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Magnetization in quasiperiodic magnetic multilayers with biquadratic
exchange coupling
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A theoretical study of the magnetization curves of quasiperiodic magnetic multilayers is presented.
We consider structures composed by ferromagnetic films~Fe! with interfilm exchange coupling
provided by intervening nonferromagnetic layers~Cr!. The theory is based on a realistic
phenomenological model, which includes the following contributions to the free magnetic energy:
Zeeman, cubic anisotropy, bilinear, and biquadratic exchange energies. The experimental
parameters used here are based on experimental data recently reported, which contain sufficiently
strong biquadratic exchange coupling. ©2001 American Institute of Physics.
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I. INTRODUCTION

The study of the properties of magnetic multilayers h
been one of the most investigated fields in the last dec
The understanding of a number of intriguing results beca
an exciting challenge from both a theoretical and experim
tal point of view. In their pioneer work, Gru¨nberg and
collaborators1 reported evidence of an antiferromagnetic
linear exchange coupling in Fe/Cr/Fe structures. After th
Baibich et al.2 noticed a sudden fall in the electrical resi
tance of Fe/Cr magnetic multilayers when an external m
netic field was applied. The effect was so striking that it w
called giant magnetoresistance, and recently it has b
widely considered for applications in information stora
technology.3 Through magnetoresistance measurements,
kin et al.4 observed an oscillatory behavior of the exchan
coupling in magnetic metallic multilayers as a function of t
nonmagnetic spacer thickness. This work was seminal
number of experimental studies on Fe/Cr/Fe structures w
different nonmagnetic spacer thickness. Later on, in 19
Rührig et al.5 showed evidence of a noncolinear alignme
(90°) between ferromagnetic layers in Fe/Cr magnetic m
tilayers, for nonmagnetic spacer thickness, where the bilin
exchange coupling was small. This behavior could not
explained considering only the usual bilinear exchange c
pling in the free magnetic energy. In fact, the inclusion o
biquadratic exchange term in the free magnetic energy of
system allows the stabilization of noncolinear alignmen
Until recently, it was found that the biquadratic exchan
coupling was too small when compared to the bilinear
change coupling. However, Azevedo and co-workers6–8 pre-
sented a number of experimental results in Fe/Cr/Fe sam
which show the biquadratic exchange coupling compara

a!Author to whom correspondence should be addressed; electronic
ela@dfte.ufrn.br
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to the bilinear exchange coupling. Therefore, the biquadr
coupling can play a remarkable role in the properties of m
netic multilayers.

On the other hand, from an experimental point of vie
due to the rapid development of the crystal growth te
niques, it is now possible to tailor a wide class of magne
multilayers, whose film thickness is extremely well co
trolled. As a consequence, there are magnetic phases
properties which are not shared by the constituent mater

It is known that magnetic properties can depend stron
on the stacking pattern of the layers. Under this aspect,
physical properties of a class of artificial material, the s
called quasiperiodic structures recently became an attrac
field of research. Quasiperiodic structures, which can be
alized as the experimental realization of a one-dimensio
quasicrystal, are composed by the superposition of two~or
more! building blocks that are arranged in a desired mann
They can be defined as an intermediate state betwee
ordered system~a periodic crystal! and a disordered one~an
amorphous solid!.9,10 One of the most interesting features
these systems is that the long range correlations, induce
the construction of the systems, are reflected in their vari
spectra. In fact, many physical properties of quasiperio
systems have been studied such as light propagatio11

phonons,12 electronic transmission,13 polaritons,14 and
magnons.15 In all of these situations, despite the diversity
the systems a common feature is present, namely, a fra
spectra of energy, which can be considered as their b
signature.16,17 However, only very recently were effort
taken towards the understanding of the properties of qua
eriodic magnetic multilayers.15,18

The main aim of this article is a contribution to the u
derstanding of the effects of the quasiperiodic arrangem
on the magnetization curves in magnetic multilayers. We
interested in magnetic phases and alignments that are
il:
6 © 2001 American Institute of Physics
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due to the quasiperiodicity of the system. We have stud
Fe/Cr~100! structures which follow a Fibonacci and a doub
period orgeneralized Fibonacciquasiperiodic sequences.

