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A theoretical study of the magnetization curves of quasiperiodic magnetic multilayers is presented.
We consider structures composed by ferromagnetic filrg with interfilm exchange coupling
provided by intervening nonferromagnetic layef@r). The theory is based on a realistic
phenomenological model, which includes the following contributions to the free magnetic energy:
Zeeman, cubic anisotropy, bilinear, and biquadratic exchange energies. The experimental
parameters used here are based on experimental data recently reported, which contain sufficiently
strong biquadratic exchange coupling. Z01 American Institute of Physics.
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I. INTRODUCTION to the bilinear exchange coupling. Therefore, the biquadratic

The study of the properties of magnetic multilayers hascou.pllng can play a remarkable role in the properties of mag-
. . . . netic multilayers.

been one of the most investigated fields in the last decade. On the other hand. from an experimental point of view

The understanding of a number of intriguing results became ' P P '

an exciting challenge from both a theoretical and experimen(—jue to the rapid development of the crystal growth tech-

tal point of view. In their pioneer work, Gnberg and niqugs, it is now pos;ible tp tailor a wide class of magnetic
collaborator reported evidence of an antiferromagnetic bi- Multilayers, whose film thickness is extremely well con-
linear exchange coupling in Fe/Cr/Fe structures. After that',[m”ed' _AS a _consequence, there are magn_etlc phases_ and
Baibich et al2 noticed a sudden fall in the electrical resis- Properties which are not shared by the constituent materials.
tance of Fe/Cr magnetic multilayers when an external mag- 't 1S known that magnetic properties can depend strongly
netic field was applied. The effect was so striking that it wasO" the stacking pattern of the layers. Under this aspect, the
called giant magnetoresistance, and recently it has bediysical properties of a class of artificial material, the so-
widely considered for applications in information storage¢alled quasiperiodic structures recently became an attractive
technology’® Through magnetoresistance measurements, Pafi€ld of research. Quasiperiodic structures, which can be ide-
kin et al* observed an oscillatory behavior of the exchange?lized as the experimental realization of a one-dimensional
coupling in magnetic metallic multilayers as a function of theduasicrystal, are composed by the superposition of (o
nonmagnetic spacer thickness. This work was seminal to B10ré building blocks that are arranged in a desired manner.
number of experimental studies on Fe/Cr/Fe structures witfhey can be defined as an intermediate state between an
different nonmagnetic spacer thickness. Later on, in 19919rdered systena periodic crystaland a disordered on@n
Rihrig et al® showed evidence of a noncolinear alignmentamorphous solid>!® One of the most interesting features of
(90°) between ferromagnetic layers in Fe/Cr magnetic multhese systems is that the long range correlations, induced by
tilayers, for nonmagnetic spacer thickness, where the bilinedhe construction of the systems, are reflected in their various
exchange coupling was small. This behavior could not bespectra. In fact, many physical properties of quasiperiodic
explained considering only the usual bilinear exchange cousystems have been studied such as light propagdtion,
pling in the free magnetic energy. In fact, the inclusion of aphonons:? electronic transmissiott, polaritonst* and
biquadratic exchange term in the free magnetic energy of thenagnons? In all of these situations, despite the diversity of
system allows the stabilization of noncolinear alignmentsthe systems a common feature is present, namely, a fractal
Until recently, it was found that the biquadratic exchangespectra of energy, which can be considered as their basic
coupling was too small when compared to the bilinear exsignaturet®!’ However, only very recently were efforts
change coupling. However, Azevedo and co-workérpre-  taken towards the understanding of the properties of quasip-
sented a number of experimental results in Fe/Cr/Fe samplesiodic magnetic multilayers:'8

which show the biquadratic exchange coupling comparable  The main aim of this article is a contribution to the un-
derstanding of the effects of the quasiperiodic arrangement
dAuthor to whom correspondence should be addressed; electronic maiPn the magnetization curves in magnetic multilayers. We are
ela@dfte.ufrn.br interested in magnetic phases and alignments that are only
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z In a given generatio®y, the total number of letters is given
‘ ; by the Fibonacci numbdf,, which is obtained by the rela-
——y : )
X/ ; . tion FN:FN—1+FN—2! W|th FO:F]_:].. AlSO, FN—l and
A t Fe Fn_» are the number of letters and B, respectively. As the
N=3{B d Cr P generation order increasebl¥ 1), the ratioFy/Fy_, ap-
A Fe proach to r=(1+/5)/2, an irrational number which is

known as the golden mean. It is also possible to obtain the
number of lettersA and B for a given generation by the
substitution matrix of the Fibonacci sequerde from ?°

