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Abstract
Measurements of thermal and elastic properties of materials, such as the
phonon density of states, specific heat, and speed of sound, by a new x-
ray scattering technique are presented. Inelastic nuclear resonant scattering
of x-rays produced from new electron storage rings, coupled with advances
in high-energy-resolution crystal optics, and fast detectors have enabled the
development of a new method of analysing the energy loss in a scattering process
with a resolution of 107 or better in the x-ray region of 6–30 keV. Some unique
aspects such as element (isotope) selectivity, the amount of material needed
for analysis (nanograms), and the physical size to which x-rays can be focused
(5 µm or better) favour this approach over the more established techniques of
neutron scattering and Mössbauer and Raman spectroscopy. Applications to
several unique cases—for example, those of multilayers and high pressure—are
discussed.

1. Introduction to thermal and elastic properties of materials

Thermal and elastic properties of materials are directly related to the interaction between
ionic cores and the electron gas. Accurate measurement of macroscopic properties such as
specific heat, thermal expansion coefficient, and speed of sound is of fundamental importance
for understanding the nature of the interaction between nuclei, localized core electrons, and
extended valence electrons in solids and liquids. Therefore, any new technique that provides
some unique features in measuring thermal and elastic properties provides new opportunities
for better understanding and further developing new materials. It is within this context that
a relatively new technique based on inelastic nuclear resonant scattering of x-rays will be
discussed.

At the time of writing, there are no textbooks that discuss measurement of lattice dynamical
properties of materials using this technique. The treatment given here will be concise, mostly
referring the reader to papers published in the last decade for details.

The relative oscillations of atoms around their equilibrium position can be described as
harmonic oscillations of a hard sphere bound by a given potential. Inherent in this description
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are the two main approximations: (a) the adiabatic approximation in which the motion of
heavier ion cores is treated separately to that of the electrons whose average motion generates
the potential that dictates the motion of the ion cores; and (b) the harmonic approximation
in which only the second-order term in the Taylor expansion of the interatomic potential is
retained. This allows description of the motion of ion cores within the formalism of a harmonic
oscillator. In the classical mechanical treatment, each normal mode of vibration acts as an
independent oscillator. This also applies in the quantum mechanical approach. The quantized
energy levels are occupied by excitations called phonons, which are lattice vibrations with
frequency ω. The term ‘phonon’ refers to the relative motion of atoms and not to a net motion
of the centre of mass (i.e. diffusion), and phonons do not carry a net momentum as photons do.
Phonons, therefore, are called quasi-particles. Since no spin is associated with phonons, they
are indistinguishable particles, and obey Bose–Einstein statistics with an occupation number

nq = 1

eh̄ω(q)/kT − 1
. (1.1)

If there are N atoms, the motion of each atom can be expressed in terms of two transverse
and one longitudinal motion, which make up the 3N normal modes of vibration, each with
energy

E(q) =
(
nq +

1

2

)
h̄ω(q) (1.2)

where q represents the direction of wave propagation. For single crystals, one takes advantage
of the symmetry, and represents the directional dependence of vibrational frequencies in the
Brillouin zone. The relations h̄ω(q) are known as dispersion relations which describe the
effective forces acting on atoms in a given direction. We gain a more detailed understanding of
thermal and elastic properties of crystals when phonon dispersion relations can be measured.
Inelastic neutron scattering provides an established method for determining these relations
[1]. Figure 1 shows phonon dispersion relations for α-Fe, measured by means of inelastic
neutron scattering [2], and the phonon density of states derived from these relations using a
formalism originally developed by Gilat and Raubenheimer [3]. Iron is chosen since it has a
very suitable isotope with a long-lived Mössbauer transition, which is relevant to our discussion

Figure 1. α-Fe phonon dispersion relations and the density of states for a-Fe. The phonon
dispersion relations are measured by means of coherent inelastic neutron scattering (full curve) and
the data are fitted to a set of force constants. The density of states obtained from sampling of the
dispersion relations is compared to nuclear resonant inelastic x-ray scattering (NRIXS) data. The
resolution of the NRIXS data was 0.8 meV.
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in the following sections. The other isotopes used currently in the new technique that will be
described here are isotopes of Kr, Eu, Sn, Sm, Dy, and this group could can be extended to
include a number of others with some effort. The relevant properties of these isotopes are
given in table 1.