The layout of the article is as follows: In Sec. II w
discuss the physical model used here, with emphasis in
description of the quasiperiodic sequences. In Sec. III
define the contributions to the magnetic energy. The num
cal methods, used to obtain the equilibrium configurati
are described in Sec. IV. In Sec. V, the results are prese
and discussed. Finally, we draw the conclusions in Sec.

II. PHYSICAL MODEL

A quasiperiodic structure can be experimentally co
structed juxtaposing two building blocks~or, as considered
here, building layers! following a given quasiperiodic se
quence. We choose Fe as the building layer associated
the letterA, and Cr as the building layer associated with t
letterB ~see Fig. 1!. Therefore, we only take into account th
generation of sequences that start and finish with an
building layer, which means an even number of Fe layers
guarantee a real magnetic counterpart. In this way we
avoid the intriguing behavior found when even and odd nu
bers of Fe layers are considered.19 In this article we have
considered two quasiperiodic sequences, namely, the
bonacci and the double period sequences.

A. The Fibonacci magnetic multilayers

The Nth generation of the Fibonacci sequence can
determined appending theN22 generation to theN21 one,
i.e., SN5SN21SN22 (N>2). This algorithm construction re
quires initial conditions which are chosen to beS05B and
S15A. The Fibonacci generations can also be alternativ
obtained by an iterative process from the substitution ru
~or inflation rules!, A→AB, B→A. The Fibonacci genera
tions are

S05@B#, S15@A#, S25@AB#, S35@ABA#, etc.

FIG. 1. The third and fifth Fibonacci generations and their magnetic co
terpart.
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In a given generationSN , the total number of letters is give
by the Fibonacci numberFN , which is obtained by the rela
tion FN5FN211FN22 , with F05F151. Also, FN21 and
FN22 are the number of lettersA andB, respectively. As the
generation order increases (N@1), the ratioFN /FN21 ap-
proach to t5(11A5)/2, an irrational number which is
known as the golden mean. It is also possible to obtain
number of lettersA and B for a given generation by the
substitution matrix of the Fibonacci sequenceMF from,20

F nA
N11

nB
N11G5MFF nA

N

nB
NG . ~1!

Here (nA
N11 ,nB

N11) are the number of lettersA andB in the
(N11)th generation, and (nA

N ,nB
N) are the number of letters

A and B in the Nth generation. The explicit form of the
substitution matrix for the Fibonacci sequence is,

MF5F1 1

1 0G , ~2!

whose first eigenvaluel is the golden meant.
In Fig. 1, we show the third and fifth Fibonacci gener

tions and their magnetic counterparts. Note that the th
Fibonacci generation corresponds to a trilayer Fe/Cr/Fe,
in the fifth Fibonacci generation there is a double Fe layer
is easy to show that the Fibonacci magnetic multilayers,
any generation, are composed by single Cr layers, single
layers, and double Fe layers. The number of Fe single la
is 11FN22 , the number of Fe double layers is211FN21

2FN22 and the number of Cr layers isFN22 . It should be
observed that only odd Fibonacci generations have a m
netic counterpart~they start and finish with an Fe buildin
layer!.

B. The double period magnetic multilayers

TheNth generation of the double period sequence can
obtained from the relations,

SN5SN21SN21
† , ~3!

with

SN
† 5SN21SN21~N>2!, ~4!

The initial conditions areS05Ae S15AB. We can, alterna-
tively, use the substitution rulesA→AB, B→AA. The
double period generations are

S05@A#, S15@AB#, S25@ABAA#, etc.

In a given generationSN , the total number of letters is 2N,
and the number of lettersA and B for consecutive genera
tions can be related by the substitution matrix of the dou
period sequenceMdp , i.e.,20

F nA
N11

nB
N11G5MdpF nA

N

nB
NG . ~5!

