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A common optical algorithm for the evaluation of specular spin
polarized neutron and MoK ssbauer re#ectivities
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Abstract

Using the general approach of Lax for multiple scattering of waves a 2�2 covariant expression for the re#ectivity of
polarized slow neutrons of a magnetic layer structure of arbitrary complexity is given including polarization e!ects of the
external magnetic "eld. The present formalism is identical to the earlier published one for the (nuclear) resonant X-ray
(MoK ssbauer) re#ectivity and properly takes the e!ect of the external magnetic "eld of arbitrary direction on the neutron
beam into account. The form of the re#ectivity matrix allows for an e$cient numerical calculation. � 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The detectable information on a thin or strati"ed
structure by the re#ectometric techniques is the
one-dimensional scattering amplitude density pro-
"le perpendicular to the surface, which in turn can
be related to the chemical/isotopic/magnetic, etc.
pro"le within the penetration depth of the corre-
sponding radiation. X-ray and neutron re#ec-
tometry, therefore, have become standard tools in
studying surfaces and thin "lms. In nonresonant
X-ray or unpolarized neutron re#ectometry, the
scattering processes being independent of the po-
larization of the incident wave, any strati"ed me-

dium can be described by a scalar complex index of
refraction. There are other important cases, how-
ever, in which the scattering medium is birefringent
for the corresponding radiation, and the polariza-
tion-dependent multiple scattering leads to non-
scalar optics. These cases include polarized neutron
re#ectometry (PNR) and (synchrotron) MoK ssbauer
re#ectometry (SMR), the latter being only a special
but well-studied case of the anisotropic (resonant)
X-ray scattering problem. Beyond the trivial anal-
ogy between the scalar cases of neutron and X-ray
multiple scattering, the generalization to polariza-
tion-dependent scattering of any waves [1] is not
straightforward and in fact, as we point out below,
it cannot be performed in general. It is the purpose
of this paper to show that, indeed, such analogy, i.e.
a common optical formalism exists for the anisot-
ropic neutron and anisotropic nuclear resonant
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X-ray transmission and re#ection for the case of
forward scattering and that of grazing incidence.

2. General considerations

In this section, starting from the general theory
of Lax [1], we shall obtain some general formulae
for the scattering of multicomponent waves. De-
scription of the various theories of scattering pro-
cesses on a single scatterer lead to an
inhomogeneous wave equation

[(�#k�)I!;(r)]�
�
(r)"0, (1)

where k is the vacuum wave number, I is the unit
matrix, ;(r) is the scattering potential and �

�
(r) is

the amplitude of the scattered wave, an electromag-
netic "eld vector or quantum mechanical spinor
state. For many scattering centers the coherent "eld
ful"ls the

[(�#k�)I#4�Nf ]�(r)"0, (2)

three-dimensional wave equation, where f is the
coherent forward scattering amplitude, N is the
density of the scattering centers per unit volume
and �(r) is the coherent "eld de"ned by an average
of the "eld vectors over the positions and states of
the scattering centers [1]. Eq. (2) shows that from
the point of view of the coherent "eld the system of
randomly distributed scattering centers can be re-
placed by a homogeneous medium, with an index
of refraction n"I#(2�N/k�) f. Since n for both
X-rays and slow neutrons hardly di!ers from I, it is
better to use the susceptibility tensor de"ned by
�"(4�N/k�) f [2].
By choosing a simple homogeneous layer with

the above susceptibility � and z-axis normal to the
layer, one gets the well-known 1D wave equation:

��(z)#k� sin ��I sin �#

�
sin ���(z)"0 (3)

with � being the angle of incidence. De"ning � via
(ik sin �)��(z) :"��(z), we get a system of "rst-order
di!erential equations:

d

dz�
�

��"ikM�
�

��, (4)

where

M"�
0 I sin �#

�
sin �

I sin � 0 � (5)

is commonly called the `di!erential propagation
matrixa in optics [2,3]. Eq. (4) was derived without
specifying the scattering process.
For an arbitrary multilayered "lm with homo-

geneous layers of thicknesses d
�
, d

�
,2, d

�
and dif-

ferential propagation matrices M
�
,M

�
,2,M

�
, �

in Eq. (5) is replaced by the susceptibility �
�
of layer

l. The solution of the di!erential equation (4) can be
expressed in terms of the total characteristic matrix

¸"¸
�

) 2 ) ¸
�

) ¸
�

(6)

of the multilayer, where

¸
�
"exp(ikd

�
M

�
) (7)

is the characteristic matrix of the lth individual
layer. The 2�2 re#ectivity matrix R is derived from
the total characteristic matrix ¸ by

R"(¸
����

!¸
����

!¸
����

#¸
����

)��

(¸
����

#¸
����

!¸
����

!¸
����

), (8)

where ¸
����

(i, j"1, 2) are 2�2 blocks of the 4�4
total characteristic matrix ¸ [2]. The re#ected
intensity

I�"Tr(R�R�) (9)

can be calculated by using the arbitrary polariza-
tion density matrix � of the incident beam and the
re#ectivity matrix [4].

