 and 60 interlayer
distances. The GGA calculations have not been repeated at different volumes, but it is not
to be expected that this would lead to a different scenario, given the similarity of the LSDA
and GGA Fermi surfaces. Our results agree with those of Hirai insofar as with the LSDA,
the energy difference �E(SDW–AFM1) is smaller than a few hundreds of a mRyd—in our
opinion this means that it is at the margin or even below computational accuracy. There is an
important difference in the magnitude of the magnetic moments: Hirai’s AFM1 moment of
m = 0.7 µB is significantly larger than ours (and also than recent FLAPW calculations in the
LSDA) and persists down to rather small values of q. It is difficult to understand how these
relatively large moments are compatible with such minimal energy differences—this concerns
not only the SDW state, but also (and more importantly) the difference between the NM and
AFM1 states.

It is known that the SDW is coupled to a strain wave [4]. VASP allows for a calculation of
the Hellmann–Feynman forces acting on the atoms and for a structural relaxation of the SDW.
In the PAW calculations for SDW states at fixed interplanar distances, the calculated forces on
the atoms do indeed indicate a tendency to shrink the distances around the nodes of the SDW.
However, as expected from the very small magnetovolume effect in Cr (see table 1), and in
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Figure 6. The variation of the amplitude µ0 of the SDW as a function of the wavevector q as
calculated in the LSDA with the LMTO-ASA. Squares: a = 2.895 Å; circles: a = 2.900 Å;
triangles: a = 2.906 Å.

agreement with the very small amplitude (A ∼ 3.5 × 10−3a) of the strain wave deduced from
the neutron scattering data, the SDW-induced stresses are too weak to allow for an efficient
multiparameter optimization of the SDW supercell calculations. An SDW–GGA calculation
with relaxed interplanar distances leads to the conclusion that these relaxations are too weak to
be determined quantitatively at the level of accuracy of our present calculations. The important
conclusion, however, is that the stress relaxation has no significant effect on the energetics of
the SDW phase.

Hence we are led to the following conclusions:

(i) The overestimation of the magnetic moments in the GGA suppresses the formation of a
stable SDW in Cr. The energy necessary to quench the magnetic moments in the vicinity
of the nodes in the SDW is too high to be overcompensated by the gain in the nesting
energy.

(ii) In the LSDA, Cr is only weakly magnetic at the experimental density. Under these
conditions, the energy difference between the AFM1 and SDW states is essentially zero
at the level of accuracy of our calculations (�E � 0.01 mRyd/atom corresponding to a
temperature of 1.6 K). The amplitude of the SDW is only ∼0.1 µB at the experimental
wavevector.

(iii) Even a very modest expansion of the lattice constant leads to a significant increase
of the magnetic moment and of the SDW–AFM1 energy difference, an expansion of
∼0.5% leads to an amplitude of the SDW of m0 = 0.3 µB and an energy difference of
�E(SDW–AFM1) ∼ 0.12 mRyd/atom.

(iv) Although DFT calculations do not predict an SDW ground state, the excitation energies
for creating a SDW are within the range of thermal energies even well below the Néel
temperature. In addition, our calculations show that the contraction of the lattice on cooling
leads to a reduction of the excitation energy—hence SDWs excited at higher temperature
will not be frozen out as the temperature is lowered. SDWs with the ‘nesting’ wavevector
are favoured, because of the larger number of low-energy excitations.



Letter to the Editor L247

(v) These conclusions are unlikely to be modified qualitatively by the choice of a different
exchange–correlation functional. Any gradient correction will show a tendency to over-
estimate the strength of the antiferromagnetism. However, the LSDA seriously under-
estimates the equilibrium density. The situation that we have found for Cr contrasts with
that established for Mn and Fe, where the GGA is necessary for an even qualitatively
correct assessment of the magnetic ground state [19, 20].

(vi) In the main, we tend to agree with the analysis of Marcus et al [16] relating the properties
of SDW Cr to the small energy differences between NM and AFM1 Cr and to their extreme
sensitivity to volume, combined with the tendency to form dynamical SDWs favoured by
the nesting properties.

In summary, very accurate DFT calculations using two different codes based on plane-wave
and muffin-tin orbital basis sets demonstrate that in neither of its variants does DFT predict a
stable SDW ground state of Cr. Calculations based on the LSDA suggest a possible scenario of
dynamical SDW excitations stabilized at low temperatures by a decreasing excitation energy.
The enhanced magnetism resulting from the GGA tends to suppress SDW formation.

This work was supported by the Austrian Science Fund under project No P12783-PHYS.
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