Here (nA
N11 ,nB

N11) are the number of lettersA andB in the
(N11)th generation, and (nA

N ,nB
N) are the number of letters

-
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A and B in the Nth generation. As the generation numb
increases (N@1), the ratio between the number of lettersA
andB tends to 2. The explicit form of the substitution matr
for the double period sequence is

MF5F1 1

2 1G . ~6!

In Fig. 2 we show the second and fourth double per
generations and their magnetic counterparts. The double
riod magnetic multilayers are composed by single Fe lay
double Fe layers, triple Fe layers, and single Cr layers
should be observed that, contrary to the Fibonacci case,
even double period generations have a magnetic counter

III. MAGNETIC ENERGY

We consider magnetic multilayers whose constitue
are Fe ferromagnetic films, separated by Cr nonmagn
films. We take thexy plane as the film plane and thez axis as
the growth direction. We consider that the magnetic films
uniformly magnetized and that they behave as m
odomains. We also consider that they do not present dyna
cal excitations and that the very strong demagnetization fi
generates by tipping the magnetization out of the plane,
suppress any tendency for the magnetization to tilt out
plane. Therefore, the degrees of freedom of the magne
tions are restricted to thexy plane. The interfilm exchang
couplings between the ferromagnetic films are weak w
compared to the strong exchange couplings between s

FIG. 2. Same as Fig. 1 for the second and fourth double period genera
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within a given ferromagnetic film. Therefore, we can rep
sent the ferromagnetic films as classical magnetizationsMW ,
composed by the real spins within the films, which a
strongly coupled by the intrafilm exchange coupling. The
classical magnetizations interact through the interfilm
change coupling and they can present some anisotropy
pending on the structure studied. It should be noted that
system is isomorphous to a one-dimensional chain of cla
cal spins.

The global behavior of this system is well described b
realistic phenomenological theory in terms of the free m
netic energy,7 i.e.,

ET5Ez1Eca1Ebl1Ebq. ~7!

Here Ez is the Zeeman energy~between the ferromagneti
films and the external applied magnetic field!, Eca is the cu-
bic crystalline anisotropy energy~which we consider presen
in the ferromagnetic films! and Ebl and Ebq are the bilinear
and the biquadratic exchange coupling energies~between the
ferromagnetic films!, respectively.

The explicit form of the free magnetic energy can
written as

ET52(
i 51

n

t iMW i•HW 1(
i 51

n
t iKca

uMi u4

3~Mix
2 Miy

2 1Mix
2 Miz

2 1Miy
2 Miz

2 !

2 (
i 51

n21

Jbl

MW i•MW i 11

uMW i uuMW i 11u
1 (

i 51

n21

Jbq

~MW i•MW i 11!2

uMW i u2uMW i 11u2
. ~8!

Here,HW is the external magnetic field which is applied in th
film plane, t i is the thickness of thei th Fe layer,MW i is the
classical magnetization of theith Fe layer, andKca is the
cubic anisotropy constant. Also,Jbl andJbq are the bilinear
and the biquadratic exchange couplings, respectively. T
expression, after a tedious but straight calculation, takes
form,

ET5(
i 51

n H 2t iM iH cos~u i2uH!1
1

4
t iKcasin2~2u i !J

1 (
i 51

n21

$2Jbl cos~u i2u i 11!1Jbqcos2~u i2u i 11!%. ~9!

Hereu i is the angular orientation of the magnetization of t
ith Fe layer anduH is the angular orientation of the magnet
field. From this point we consideruH50, which means that
the magnetic field is applied along the easy axis. It is usua
write the total free magnetic energy in terms of experimen
parameters, like

Hca5
2Kca

MS
, ~10!

Hbl5
Jbl

tMS
, ~11!

Hbq5
Jbq

tMS
. ~12!

ns.
 AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html
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In this way we obtain a final expression for the free magne
energy per unit area

ET

tMS
5(

i 51

n

~ t i /t !H 2H0 cos~u i !1
1

8
Hcasin2~2u i !J

1 (
i 51

n21

$2Hbl cos~u i2u i 11!

1Hbqcos2~u i2u i 11!%. ~13!