Fe p

A g , nytt ni
P e M &
A 2 2 XFe : ng ! flnN |

N=s (4 |

B cr , Here (X1 ,n}"1) are the number of letters andB in the
A o < (N+1)th generation, andr(y ,n5) are the number of letters
B Cr : A and B in the Nth generation. The explicit form of the
|A Fe substitution matrix for the Fibonacci sequence is,

FIG. 1. The third and fifth Fibonacci generations and their magnetic coun- 11

terpart. Mg= 1 ol (2)

whose first eigenvalug is the golden mean.
due to the quasiperiodicity of the system. We have studied In Fig. 1, we show the third and fifth Fibonacci genera-
Fe/C(100) structures which follow a Fibonacci and a double tions and their magnetic counterparts. Note that the third
period orgeneralized Fibonacdjuasiperiodic sequences.  Fibonacci generation corresponds to a trilayer Fe/Cr/Fe, and
The layout of the article is as follows: In Sec. Il we in the fifth Fibonacci generation there is a double Fe layer. It
discuss the physical model used here, with emphasis in this easy to show that the Fibonacci magnetic multilayers, for
description of the quasiperiodic sequences. In Sec. Il wany generation, are composed by single Cr layers, single Fe
define the contributions to the magnetic energy. The numeritayers, and double Fe layers. The number of Fe single layers
cal methods, used to obtain the equilibrium configurationjs 14+ Fy_,, the number of Fe double layers is1+Fy_;
are described in Sec. IV. In Sec. V, the results are presented F_, and the number of Cr layers By_,. It should be
and discussed. Finally, we draw the conclusions in Sec. Vlobserved that only odd Fibonacci generations have a mag-
netic counterpartthey start and finish with an Fe building

II. PHYSICAL MODEL layen.

A quasiperiodic structure can be experimentally con-g The double period magnetic multilayers
structed juxtaposing two building blocKsr, as considered

here, building layensfollowing a given quasiperiodic se- TheNth generation of the double period sequence can be
quence. We choose Fe as the building layer associated witPtained from the relations,
the letterA, and Cr as the building layer associated with the SNZSN—lsL—l (3)

letter B (see Fig. 1 Therefore, we only take into account the

generation of sequences that start and finish with an Fwith

building layer, which means an even number pf Fe layers, to Sl=Sy_1Sy_1(N=2), (4)
guarantee a real magnetic counterpart. In this way we also

avoid the intriguing behavior found when even and odd num-The initial conditions ar&,=Ae §=AB. We can, alterna-
bers of Fe layers are considerédin this article we have tively, use the substitution rule&A—AB, B—AA. The
considered two quasiperiodic sequences, namely, the Fflouble period generations are

bonacci and the double period sequences. So=[A], S;=[AB], S,=[ABAA], etc.

A. The Fibonacci magnetic multilayers In a given generatiof$y, the total number of letters is"2

The Nth generation of the Fibonacci sequence can pénd the number of letter& and B for consecutive genera-
determined appending thé— 2 generation to th&l—1 one,  tions can be related by the substitution matrix of the double
i.e., Sy=Sy_1Sn_2 (N=2). This algorithm construction re- Period sequenchl gy, ie.?
quires initial conditions which are chosen to §g&=B and nN+1 n)