Table 1. Relevant characteristics of Mössbauer isotopes suitable for INRXS experiments. The
relative strength is the ratio of the normalized nuclear resonant scattering cross-section to that of
iron. The normalization is with respect to nuclear and electronic cross-sections.

E (keV) � (neV) t1/2 (ns) Relative strength

83Kr 8.41 3.1 147.0 0.2
57Fe 14.413 4.66 97.8 1.0
151Eu 21.53 47 9.7 0.63
119Sn 23.88 25.7 17.75 6.7
161Dy 25.66 16.2 28.1 1.2

Before the experimental verification of the crystalline nature of solids by Bragg, Debye
proposed a continuum model in 1911 that accounts well for low-temperature specific heat.
Although this model only accounts for low-energy phonons whose wavelengths are longer
than the interatomic distance, it is quite successful in explaining many properties of solids and
liquids. If the wavelength of the vibrational excitation is much smaller than the interatomic
distance, then the normal modes of vibration for the atom are the same as those for a crystal.
For a crystal with N atoms, with 3N acoustic modes:

3N =
∫ ωD

0
dω g(ω) = V

2π2

ω3
D

c3
s

(1.3)

where V is the volume of the unit cell, g(ω) is the density of vibrational modes between ω

and dω, and s refers to either one longitudinal or two transverse components of the acoustic
mode, we have

3

c3
s

=
∑
s

1

c3
s

. (1.4)

The Debye cut-off frequency ωD is introduced as a way of normalizing the number of
modes to 3N . This frequency helps define two quantities, the Debye temperature:

k�D = h̄ωD (1.5)

and the average sound velocity:

ωD = cs

(
6π2 N

V

)1/3

. (1.6)

For real systems, the phonon density of states differs considerably from the Debye model,
especially for large momentum-transfer values where the linear dispersion may disappear. This
is a common feature of all periodic systems, as discovered by van Hove [4]. Thermodynamic
properties of materials are expressed in terms of the real density of states as follows:

CV = k

∫ ∞

0

eh̄ω/kT

eh̄ω/kT − 1

(
h̄ω

kT

)2

g(ω) dω (1.7)

CP = CV

(
1 − T

ω

∂ω

∂T

)
(1.8)
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and

S = 3k
∫ ∞

0
g(ω)

[
h̄ω

2kT

eh̄ω/kT + 1

eh̄ω/kT − 1
− ln(eh̄ω/2kT − e−h̄ω/2kT )

]
dω (1.9)

where ω is the average frequency.
As we see, the exact computation of CV depends on the detailed knowledge of g(ω),

which is here approximated by

g(ω) = 3V

2πh̄3c3
s

E2. (1.10)

We will see an immediate application of (1.10) in section 5.

2. Observation of phonons by means of inelastic x-ray scattering

When electromagnetic radiation is scattered by lattice vibrations, the interaction is between
the oscillating electric field vector of the photon and the oscillating electric charges. This
interaction is subject to energy and momentum conservation:

Ei − Ef = ±h̄ω (2.1)

k − k′ = Q. (2.2)

The latter equation will be equally valid if a reciprocal-lattice vector G is added to the
left side of equation (2.2) due to translational symmetry. In equation (2.1) the + sign refers to
phonon creation, while the − sign refers to phonon annihilation.