Here t is the thickness of a single Fe layer which is cons
ered to be the basic tile,Mi is assumed to be equal toMS

~the saturation magnetization!, and Hca is the cubic anisot-
ropy field which turns the~100! direction an easy direction
Hbl is the bilinear exchange coupling field which favors a
tiferromagnetic alignment when negative, and ferromagn
alignment when positive.Hbq is the biquadratic exchang
coupling field which is experimentally found to be positiv
and favors a noncolinear alignment~90°! between two adja-
cent magnetizations.

Once the free magnetic energy is determined, we
calculate the equilibrium configuration for specific values
the experimental parameters as a function of the exte
applied field. In simple situations, the equilibrium configur
tion can be analytically obtained by equating to zero
derivatives of the magnetic energy with respect to the an
u. However, in most cases this leads to transcendental e
tions which can not be analytically solved. From a numeri
point of view, many methods have been proposed to ca
late the equilibrium positions of the magnetizations. In t
next section we describe the methods used in this article

IV. NUMERICAL METHODS

In this section we want to find the global minimum
the cost function

ET5ET~u1 ,u2 , . . . ,un!, ~14!

whereun can assume values in the range@0,2p# and it de-
fines a n-dimensional space. When the dimension of t
space is high, the cost function has a rough surface, i.e., t
are many local minima which make this difficult to find th
global minimum. There are many numerical methods
solve this problem.21 In our specific case two methods we
successfully used, namely, simulated annealing and the
called gradient method.

A. Simulated annealing method

Introduced by Kirkpatricket al.22 simulated annealing
comes from the fact that the heating~annealing! and slowly
cooling a metal, brings it into a more uniformed crystalli
state, which is believed to be the state where the free en
of bulk matter takes its global minimum. The role played
the temperature is to allow the configurations to reach hig
energy states with probability given by Boltzmann’s exp
nential law. Then they can overcome energy barriers
would otherwise force them into local minima. In general
simulated annealing technique can be written as follows:
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~i! Choose an initial point in parameter space, correspo
ing to an initial configuration$u% j , and calculate the assoc
ated energyEj .
~ii ! Choose a second point in parameter space, corresp
ing to a second configuration$u% j 11 , and calculate the as
sociated energyEj 11 .
~iii ! If DE5Ej 112Ej,0, $u% j 11 is the new configuration
of the system.
~iv! If DE>0, we define the probability p5exp
(2DE/kBT) and choose a random number 0<x<1. If x
>p, $u% j 11 is the new configuration of the system. Othe
wise, $u% j is maintained as the configuration of the system
~v! This procedure is executed again and again until
equilibrium is reached.

B. The gradient method

The second method that we have used was the so-ca
gradient method.23 This method is based on the direction
derivative of the cost function~the magnetic energy! in the
search of its global minimum.23 In this way, we need to
calculate the gradient ofET with relation to the set$u%

¹W ET5(
i 51

n
]ET

]u i
û i . ~15!

From this relation we execute the following algorithm to fin
the equilibrium configuration,

~i! We generate a configuration in the parameter space$u% j

from which we calculate the associated energyEj and the
gradient of the cost function.
~ii ! A second point in the parameter space is generated

$u% j 115$u% j2a¹W ET . Herea controls the size of the dis
placement in the direction2¹W ET .
~iii ! The energy of the second point is calculated and
Ej 11.Ej , the parametera ~the size of the displacement! is
divided by two and we go back to~ii !. Otherwise, we instead
generate a new configuration from$u% j 11 .

In the last step the reduction ofa is limited by the pre-
cision value required fore. This limit is reached when
ua¹W ETu,e.

We have used the two methods discussed above to
tain the equilibrium positions of the magnetizations. Ea
method was applied for each value of the applied magn
field and for each set of experimental parameters. We cho
the configuration with the lowest energy furnished by bo
methods as the equilibrium configuration.