S,=A. The Fibonacci generations can also be alternatively

obtained by an iterative process from the substitution rules nN+1 =Mgp nN |- ®

(or inflation rules, A—AB, B—A. The Fibonacci genera- B B

tions are Here ("' ,ny*1) are the number of letters andB in the
S,=[B], S;=[A], S,=[AB], S;=[ABA], etc. (N+1)th generation, andr(y ,n5) are the number of letters
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2 within a given ferromagnetic film. Therefore, we can repre-

sent the ferromagnetic films as classical magnetizatlams
composed by the real spins within the films, which are
strongly coupled by the intrafilm exchange coupling. These
classical magnetizations interact through the interfilm ex-
change coupling and they can present some anisotropy de-
pending on the structure studied. It should be noted that this
system is isomorphous to a one-dimensional chain of classi-
cal spins.

The global behavior of this system is well described by a
realistic phenomenological theory in terms of the free mag-
netic energy,i.e.,

ET= EZ+ Eca+ Eb|+ qu. (7)

N=

>iI>Iwmi>

>

Here E, is the Zeeman energfbetween the ferromagnetic
films and the external applied magnetic figl, is the cu-
bic crystalline anisotropy energwhich we consider present
in the ferromagnetic filmsand E, and E, are the bilinear
and the biquadratic exchange coupling ener¢iesween the
ferromagnetic filmyg respectively.

The explicit form of the free magnetic energy can be
written as

n n
Er=—> tM;-H+
T ;1 iV ;|Mi|4

IDILIDImIDIDID]

DD WD DD

X(MiZXMiZy+Mi‘2XMi22+Mi2yM-2

1Z

FIG. 2. Same as Fig. 1 for the second and fourth double period generations. n—-1 Y n-1 Y 2
Mi- M1 (Mi-Mi i)
—_2 Jb|f+2 quﬁ. 8

=1 UMM ET T IMG M|

A and B in the Nth generation. As the generation number . L L L
increases > 1), the ratio between the number of lettérs Here,H is the external magnetic field which is applied in the

andB tends to 2. The explicit form of the substitution matrix film plane, t; is the thickness of théth Fe layer,M; is the
for the double period sequence is classical magnetization of thigh Fe layer, andK, is the
cubic anisotropy constant. Alsdy andJy, are the bilinear
11 and the biguadratic exchange couplings, respectively. This
(6) biq \ g plings, pe y.
2 1 expression, after a tedious but straight calculation, takes the
In Fig. 2 we show the second and fourth double period

form,
generations and their magnetic counterparts. The double pe- " 1
riod magnetic multilayers are composed by single Fe IayersET=2 —t;M;H coq 6,— 6y) + ZtiKcasinz(ZGi)
double Fe layers, triple Fe layers, and single Cr layers. It =1
should be observed that, contrary to the Fibonacci case, only n-1
even double period generations have a magnetic counterpart. + 21 {—=JpiCcog 6= 6; 1)+ Jpg cog(6;—6;,1)}. (9
=

MF:

IIl. MAGNETIC ENERGY Here 6; is the angular orientation of the magnetization of the

] ) ) . ith Fe layer and), is the angular orientation of the magnetic
We consider magnetic multilayers whose constituentsia|q. From this point we considef, =0, which means that

are Fe ferromagnetic films, separated by Cr nonmagnetifhe magnetic field is applied along the easy axis. It is usual to

films. We take thecy plane as the film plane and ta@xis as \yyite the total free magnetic energy in terms of experimental
the growth direction. We consider that the magnetic films argyarameters, like

uniformly magnetized and that they behave as mon-

odomains. We also consider that they do not present dynami- ~ 2Kea 10
cal excitations and that the very strong demagnetization field, Mg’ (10
generates by tipping the magnetization out of the plane, will

suppress any tendency for the magnetization to tilt out of H Joi (11)

plane. Therefore, the degrees of freedom of the magnetiza-  ® tMg’
tions are restricted to they plane. The interfilm exchange ]
couplings between the ferromagnetic films are weak when | _ ~bd (12)

compared to the strong exchange couplings between spins P tMg”
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In this way we obtain a final expression for the free magnetidi) Choose an initial point in parameter space, correspond-

energy per unit area ing to an initial configuratiorf 6};, and calculate the associ-

E n 1 ated energy; .