In a typical scattering experiment, the goal is to find the change in energy as a function
of change in angle (see figure 2). The energy of the electromagnetic radiation used for
dynamical studies varies from the infrared to well into the γ -ray region. In the x-ray
region, 5 < E < 30 keV, there is a large mismatch between the incident beam energy of
the photon and the absorbed energy. Thus, x-ray experiments require a resolution power
of 10 keV/1 meV ≈ 107 or better. This level of resolution can be accomplished with
Bragg diffraction from high-order perfect crystals. Energy analysis of the scattered beam is
accomplished by using spherically bent-crystal analysers working near backscattering [5–7].
This approach to measuring phonon dispersion curves requires samples to be single crystals
with suitable dimensions. The size of the single crystal is limited not only by availability
but also by the incident beam energy. For crystals with low atomic number, the size of the
crystal must exceed several millimetres in order to contain sufficient electrons to scatter the x-
rays. This may impose some inherent limitations in terms of studying materials under extreme
conditions like high pressure and temperature. Another difficult sample geometry for this
approach is that for the study of thin films or interfaces.

Figure 2. A typical x-ray scattering experiment involves a change in energy and momentum of the
incident beam, yet obeying the conservation laws. Note that ω for the photons and ω for phonons
are not the same, although the same notation is customarily used.
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A different approach to the study of lattice excitations is to use a Mössbauer transition as
an analyser, as the energy of the incident beam is scanned through the resonance energy. This
is described in the next section.

3. Inelastic nuclear resonant x-ray scattering and the phonon density of states

The interaction between x-rays and atoms is quite complex because there are a number of
different mechanisms taking place simultaneously. While the core electrons themselves can
be displaced and ejected from the atom to a vacuum or continuum level, leading to a photo-
electric cross-section, scattering from valence electrons which can be in extended orbitals as
in metals leads to Compton scattering. The ejection of core electrons is followed by internal
relaxation that leads to fluorescence radiation. For some atoms, it is also possible that x-rays
in the range of 6–100 keV can interact with the nuclei, exciting internal energy levels with
different angular momenta. The resulting excitations can be quite long lived. For example,
after the release of an electron from a K shell, the ensuing atomic relaxation and restructuring
involving the emission of K fluorescence may take place in 10−15 s. On the other hand, a
nuclear excited state can last 10−7 s or even longer and creates its own delayed decay products
of electrons and photons. A simplified schematic description is given in figure 3 for 57Fe.
In addition, nuclei with relatively low-lying excited states (i.e. below 100 keV) may undergo
radiative transitions with no exchange of energy with the emitting or absorbing nuclei, the total
momentum being transferred to the entire crystal. This recoilless emission or absorption of
radiation is known as the Mössbauer effect, and it only occurs with a finite probability when
the nuclei are bound in a solid. This probability, known as the recoil-free fraction or f -factor,
is related to the mean square displacement by

fLM = e−k2〈u2〉 (3.1)

Figure 3. A simplified description of partial events during absorption and re-emission of 14.413 keV
photons on 57Fe-containing material. In a typical experiment, delayed K fluorescence of 6.4 and
7.05 keV (Kα and Kβ ) is detected as a function of incident photon energy.
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where u is the displacement of atoms from their equilibrium position, and k = 2π/λ is the
total momentum of the x-ray photon emitted or absorbed. The subscript LM refers to Lamb
and Mössbauer whose original articles on resonant capture of neutrons [8] and γ -rays [9]
contributed to the basic understanding that we have today.

In a typical Mössbauer spectroscopy experiment, as shown in figure 4, the radioactive
source moves against a sample with a frequency of about 25 Hz, in a constant-acceleration
drive, with a velocity between ±10 and 100 mm s−1. The transmitted radiation depends on the
relative Doppler shift that the radioactive source has experienced, and a spectrum is recorded
as a function of velocity. The amount of Doppler shift is typically in the range ofµeV, although
this can be extended to meV, albeit with a low duty cycle [10]. Mössbauer spectroscopy is
used to measure the strength and direction of hyperfine fields acting on the nuclei. In addition,
it can be used to study lattice dynamics by measuring the recoil-free fraction of the resonance.
This can be accomplished by measuring the change in the area of the Mössbauer resonance