3. Numerical considerations

The numerical problem in evaluating the re#ec-
tivity is the calculation of the exponential of the
4�4 matrices in Eq. (7). Here we cite our previous
results [5] proving that it is possible to get a closed
solution to the general problem requiring the calcu-
lation of 2�2 matrices only. The characteristic
matrix is of the form

¸
�
"�

cosh(kd
�
F

�
) (1/x)F

�
sinh(kd

�
F
�
)

xF��
�

sinh(kd
�
F

�
) cosh(kd

�
F

�
) �, (10)
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where the 2�2 F
�
"�!I sin� �!�

�
and

x"i sin � [2].
To evaluate Eq. (10), "rst we have to calculate the

2�2 square root of the F matrices. This can be
made by using the identity

G���"

G#I�detG

�TrG#2�detG
, (11)

where G is any nondiagonal 2�2 matrix [3]. The
sinh and cosh functions are calculated from their
de"nition with the exponential functions. More-
over, the exponential of the 2�2 matrix G can be
expressed by itself and its scalar invariants:

expG"exp(�
�
TrG)

��cos�detGM I#

sin�detGM
�detGM

GM �, (12)

where GM "G!�
�
ITrG [4].

In order to calculate the characteristic matrix of
a semi-in"nite layer (substrate) S, we have to "nd its
¸
�
P¸� limit for d

�
PR. From Eqs. (5)}(13) fol-

lows that the corresponding limit is given by

¸�"�I p�I#

�
�

sin� �
p��I#

�
�

sin� ��
��

I � (13)

where p"sgn[Re(TrF
�
)] is the sign of the real part

of the trace of F
�
.

The above algebra turns out to be numerically
very stable, therefore this approach is suitable for
fast numerical calculations of the characteristic ma-
trices for anisotropic strati"ed media. In fact, the
exponential of the matrix in Eq. (5) can be cal-
culated exactly without solving any eigenvalue
problem. The program based on this calculus is
freely available [5,6].

4. MoK ssbauer and polarized neutron re6ectometries

A simple application of Eq. (4) to nuclear reson-
ant X-ray scattering is not possible, since the an-
isotropic Maxwell equations and the spin-
dependent SchroK dinger-equation lead to di!erent

results [3,7] and the 3�3 susceptibility tensor can-
not be expressed by the 2�2 forward scattering
amplitude f in general. However, starting from the
Maxwell equations and using the 3�3 nuclear sus-
ceptibility tensor given by Afanas'ev andKagan [8]
the nuclear resonant X-ray re#ectivity could be
derived [2] for forward scattering and grazing inci-
dence in terms of the coherent forward scattering
amplitude. The dynamical theory of X-ray scatter-
ing [9,10] provide an equivalent result in the graz-
ing incidence limit [2,5]. However, in Ref. [2] both
an upper and a lower limit was found for the
grazing angle � for this approximation to apply,
which limits are not present in the original theory
of Lax [1]. The forward scattering amplitude
matrix was expressed for the nuclear resonant X-
ray case in Refs. [4,11] in terms of the hyper"ne
interactions.
The application of the above optics for PNR

implies specifying f (or �) for the interaction poten-
tial ; in Eq. (3). We use the potential
;(r)";

�
(r)#;

�
(r) as the sum of the isotropic

nuclear potential

;
�
(r)"4�b�(r)I, (14)

and the anisotropic magnetic potential

;
�
(r)"!

2m

��
�
�
[B

�
(r)#B

���
]

"!

2m

��
�
�

B(r) (15)

with m being the mass of the neutron, b the nuclear
scattering length of the nucleus in the laboratory
system, �

�
"g�

	
� the magnetic moment operator

of the neutron, g"!1.9132, �
	

"5.050�
10��
 Am�, � the Pauli operator, B

�
the atomic

magnetic "eld, B
���

the (homogeneous) external
magnetic "led. In the "rst Born approximation

f"!

1

4���

d�r;(r), (16)

where � is the volume of the interaction (in fact the
atomic volume). By using �"(4�N/k�) f we get

�"

1

k��
2m

��
g�

	
�BM !4�N�

�

	
�
b
�
I�, (17)
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where index i accounts for the di!erent types of
scattering centers, and 	

�
for the relative abundance

of the ith nucleus. The mean magnetic "eld
BM "B

���
#BM

�
"B

���
#��
�d�rB

�
(r).

In neutron re#ectometry the scattering vector,
Q"2k sin � and the scattering length density

K"k��"

2m

��
g�

	
�BM !4�N�

�

	
�
b
�
I (18)

are more often used than � and �. With these
notations, Eq. (4) reads:

d

dz�
�

��"i�
0

Q

2
I#

2K

QQ

2
I 0 ��

�

��. (19)

Using the de"nition of the Pauli matrices, the scat-
tering length density matrix Eq. (18) is expressed by
the physical quantities

K"

2m

��
g�

	�
BM
��

BM
��

!iBM
��

BM
��

#iBM
��

!BM
��

�
!4�N�

�

	
�
b
�
I, (20)

where BM
��
, BM

��
, BM

��
are the components of the mag-

netic "eld BM in an arbitary coordinate system with
z���B

���
.