V. NUMERICAL RESULTS

In this section we present the numerical results obtai
for the magnetization curves of quasiperiodic magnetic m
tilayers. In all situations we have considered the cubic
isotropy effective fieldHca50.5 kOe which corresponds t
Fe~100! with t.30 Å. In our calculations we have used tw
sets of experimental values for the bilinear and biquadr
 AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html
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exchange coupling:~i! the first one withHbl521.0 kOe and
Hbq50.1 kOe. It lies in the region of the first antiferroma
netic peak of the bilinear exchange coupling, correspond
to a realistic sample whose Cr thickness is about 10 Å;~ii !
the second set withHbl520.035 kOe andHbq50.035 kOe.
It is in the region of the second antiferromagnetic peak of
bilinear exchange coupling, corresponding to a realis
sample whose Cr thickness is about 25 Å.

A. Fibonacci magnetic multilayers

The magnetization curves for the first set of parame
of the Fibonacci magnetic multilayers are shown in Fig.
For the third generation~which corresponds to the we
known Fe/Cr/Fe trilayer!, in the low field region, the magne
tizations are antiparallel. As the field increases, they cont
ously rotate toward the field direction~second order phas
transition! and the saturation is reached when the exter
magnetic fieldH;1.91 kOe. For the fifth generation the
are two first order phase transitions atH;0.71 kOe andH
;0.87 kOe, respectively. The saturation is reached aH
;2.93 kOe. For the seventh generation, there are three
order phase transitions atH;0.28 kOe,H;0.96 kOe and
H;1.06 kOe, respectively. The saturation is reached aH
;3.03 kOe. For this set of parameters the majority of
transitions are of second order. Note that due to the diffe

FIG. 3. Magnetization vs applied field for the third~a!, fifth ~b!, and seventh
~c! Fibonacci generations withuHbqu/uHblu50.10, corresponding to a realis
tic sample whose Cr thickness is about 10 Å. We have considered the c
anisotropy effective fieldHca50.5 kOe, which corresponds to Fe~100! with
t.30 Å.
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Fe layer thickness, for the fifth and seventh generations,
magnetization is not zero even for zero magnetic field.
Fig. 4 we show the results for the second set of parame
For the third generation, due to the strong biquadratic fie
there is no antiparallel phase in the low field region. Tw
magnetic phases are present: 90° (H,72 Oe! and saturated
(H.72 Oe!. The fifth generation presents three magne
phases:~i! 90° (H,72 Oe!; ~ii ! almost saturated (72 O
,H,0.14 kOe!; and~iii ! saturated (H.0.14 kOe!. The sev-
enth generation presents four magnetic phases from 90°H
,36 Oe! to the saturated regime (H.0.14 kOe!. All transi-
tions are of first order. Note the striking self-similar patte
shown by the magnetization profile in this figure~see the
windows!.

B. Double period magnetic multilayers

Figures 5~a! and 5~b! show our results for the doubl
period magnetic multilayers, considering the first set of p
rameters. For the second generation, due to the double
layer, the magnetization has about 1/3 of its saturation va
for zero magnetic field. There is a first order phase transit
from antiparallel to an asymmetric phase atH;0.69 kOe. In
this phase, the magnetizations are asymmetrically orien
along the magnetic field. WhenH;1.34 kOe the saturated
phase emerges. For the fourth generation, for zero magn
field, the magnetization has about 10% of its saturation va
due to the different thickness of the Fe layers. There is a
order phase transition atH;0.29 kOe and the saturation i

bic

FIG. 4. Same as Fig. 3, but foruHbqu/uHblu51.0, corresponding to a realistic
sample whose Cr thickness is about 25 Å.
 AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html
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reached atH;3.27 kOe. All other phase transitions are
second order. For the second set of parameters~see Fig. 6!,
on the contrary, all transitions are of first order. For this
of parameters, there is no antiparallel phase in the low fi

FIG. 5. Magnetization vs applied field for the second~a! and fourth ~b!
double period generations withuHbqu/uHblu50.10. The cubic anisotropy ef
fective field is againHca50.5 kOe. The Cr thickness is 10 Å.