Figure 4. (a) The energy spectrum of the undulator at the 3-ID beamline of the Advanced Photon
Source for a given gap and (b) the energy tunability range of the same undulator covered by the
first few harmonics in the 5–50 keV range.
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as a function of temperature. The Lamb–Mössbauer factor can then be calculated either by
applying a technique known as ‘transmission integration’, or by comparing the temperature
dependence of the area under the absorption peaks with the calculated curves for different
Debye temperatures:

fLM = exp(−R) exp

(
3

3k�D

[
1 +

4T 2

�2
D

∫ �D

0

x

ex − 1
dx

])
. (3.2)

The second exponential term is graphically plotted for various values of �D for over 30
isotopes in handbooks (e.g. [11]) and the f -factor can be obtained by comparison or num-
erical fitting. The first approach of transmission integration requires accurate knowledge of the
thickness, concentration, and isotopic abundance, as these quantities enter into the formulation
as a product [12]. The second approach may be limited if there is a phase transformation
as a function of temperature. The method of inelastic nuclear resonant x-ray scattering,
INRXS, on the other hand, yields the f -factor directly from a single measurement at a given
temperature.

The radioactive source in the Mössbauer experiments can be replaced with a synchrotron
source, which provides a number of benefits that change the nature of the experiments
qualitatively. This is due the fact that synchrotron radiation emitted from undulators is intense
(1013 photons s−1 eV−1), well collimated (8–12 µrad vertically and 20–40 µrad horizontally),
polarized, and pulsed. In terms of brightness (i.e. number of photons per unit time, per unit
source area, and per unit angle), a synchrotron radiation source can be as much as a million
times brighter than a sealed source of 100 Ci. The combination of all four qualities mentioned
above enables new experiments that cannot be performed otherwise. Before we discuss the
inelastic x-ray spectrum obtained by INRXS, we will look at some of the technical details
involving the time and energy characteristics of the synchrotron radiation emitted from storage
rings. The discrete nature of electron bunches in a storage ring provides a unique opportunity
to excite a nuclear transition with or without phonon contributions, and detect it with the help
of nucleus- or electron-induced fluorescence. For example, the storage ring at the APS has
a circumference of 1108 m. When 24 radio-frequency buckets out of 1296 possible ones
are filled with electrons, there will be 154 ns separation between the adjacent buckets. This
number varies considerably for each facility, and different filling patterns allow bunch-to-
bunch separation from a few nanoseconds to a few microseconds. The typical bunch length is
about 50 ps.

Synchrotron radiations emitted from bending magnets and undulators have different
characteristics in terms of energy spread and degree of collimation. Since the relevant x-
ray source for state-of-the-art inelastic x-ray spectrometers is an undulator source, we will
discuss its properties. An undulator is a device with a series of permanent magnets with
alternating field directions perpendicular to the direction of the electron velocity and to the
plane of the storage ring, causing electrons to oscillate sinusoidally with a period of a few
centimetres. The spectrum emitted from the undulator source for the inelastic x-ray scattering
beamline at the Advanced Photon Source is given in figure 4. The bandwidth of the first
harmonic shown in the figure as a peak in the 14 keV region is around 600 eV (FWHM). The
further reduction of the energy band-pass, first to a level of eV and then to meV (figure 5), is
achieved by a set of crystal monochromators. A typical high-resolution monochromator can
achieve a resolution power of 107 with an efficiency of about 50%. A detailed discussion of
high-resolution monochromators is given in a recent review [13]. An important aspect of these
monochromators is the energy tunability with a range orders of magnitude larger than that of
a typical phonon spectrum. The discrete time structure of synchrotron radiation provides an
unparalleled signal-to-noise ratio since the signal related to phonons comes at a time when
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Figure 5. The schematic description of measuring excitation from a radioactive source and from
a synchrotron source. In principle, the roles can be completely reversed, and one can get either
hyperfine (i.e. neV level) excitation from the synchrotron set-up in a coherent forward-scattering
experiment, or the phonon density of states from the radioactive source. However, the energy
mismatch makes the last experiment very inefficient.

all other processes such as Compton scattering, Rayleigh scattering, and atomic fluorescence
are bunched together and disappear within the detector resolution time. The state-of-the-art
solid-state detectors with appropriate time resolution are avalanche photo-diodes (APD) with
time resolutions of 0.1–1 ns, and a dynamic range of 108 [14].



