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Dynamic Micromagnetic Simulation of the
Configurational Anisotropy of Nanoelements

Josef Fidler, Thomas Schrefl, Dieter Süss, and Werner Scholz

Abstract—A finite element method was used to simulate the
magnetization reversal of nanostructured Ni80Fe20 elements with
zero anisotropy. The numerical results show a strong influence of
the size of the cubic and platelet shaped (square and triangular)
elements on the switching field. The calculated switching fields
range from 0 = 0 002 to 0 6 T. Differences of the demag-
netizing field which arise when the field is applied in different
directions, lead to configurational anisotropy effects. Platelet
shaped elements show identical switching behavior in different
directions within the platelet plane. Inhomogeneous magnetization
reversal processes become dominant with increasing element size
100 nm and strongly influence the switching behavior.

Index Terms—Configurational anisotropy, nanomagnets,
numerical micromagnetics, switching field.

I. INTRODUCTION

OVER RECENT years the investigation of the magnetic
switching behavior of nanostructured permalloy elements

[1], [2] has become more advanced due to improvements in nu-
merical micromagnetic methods on the theoretical side and high
accuracy fabrication methods, such as electron beam lithog-
raphy and focused ion beam techniques. The worldwide interest
in these elements is their potential for possible future application
in high density magnetic data storage and microsensor appli-
cations. Shape and magnetocrystalline anisotropydetermine
the magnetization reversal properties. In mesoscopic or nanos-
tructured magnets with the switching fields can be varied
by the choice of the geometric shape of the magnets and the ori-
entation of the applied field. This phenomenon is described as
configurational anisotropy [3]. Numerical micromagnetic mod-
eling using the finite difference or finite element method reveals
the correlation between the local arrangement of the magnetic
moments and the microstructural features on a length scale of
several nanometers and gives a quantitative treatment of the in-
fluence of the shape of mesoscopic or nanostructured magnets
on the magnetization reversal and switching.

Traditional investigations of magnetization reversal in small
ferromagnetic particles assume spherical or ellipsoidal particles
uniformly magnetized along the easy direction for zero applied
field. At the nucleation field the magnetization starts to deviate
from the equilibrium state according to the preferred magne-
tization mode [4]. The magnetization reversal mechanisms in
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nonellipsoidal particles have been rigorously studied applying
finite difference [5], [6] or finite element techniques [7]. The
numerical results clearly show that strong stray fields, which
cause the magnetization to become inhomogeneously arranged,
influence the reversal process drastically [8]–[10].

Differences in switching fields for various directions of the
applied magnetic field are predicted from our micromagnetic
model calculations for cubic and platelet shaped (squared and
triangular) nanoelements neglecting thermally activated magne-
tization reversal processes and surface anisotropy effects. The
influence of the element size on the magnetic switching be-
havior determined only by strayfield and exchange energy will
be shown and possible mechanisms for the magnetization re-
versal will be discussed.

II. M ICROMAGNETIC SIMULATION

A. Micromagnetic and Numerical Background

Micromagnetism starts from the total magnetic Gibb’s free
energy, , of a ferromagnetic system, which is the sum of the
exchange energy, the Zeeman energy, the magnetostatic energy,
and neglecting the magneto-crystalline anisotropy energy [11].

(1)

Here denotes the ferromagnetic exchange constant,is
the magnetic polarization. denotes the external field. When
the components of the polarization vector are approximated by
piecewise linear functions on the finite element mesh, the en-
ergy functional (1) reduces to an energy function with the nodal
values of the vector components as unknowns. Its minimization
with respect to the at the nodal points, subject to the constraint

, provides an equilibrium distribution of the polariza-
tion. To satisfy the constraint, the polarization is represented by
polar coordinates.

The crucial part of the micromagnetic simulation of nanoele-
ments is the accurate calculation of the magnetic stray field.
In finite element field calculation, micromagnetic simulations
introduce a magnetic scalar or magnetic vector potential to
calculate the demagnetizing field. For the calculation of the
demagnetizing field of mesoscopic or nanostructured magnets
the magnetic scalar potential was calculated using a hybrid
finite element/boundary element technique, which was origi-
nally proposed by Fredkin and Koehler [12]. The numerical
integration of the Landau Lifshitz-Gilbert equation of motion
provides the time resolved magnetization patterns during
the reversal process. A Runge-Kutta method optimized for
mildly-stiff differential equations [13] proved to be effective
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TABLE I
NUMBER OF SURFACE / VOLUME ELEMENTS

Fig. 1. Schematic drawing of the shape of the simulated elements showing the
different applied field directions.

for the simulation using a regular finite element mesh and a
Gilbert damping constant . However, for an irregular
mesh as required for triangular nanoelements and a
time step smaller than 10 fs is required to obtain an accurate
solution with the Runge-Kutta method. In this highly stiff
regime, backward difference schemes allow much larger time
steps and thus the required CPU time remains considerably
smaller than with the Runge-Kutta method. Since the stiffness
arises mainly from the exchange term, the demagnetising field
can be treated explicitly and thus is updated after a time interval

. During the time interval the Gilbert equation is integrated
with a fixed demagnetising field using a higher order backward
difference method. is taken to be inversely proportional to the
maximum torque acting over the finite element mesh.