Having K from Eqs. (20) or (18) for each layer l,
Eq. (10) is used to calculate the exponential of the
di!erential propagation matrix of Eq. (19). With
this (by applying Eqs. (10)}(13)) "rst Eq. (7) charac-
teristic matrices, then Eq. (6) total characteristic
matrix ¸, from which Eq. (8) complex re#ectivity
matrix R is calculated. For the sake of brevity, we
dropped the layer index l in K, BM , N, 	

�
and b

�
in

Eqs. (16)}(20).
An elegant covariant treatment of specular PNR

[12] including earlier matrix methods of restricted
form [13,14] recently published by RuK hm et al.
turns out to be equivalent to the present results.
Indeed, substituting p



"k sin� and HK

�
"!(��k�/

2m)�
�
for layer l in Eq. (7) of Ref. [12] we obtain Eq.

(10), an equation equivalent to Eq. (3.20) of Ref. [2].
Consequently, what we have shown here is the
equivalence [15] of the supermatrix formalisms de-
veloped for SMR [2] and PNR [12].

5. The external magnetic 5eld as an anisotropic
medium

Although their general treatment would have
allowed for, RuK hm et al. [12] did not explicitly
studied the e!ect of the (guiding or polarizing)
external magnetic "eld on the neutron beam, what
we brie#y outline in this section in the standard
manner borrowed from anisotropic optics [3].
Re#ectivity expression (8) is only valid for a neu-

tron beam incident on the layer system
(l"1, 2, 3,2,S) from the vacuum (l"0). In the
typical experimental setup, however, guiding "elds
and often strong external magnetic "elds are used
in order to eliminate depolarization of the neutrons
and to ensure polarization of the sample, respec-
tively. The e!ect of the external magnetic "eld was
studied by Pleshanov [16] and Fermon [17] in
detail. From Eq. (20) it follows, that the vacuum, in
presence of an external magnetic "eld, is an anisot-
ropic &medium'. Consequently, the incoming beam
is given in this &medium' instead of being given in
the vacuum. In order to treat this problem, follow-
ing Borzdov [3] (for a brief outline in English see
Ref. [2]), for the case of neutron re#ectometry we
introduce an impedance tensor � by the following
relationship:

�
���	�
���	 :"�
���	, (21)

where indexes 0, r and t indicate incident, re#ected
and refracted waves, respectively (see Eq. (3.4) of
Ref. [2]). Substituting Eq. (21) into Eq. (19), we get
the impedance tensors

�,�
"!��"�I#

4K

Q�
, (22)

where K is calculated from Eq. (20) for the given
external magnetic "eld. We dropped �	 because the
substrate is taken as a semi-in"nite layer with Eq.
(13). From expressions (18) and (20) for � we get

�(Q)"
1

Q�
�Q



0

0 �Q
�
�, (23)

where

Q�
	

"Q�$

8m

��
g�

	
�B

���
� (24)
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is the momentum Q
	

"2k sin �
	

measured in the
external magnetic "eld. Due to the birefringence of
anisotropic media (including vacuum in presence of
external magnetic "eld), the beam propagation di-
rections for the di!erent polarizations necessarily
di!er from each other, consequently the angles of
incidence and the momentum of the beams with
di!erent polarizations (sign &#' and &!') are also
di!erent (�

	
and Q

	
). The vacuum momentum

Q can be calculated backwards from Q�
	

by ap-
plying the Fresnel refraction law [Eqs. (20) and (3),
as well as the de"nition of K and Q by Eq. (18)].
Having the impedance tensors of the individual

layers, we simply apply the modi"ed general 2�2
re#ectivity expression

R"[(¸
����

!¸
����

)�!¸
����

#¸
����

]��

[(¸
����

!¸
����

)�#¸
����

!¸
����

] (25)

which takes the e!ect of the external magnetic "eld
into account through the impedance tensor � [2].
The re#ected intensity I� is calculated from Eq. (9)
using the re#ectivity matrix R and the polarization

density matrix �"��
��� of the incident beam,
where the bar represents the average over the po-
larizations [4,12].

6. Conclusion

In summary, a common optical formalism of
(nuclear) resonant X-ray (MoK ssbauer) re#ectometry
and polarized neutron re#ectometry was presented.
Consequently, the strictly covariant formalism of
[3] as published in Ref. [2] and the corresponding
computer program [5,6] are readily available for
neutron re#ectometry of layered systems of arbit-
rary complexity. Taking the e!ect of the external
magnetic "eld through the impedance tensor into
account, a modi"ed re#ectivity expression is given.

The form of the re#ectivity matrix allows for a very
e$cient numerical algorithm for both SMR and
PNR implemented in Refs. [5,6].
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