FIG. 6. Same as Fig. 5, but foruHbqu/uHblu51.0, corresponding to a realisti
sample whose Cr thickness is about 25 Å.
Downloaded 28 Feb 2001 to 148.6.169.65. Redistribution subject to
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region, due to the strong biquadratic field. For the seco
generation, the magnetization is about 2/3 of its satura
value whenH50. There are two magnetic phases:~i! 90°
(0,H,72 Oe! and~ii ! saturated (H.72 Oe!. For the fourth
generation, the magnetization for zero magnetic field is ab
1/2 of its saturation value. Four magnetic phases are pres
from the 90° (0,H,38 Oe! to the saturated phase (H
.0.14 kOe!. As in the Fibonacci case, a self-similar patte
is also present in the magnetization curves~see the window!.

VI. CONCLUSIONS

We have studied quasiperiodic magnetic multilaye
composed by ferromagnetic Fe layers separated by nonm
netic Cr layers, arranged according to the Fibonacci a
double period quasiperiodic sequences. We consider tha
Fe layers are linked by bilinear and biquadratic exchan
couplings through Cr layers and present cubic anisotro
The external magnetic field is applied in the plane of t
layers and along an easy axis. We have used two nume
methods to determine the equilibrium configurations of
layers’s magnetizations. The magnetization curves of th
artificial structures were calculated considering two sets
experimental parameters recently reported.6–8 Our results
show that quasiperiodic magnetic multilayers exhibit a r
variety of configurations induced by the external magne
field. In particular two points may be emphasized:~i! the
effect of different thickness of Fe layers and~ii ! the effect of
the biquadratic exchange coupling.

The effect of different thickness of Fe layers is evide
in the low field region. In that region, due to these diffe
ences, there is a net magnetization even if the alignmen
antiparallel and the external magnetic field is zero. Besid
the nature of the phase transitions are changed by the di
ent thickness@Fig. 3~a! shows only second order phase tra
sitions, while Fig. 5~a! presents an additional first orde
phase transition#. These results suggest that, varying t
thickness of Fe layers, it is possible to tailor magnetic m
tilayers to present desired specific phase transitions and c
cal fields. However, as the thickness of Fe layers increa
the crystalline anisotropy of Fe~100! films on Cr~100! also
increases. Fortunately, as a characteristic of the quasiper
multilayers arrangements considered here, the maxim
number of joint Fe layers is two~for the Fibonacci case! and
three ~for the double period case!, no matter the value of
their generation numbers. Besides, from a thickness gre
than 40 Å, the crystalline anisotropy reaches saturation.7

On the other hand, the biquadratic exchange coup
plays a remarkable role in the features of the magnetiza
curves. For example, when the bilinear exchange coup
prevails, the majority of the transitions are of second or
character~see Figs. 3 and 5!. However, when the biquadrati
exchange is compared to the bilinear one, in the presenc
a stronger crystalline anisotropy,8 the transitions are charac
terized by discontinuous jumps in the magnetization that
dicate first order phase transitions. This can be considere
the basic signature of the biquadratic exchange coupling~see
Figs. 4 and 6!, although for the case where there is no biqu
dratic term, a first order phase transition appears due to
 AIP copyright, see http://ojps.aip.org/japo/japcpyrts.html
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anisotropy.24 Furthermore, as shown by the windows in the
figures, the magnetization curves of higher generations
produce the magnetization curves of lower generations. T
self-similar behavior is a general characteristic of quasip
odic systems, although it is not present when the bilin
exchange prevails~Figs. 3 and 5!. A possible explanation for
these different behaviors is because the biquadratic exch
coupling induces long range correlations that emphasize
quasiperiodicity of the system. These long range correlati
make the whole structureseeingits quasiperiodicity, which
is reflected in the magnetization curves. This argumen
reinforced by previous works on the correlation lengths
magnetic systems presenting biquadratic exchange coup
~see, for example, Sørensen and Young25!.

The most appropriate experimental technique for stu
ing the magnetization curves of magnetic films is t
magneto-optical Kerr effect~MOKE!.8 However, because
the MOKE measurements provide surface sensitivity on
scale of the optical penetration depth (;10 Å!, it is neces-
sary to use also a superconductor quantum interface de
magnetometry.19 The two techniques prove complementa
in understanding the switching behavior of the multilay
films, as far as the magnetization curves are concerned.
hope that the present results can stimulate experimental s
ies of these structures.
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