B. Finite Element Model and Intrinsic Properties

The nanomagnets were in the size range 10, 20, 40 and
100 nm for the edge length and in the thickness range 2, 4,
8 and 20 nm for the platelet shaped geometries (square and
triangular). The aspect ratio between edge length and thickness
was kept constant. In order to avoid the influence of the
magnetocrystalline anisotropy effects the following material
parameters were chosen: T, pJ/m and

The nanomagnets were discretized into tetrahedral finite el-
ements with a constant edge length of 5 nm and 2.5 nm for
10 nm edge length, respectively. The total number of the ele-
ments varied from 88 (10 nm cube) to 44 800 (100 nm cube).
Table I summarizes the number of surface and volume elements
after discretization of the nanoelements.

TABLE II
CALCULATED COERCIVE (SWITCHING) FIELD � H [T ]

Fig. 2. Numerically calculated demagnetization curves of a triangular platelet
with 40�40�8 nm . The external field was applied parallel to the [001], [010]
and [100] directions.

Fig. 1 presents the cubic, squared and triangular nanoele-
ments and shows the magnetic field directions. The magnetic
field was applied in certain crystallographic directions, for
cubes parallel to [001], [101], [111], for square platelets par-
allel to [001], [010], [110] and for triangular platelets parallel
to [001], [010], [100]. The calculations were started after
saturation. The field was reduced in steps of T
starting from T.

III. N UMERICAL RESULTS

A 3D micromagnetic FE simulation based on the Landau
Lifshitz-Gilbert equation of motion has been used to system-
atically compare the influence of cubic, cylindrical, disk and
platelet (square and triangular) shaped nanoelements on the
switching field behavior. Table II shows the dependence of
the coercive or switching field with a reversed field applied
parallel to the [001], [101] and [111] directions. Depending on
the orientation of the field it is clearly visible that a switching
behavior occurs for small elements.

Nanomagnets nm show an inhomogeneous vortex-like
magnetization structure during the reversal process. The
resulting switching fields become independent of the direction
of the magnetic field. In 100 nm cubic elements the clear
switching characteristic is replaced by inhomogeneous rotation
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Fig. 3. Numerically calculated demagnetization curves of a square platelet
with 100� 100� 20 nm . The external field was applied parallel to the [001],
[010] and [110] directions.

Fig. 4. Comparison of the transient magnetization states during the reversal of
square elements of the size20� 20� 4 nm and100� 100� 20 nm with
zero magnetocrystalline anisotropy under the influence of a constant reversed
field of � H = �0:001 T parallel to the [010] direction.

of magnetization similar to the “hard direction” rotation.
Platelet shaped elements also show this characteristic “hard
direction” magnetization reversal perpendicular to the platelet
surface.

Only small differences of the switching behavior in various
directions within the platelet plane, such as [010], [100] for tri-
angular (Fig. 2) and [010], [110] for square elements (Fig. 3)
were found. Increasing the platelet size nm the prompt
switching changes to an inhomogeneous magnetization reversal
resulting in a typical rounded demagnetization curve (Fig. 3).
The differences of the magnetization reversal modes are com-
pared in Figs. 4 and 5 for square and triangular elements of dif-
ferent sizes.

Fig. 5. Comparison of the transient magnetization states during the reversal of
triangular elements of the size20�20�4 nm and100�100�20 nm with
zero magnetocrystalline anisotropy under the influence of a constant reversed
field of � H = �0:002 T parallel to the [010] direction.

IV. SUMMARY

Using the hybrid finite element/boundary element method we
investigated the influence of size and shape on the switching
dynamics of mesoscopic or nanostructured NiFe elements
with .

• The numerical results show a strong influence of the ele-
ment size on the switching behavior.

• Configurational anisotropy effects were only observed in
platelet shaped elements with magnetic field directions
perpendicular to the platelet plane.

• Inhomogenous magnetization reversal processes become
dominant with increasing element size nm.
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