T ; ii) Choose a second point in parameter space, correspond-
L= (t;/t)] —Ho cog 8;) + = HeaSin(26, (i) P P pace, P
M 2:1 (6 /0 0 €08 01) + g HeaSIM(261) ing to a second configuratiofg}; ., and calculate the as-
n-1 sociated energg; , ;.
i) If AE=E;,,—E;<0,{6}, is the new configuration
+ —H,, cog 8§ — 6; (”l) j+1 j ’ j+1
;1 {~Huicod 6= fi.1) of the system.

(iv) If AE=0, we define the probability p=exp
+HpqCoS(6,— 0i1.1)} (13 (—AE/kgT) and choose a random numbe=g<1. If x

Heret is the thickness of a single Fe layer which is consid-=P, {6};+1 is the new configuration of the system. Other-

ered to be the basic tiley; is assumed to be equal Mg wise, { #}; is maintained as the configuration of the system.

(the saturation magnetizatipnand H, is the cubic anisot- (V) This procedure is executed again and again until the

ropy field which turns thé100) direction an easy direction. €equilibrium is reached.

Hy, is the bilinear exchange coupling field which favors an-

tiferromagnetic alignment when negative, and ferromagnetic

alignment when positiveHyq is the biquadratic exchange g The gradient method

coupling field which is experimentally found to be positive

and favors a noncollnear allgnmqlgoo) between two ad]a_ The Second methOd tha.t we have USEd was the SO'Ca”ed
cent magnetizations. gradient method® This method is based on the directional

Once the free magnetic energy is determined, we caferivative c_)f the cost fgn.ctio(the ma_gnetic energyin the
calculate the equilibrium configuration for specific values ofS€arch of its global m'”'ml{“’)"o’- In this way, we need to
the experimental parameters as a function of the extern&@alculate the gradient d&r with relation to the sef 6}
applied field. In simple situations, the equilibrium configura- n
tion can be analytically obtained by equating to zero the VE[=> ’9_ETA_ (15)
derivatives of the magnetic energy with respect to the angle =106,

0. However, in most cases this leads to transcendental equa-
tions which can not be analytically solved. From a numericalFrom this relation we execute the following algorithm to find
point of view, many methods have been proposed to calcuthe equilibrium configuration,

late the equilibrium pOSitiOﬂS of the magnetizations. In the(|) We generate a configuration in the parameter S@a};‘e
next section we describe the methods used in this article. from which we calculate the associated enefyyand the
gradient of the cost function.
(i) A second point in the parameter space is generated by

IV. NUMERICAL METHODS {0}j+1={0}j—aﬁET. Here a controls the size of the dis-
. ) i . placement in the directior VE+.
In this section we want to find the global minimum of (i) The energy of the second point is calculated and if
the cost function E;+1>E;, the parametew (the size of the displacemeris
Et=E(61,6,, ....6,), (14)  divided by two and we go back {@). Otherwise, we instead

) ] generate a new configuration fropay}; ;.
where 6,, can assume values in the rands2s] and it de- In the last step the reduction afis limited by th
fines an-dimensional space. When the dimension of this . . n el ast step de fre uchﬁ_n i IS imite ﬁ de prr]e-
space is high, the cost function has a rough surface, i.e., thefSION Vvalue required fofe. IS limit Is reached when

are many local minima which make this difficult to find the |aVE|<e. _
global minimum. There are many numerical methods to  We have used the two methods discussed above to ob-

solve this probleni! In our specific case two methods were t@in the equilibrium positions of the magnetizations. Each
successfully used, namely, simulated annealing and the sé?€thod was applied for each value of the applied magnetic

called gradient method. field and for each set of experimental parameters. We choose
) ) the configuration with the lowest energy furnished by both
A. Simulated annealing method methods as the equilibrium configuration.