Lattice dynamics and inelastic nuclear resonant x-ray scattering 7653

Nuclear resonant scattering of synchrotron radiation and its applications have been recently
reviewed [14], and it is not our intention to summarize these benefits here. We will limit
ourselves to the extraction of thermal and elastic properties.

The INRXS experiments involve measurement of the intensity of delayed photons as a
function of energy across a nuclear resonance:

I (E) = I0ρσ(E). (3.3)

Here, I0 is the incident photon intensity, ρ is the density of nuclear resonant nuclei in the
sample, and σ(E) is the total interaction cross-section. The measured intensity is related to the
absorption cross-section of nuclear resonance as well as the absorption probability associated
with phonon exchange when the incident energy is far away from the resonance energy:

σ(k, E) = σ0
α

1 + αT

π

2
�ηf S(k, E). (3.4)

Here, σ0 is the nuclear resonance cross-section given by

σ0 = λ2

2π

2Ie + 1

2Ig + 1

�r

�
. (3.5)

�r and � are partial linewidths, α and αT are partial and total internal conversion
coefficients related to the branching of nuclear decay products into electronic and nuclear
fluorescence, and ηf is the electronic fluorescence yield followed by nuclear absorption and
re-emission. For 57Fe, the transition energy E0 = 14.4125 keV, the linewidth � is 4.66 neV,
and σ0 is 2.56 × 10−18 cm2. The k-dependence of σ(k, E) can be dropped if the lattice is
isotropic.

The measured intensity is actually a convolution of the interaction cross-section and the
energy resolution function of the high-resolution monochromator, attenuated by the electronic
absorption, both upon incidence and exit. A typical spectrum is given in figure 6(a). S(k, E)

in equation (3.4) is the absorption probability due to phonons, and it is related to the self-
correlation function Gs(
r, t) [4] by a double Fourier transform in space and time:

S(k, E) = 1

2π

∫
dt d
r ei(k·
r−ωt)Gs(
r, t). (3.6)

The phonon absorption probability has an elastic and an inelastic component, which can
be separated:

S(E) = fLMδ(E) + S ′(E) (3.7)

where fLM is the recoil-free fraction, or Lamb–Mössbauer factor mentioned earlier in relation
to equation (3.1), and S ′(E) is the inelastic part which is of main interest here. The inelastic part
of the spectrum is composed of contributions from single-phonon and multiphonon scattering:

S ′(E) = S ′
1(E) + S ′

2(E) + S ′
3(E) + · · · . (3.8)

The procedural details for extracting the single-phonon density of states, D(E), are given
elsewhere in detail [16–20]. Figure 6(b) shows the relative sizes of the one-, two-, and three-
phonon contributions to the iron spectrum at room temperature. The explicit relationship
between the single-phonon absorption cross-section and the phonon density of states is given by

D(E) = 3E

ER

S ′
1(E)

f

[
1 − e−E/kT

]
. (3.9)

This result relates an experimentally measured quantity, S(E), to a fundamental property
of the sample, the phonon density of states, D(E). As we saw in equations (1.7)–(1.9), specific
heat and vibrational entropy are directly related to D(E), as is the speed of sound, as given in
equation (1.10).
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Figure 6. (a) The measured nuclear resonant inelastic x-ray scattering (NRIXS) signal. (b) The
decomposition of the total absorption probability into (full curve) one-phonon, (broken curve) two-
phonon, and (chain curve) three-phonon components. (c) The phonon density of states from (full
curve) bulk α-Fe, (dotted curve) Fe(20 Å)/Au(20 Å), (dashed curve) Fe(10 Å)/Au(10 Å), and (chain
curve) Fe(5 Å)/Au(5 Å) multilayers. (d) Sound velocity for (•) bulk α-Fe, (/) Fe(20 Å)/Au(20 Å),
(+) Fe(10 Å)/Au(10 Å), and (∗) (Fe(5)/Au(5 Å) multilayers.