Introduced by Kirkpatricket al?? simulated annealing

comes from the fact that the heatif@nnealing and slowly

cooling a metal, brings it into a more uniformed crystalliney, NUMERICAL RESULTS

state, which is believed to be the state where the free energy

of bulk matter takes its global minimum. The role played by In this section we present the numerical results obtained
the temperature is to allow the configurations to reach highefor the magnetization curves of quasiperiodic magnetic mul-
energy states with probability given by Boltzmann’s expo-tilayers. In all situations we have considered the cubic an-
nential law. Then they can overcome energy barriers thaisotropy effective fieldH.,=0.5 kOe which corresponds to
would otherwise force them into local minima. In general, aFg(100) with t>30 A. In our calculations we have used two
simulated annealing technique can be written as follows: sets of experimental values for the bilinear and biquadratic
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FIG. 4. Same as Fig. 3, but foir,g|/|Hy| = 1.0, corresponding to a realistic

FIG. 3. Magnetization vs applied field for the thig@, fifth (b), and seventh sample whose Cr thickness is about 25 A.

(c) Fibonacci generations witfHpg/|Hy| =0.10, corresponding to a realis-
tic sample whose Cr thickness is about 10 A. We have considered the cubic

anisotropy effective fieltH.,= 0.5 kOe, which corresponds to @60 with . . .
=30 A, “ Fe layer thickness, for the fifth and seventh generations, the

magnetization is not zero even for zero magnetic field. In
Fig. 4 we show the results for the second set of parameters.
For the third generation, due to the strong biquadratic field,
there is no antiparallel phase in the low field region. Two
magnetic phases are present: 96P<(72 Oe and saturated
%H>72 0e. The fifth generation presents three magnetic

exchange couplingi) the first one withH,=—1.0 kOe and
Hpg=0.1 kOe. It lies in the region of the first antiferromag-
netic peak of the bilinear exchange coupling, correspondin

to a realistic sam.ple vzhose Cr thickness |s_about 1QiiA; phases:(i) 90° (H<72 O8: (ii) almost saturated (72 Oe
the second set withl,= —0.035 kOe andH,,=0.035 kOe. )

o . . a = <H<0.14 kOg; and(iii ) saturated K1>0.14 kOg. The sev-
It is in the region of the second antiferromagnetic peak of the . . R
bilinear exchange coupling, corresponding to a realisticenth generation presents four magnetic phases from B0” (
sample whose Cr thickness is about 25 A. <36 08¢ to the saturated regiméd(>0.14 kOsg. All transi

tions are of first order. Note the striking self-similar pattern
A. Fibonacci magnetic multilayers shown by the magnetization profile in this figufgee the

The magnetization curves for the first set of parametergv'ndows)‘
of the Fibonacci magnetic multilayers are shown in Fig. 3.
For the third generationwhich corresponds to the well
known Fe/Cr/Fe trilayer in the low field region, the magne- Figures %a) and 3b) show our results for the double
tizations are antiparallel. As the field increases, they continuperiod magnetic multilayers, considering the first set of pa-
ously rotate toward the field directiofsecond order phase rameters. For the second generation, due to the double Fe
transition) and the saturation is reached when the externalayer, the magnetization has about 1/3 of its saturation value
magnetic fieldH~1.91 kOe. For the fifth generation there for zero magnetic field. There is a first order phase transition
are two first order phase transitionstat-0.71 kOe andH from antiparallel to an asymmetric phase-at 0.69 kOe. In
~0.87 kOe, respectively. The saturation is reachedHat this phase, the magnetizations are asymmetrically oriented
~2.93 kOe. For the seventh generation, there are three firsiong the magnetic field. Wheid ~1.34 kOe the saturated
order phase transitions &~0.28 kOe,H~0.96 kOe and phase emerges. For the fourth generation, for zero magnetic
H~1.06 kOe, respectively. The saturation is reacheét at field, the magnetization has about 10% of its saturation value
~3.03 kOe. For this set of parameters the majority of thedue to the different thickness of the Fe layers. There is a first
transitions are of second order. Note that due to the differemrder phase transition &~0.29 kOe and the saturation is