Study of lattice excitations by means of scattering x-rays was among the first applications
of x-rays to crystals. X-rays with energy h̄ω and momentum k can be scattered from atoms and
nuclei, carrying information about the energy and momentum distribution. In fact, an analysis
of the energy spectrum and its moments is the crucial part of all x-ray scattering experiments,
since it reflects the vibrational characteristics of the scattering centres with high fidelity. The
scattering process can be considered as radiation emitted from an induced dipole. The atomic
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or nuclear charge, excited by the incident radiation, was occupying an initial state |i〉, and after
the interaction with the radiation, it is transferred to a final state |f 〉. The energy of the photon
Eγ is shifted from initial energy E0 by the energy lost due to recoil, R:

Eγ = E0 − R (3.10)

assuming that the nucleus was isolated, and initially at rest. For a moving nucleus with mass
M and velocity vi ,

Eγ = E0 − R +
h̄2k′k
2M

(3.11)

where h̄k′/(2M) is the initial momentum of the atom. The atoms in solids are bound in
a lattice (irrespective of periodicity), and they have a distribution of velocities. However,
this distribution is not continuous like the Maxwellian distribution in ideal gases, but rather
is discrete due to the quantized nature of the atomic vibrations. In fact, it is customary to
represent the motion of atoms within the formalism of a harmonic oscillator, with quantized
energy levels (n + 1

2 )h̄ω, where ω here relates to the oscillation frequency of atoms, ω/(2π).
The spacing between the energy levels n is proportional to the stiffness of the lattice. When
we deal with a large number of oscillators, the expectation values of various moments of the
energy distribution can be calculated. According to Lipkin [21],

〈Em
γ 〉 = 〈i|

(
E0 − H + En′ +

h̄kp

M
− R

)m

|i〉 (3.12)

where

H = p2

2M
+

1

2
mω2x2

is the Hamiltonian for a harmonic oscillator with mass M and oscillation frequency ω/(2π).
The most intriguing aspect of (3.12) is that it relates the moments of the distribution of the
measured x-ray spectrum to those of the energy states of the system.

The first three moments of the energy spectrum have been calculated [21, 22]:

〈E1
γ 〉 = R

〈E2
γ 〉 = 4RT

〈E3
γ 〉 = Rh̄2ω2

z =
(

2h̄2R

M

)
∂2Uµ

∂z2
.

(3.13)

R, the recoil energy, is given by E2
γ /(2Mc2),

T = 〈i|p2
zµ|i〉

2M

is the mean kinetic energy along the beam direction z for the atom µ, and ω2
z is the weighted

mean square average of the frequency which is related to the force constant along the z-
direction. The discussion here is quite general, and it applies to resonant as well as non-resonant
scattering.

4. Thermal and elastic properties extracted from the phonon density of states

We can now take a look at the thermal and elastic quantities that can be extracted from
measurement of NRIXS spectra. These quantities are the f -factor, the second-order Doppler
shift, the internal kinetic energy, the specific heat, the vibrational entropy, the force constant,
and the sound velocity.
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The recoil-free fraction mentioned in the previous section can be calculated directly from
the phonon DOS as follows:

fLM = exp

(
−R

∫ ωD

0

g(ω)

ω

1 + e−h̄ω/kT

1 − e−h̄ω/kT
dω

)
= e−k2〈u2〉. (4.1)

The recoil-free fraction is a quantity closely related to the Debye–Waller factor, a constant
that can be measured from the reduction of the x-ray diffraction intensity. The two quantities
are related to each other by

fDW = e−q2〈u2〉. (4.2)

The difference between the quantities comes from the momentum transfer. In a forward-
scattering experiment, all of the momentum, k, is transferred, while in a diffraction experiment,
this is modified by the scattering angle, q = 4π(sin θ)/λ.

Equation (3.13), which involved no assumption as regards a particular model, relates the
second and third moments of the inelastic x-ray spectrum to the kinetic energy and average
force constant, and it is directly obtained from the moments of the spectrum.

We finish this section with an application to a multilayer system. The phonon density of
states of thin films coated on a substrate was first measured by carefully adjusting the critical
angle of incidence of the substrate and the coated film to increase the yield of the delayed nuclear
fluorescence radiation [23]. In this geometry, the photon beam is incident upon a flat coated
substrate at a grazing incidence angle steep enough for it to penetrate the film, but shallow
enough for it to be reflected by the substrate which has a larger electron density. A typical
incidence angle of a few milliradians creates a footprint a few centimetres long. This would
represent a rather extended source if it were to be analysed by another set of crystal optics.
However, in INRXS experiments the analyser is built into the sample in the form of resonant
nuclei. Therefore, a detector with a large surface area placed a few millimetres away from the
surface is adequate. The INRXS method has been applied to study the effect of film thickness
[23] and film composition [24] on the phonon density of states. Furthermore, multilayers
and buried interfaces are studied with this method. The films were prepared by sputtering to
demonstrate the feasibility of INRXS experiments using small quantities of materials.

As examples, the phonon densities of states of Fe/Au multilayers as functions of the
thicknesses of the Fe and Au layers are given in figure 6(c). As the layer thickness is decreased,
the high-energy modes of Fe around 35 meV are suppressed, and some new energy states at
low energy appear. The recoil-free fraction and kinetic energy and specific heat that are
extracted from the data are given in table 2. There is a softening of the lattice in the Fe
layers with decreasing thickness, as evidenced by the reduction of the f -factor as well as
the force constant. The speed of sound, which is related to the density of states as given in
equation (1.10), can be extracted form the low-energy part of the density of states, as shown
in figure 6(d). The reduction of the speed of sound is consistent with the reduction in the force
constant and recoil-free fraction.

Table 2. Derived thermal and elastic properties of Fe and Fe/Au multilayers.

Kinetic energy CV cs Force constant
Material f -factor (meV/atom) (kB /atom) (THz (vol)1/3) (N m−1)

α-Fe 0.794 14.2 2.7 15.46 168
Fe(20 Å)/Au(20 Å) 0.73 13.9 2.76 12.63 151.5
Fe(10 Å)/Au(10 Å) 0.68 13.8 2.79 11.3 130
Fe(5 Å)/Au(5 Å) 0.64 13.7 2.81 10.3 117
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A second example relating to thin films is given in figure 7. A set of Fe/Cr multilayer films
were prepared in each of which a monolayer of 57Fe is deposited either at the interface or in the
interior of the Fe layers, and the phonon densities of states of these layers are compared to that
of bulk iron, as well as that of 57Fe as an impurity in Cr metal. The four phonon densities of
states shown in figure 7 are indicative of the power of this new method in terms of combining
thin-film applications with elemental—and better still with isotope—selectivity. The details
of the film preparation are given elsewhere [24].

Figure 7. Element and isotope selectivity is combined to demonstrate the effect of near neighbours
on the density of states of 57Fe in Fe/Cr multilayers [24]. The bulk iron phonon DOS (a) is compared
with that of 57Fe at the iron–chromium interface (b), that of 57Fe inside the 56Fe layer in the Fe–Cr
multilayer (c), and that of 3% 57Fe distributed as point defect inside pure chromium (d). The
thicknesses of the Fe/Cr layers were about 11.5 Å, and the 200 layers were deposited onto a 1 cm2

area. The energy resolution for these measurements was 2 meV.

5. Perspectives

The method of INRXS presented here is still in its infancy as a fundamental physical measure-
ment technique. The recent applications to materials under high pressure [25] and the study
of the long-range dynamics of protein molecules [26] indicate that unique applications will
continue to appear in the next few years. Also, the minimum achievable energy resolution
is continuously being improved on—currently it is a few hundred µeV [27, 28]—and there
is a real possibility that it can be reduced even further. This, coupled with improvements in
APD detectors, makes the INRXS technique appear likely to be increasingly useful over the
next decade.
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