B. Double period magnetic multilayers
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region, due to the strong biquadratic field. For the second

1.of (a) generation, the magnetization is about 2/3 of its saturation
7 - value whenH=0. There are two magnetic phasés: 90°

05F -~ (0<H<72 08 and(ii) saturated d>72 Oe. For the fourth

ook -— generation, the magnetization for zero magnetic field is about

-3 -2 -1 0 1 2

1/2 of its saturation value. Four magnetic phases are present,
from the 90° (0<H<38 Oe€ to the saturated phaseH (
>0.14 kOe. As in the Fibonacci case, a self-similar pattern
is also present in the magnetization cur¢ese the window

VI. CONCLUSIONS

We have studied quasiperiodic magnetic multilayers,
composed by ferromagnetic Fe layers separated by nonmag-
netic Cr layers, arranged according to the Fibonacci and
double period quasiperiodic sequences. We consider that the
Fe layers are linked by bilinear and biquadratic exchange
couplings through Cr layers and present cubic anisotropy.
The external magnetic field is applied in the plane of the
layers and along an easy axis. We have used two numerical
methods to determine the equilibrium configurations of the
layers’s magnetizations. The magnetization curves of these
artificial structures were calculated considering two sets of

Magnetic Field (kOe)

FIG. 5. Magnetization vs applied field for the secof@l and fourth (b)
double period generations withl,q/|Hy| =0.10. The cubic anisotropy ef-
fective field is agairH ,=0.5 kOe. The Cr thickness is 10 A.

experimental parameters recently repoffédOur results
show that quasiperiodic magnetic multilayers exhibit a rich
variety of configurations induced by the external magnetic
field. In particular two points may be emphasizéd: the
effect of different thickness of Fe layers a(ig the effect of

_ . the biquadratic exchange coupling.
reached at~3.27 kOe. All other phase transitions are of The effect of different thickness of Fe layers is evident

second order. For the sggond set of paramé&ﬂfe Fig. ﬁ in the low field region. In that region, due to these differ-
on the contrary, all transitions are of first order. For this set

. . . el gncess there is a net magnetization even if the alignment is
of parameters, there is no antiparallel phase in the low field P i
antiparallel and the external magnetic field is zero. Besides,

the nature of the phase transitions are changed by the differ-
ent thicknes$Fig. 3(a) shows only second order phase tran-
Lob (@ sitions, while Fig. %a) presents an additional first order
- phase transition These results suggest that, varying the
] thickness of Fe layers, it is possible to tailor magnetic mul-
ook ] tilayers to present desired specific phase transitions and criti-
cal fields. However, as the thickness of Fe layers increases,

05F ] the crystalline anisotropy of 00 films on Cr(100) also

H increases. Fortunately, as a characteristic of the quasiperiodic
L0 — ] multilayers arrangements considered here, the maximum
number of joint Fe layers is tw(or the Fibonacci cageand
three (for the double period cageno matter the value of
their generation numbers. Besides, from a thickness greater
than 40 A, the crystalline anisotropy reaches saturdtion.

On the other hand, the biquadratic exchange coupling
plays a remarkable role in the features of the magnetization
curves. For example, when the bilinear exchange coupling
prevails, the majority of the transitions are of second order
charactelsee Figs. 3 and)5However, when the biquadratic
exchange is compared to the bilinear one, in the presence of
a stronger crystalline anisotrofythe transitions are charac-
02 o1 0.0 ol 02 terized by discontinuous jumps in the magnetization that in-

A dicate first order phase transitions. This can be considered as
Magnetic Field (kOe) the basic signature of the biquadratic exchange coupfiag
FIG. 6. Same as Fig. 5, but ffif¢|/|H,| = 1.0, corresponding to a realistic Figs_. 4 and § a_lthOUQh for the case W_h_ere there is no biqua-
sample whose Cr thickness is about 25 A. dratic term, a first order phase transition appears due to the

05F

-0.10 -0.05 0.00 0.05 0.10

10f )

0.5F b

Magnetization (norm.)

0.0 b

_l.o_l__r ]
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