Skip Main Navigation Links
ScienceDirect Logo Skip Main Navigation Links
 Register or Login:   Password:      
HomeBrowseSearch FormsMy AlertsMy ProfileHelp (Opens new window)
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
4 of 449 Result ListPreviousNext
Physica B: Condensed Matter
Volumes 276-278, March 2000, Pages 17-21
This Document
SummaryPlus
Full Text + Links
PDF (226 K)

Actions
Cited By
Save as Citation Alert
Export Citation

PII: S0921-4526(99)01469-6
Copyright © 2000 Elsevier Science B.V. All rights reserved.

Neutron reflectometry on magnetic thin films

Hartmut ZabelCorresponding Author Contact Information, E-mail The Corresponding Author, a, Ralf Siebrechtb and Andreas Schreyer

a Institut für Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
b Institute Laue-Langevin, F-38042 Grenoble Cedex, France

Available online 2 May 2000.

Abstract

The current interest in the magnetism of ultrathin films is driven by their manifold applications in the nano-technology area, for instance as magnetic field sensors or as devices for information storage. Neutron scattering has played a dominant role for the determination of spin structures, phase transitions, and magnetic excitations in bulk materials. Today, its potential for the investigation of thin magnetic films has to be redefined. In the field of thin film magnetism, polarized neutron reflectivity (PNR) at small wave vectors can provide precise information on magnetization vectors in the film plane and on their variation from plane to plane. Therefore, neutron scattering remains the only method which allows to unravel the magnetization in thin films and superlattices independent of their thickness and depth below the surface. In addition, PNR is not only sensitive to structural interface roughness but also to the magnetic roughness. Some new developments will be discussed.

Author Keywords: Reflectometry; Polarised neutrons; Thin films; Planar ferromagnets

Article Outline

1. Introduction
2. Remarks to the method
3. Magnetic heterostructure research with neutron scattering
3.1. Exchange coupled superlattices
3.2. Exchange bias
3.3. Magnetic roughness
4. Conclusions
References


Enlarge Image
(5K)
Fig. 1. (a) Scattering geometry for polarized neutron reflectivity studies. Y-refers is the quantization axis for the neutrons and the non-spin-flip axis, X is the spin-flips axis. (b) and (c) show schematic outlines of a wavelength and angle dispersive polarized neutron reflectometer, respectively.

Enlarge Image
(7K)
Fig. 2. Neutron scattering from a Fe/Cr superlattice with a Cr spacer thickness of 42 Å. In the center is shown a scan at the (0 1 0) Bragg position in the z-direction, revealing a commensurate Cr(0 1 0) peak modulated by the magnetic superlattice periodicity. The inset in the upper left corner shows polarized neutron reflectivity data, revealing a non-collinear arrangement of the Fe layer magnetization vectors. In the upper right inset is sketched the most reasonable spin structure in the Fe/Cr superlattice with respect to the experimentally determined boundary conditions.

Enlarge Image
(16K)
Fig. 3. Transverse scans taken across the half order antiferromagnetic peak of an antiferromagnetically coupled Fe/Cr superlattice as a function of external field. The scans are taken with different cross sections. The top and middle panel reproduce the non-spin-flip (NSF) scattering results, the bottom panel shows the spin flip (SF) measurements.

Enlarge Image
(8K)
Fig. 4. Off-specular diffuse polarized neutron scattering from a Fe0.43Cr0.57/Cr superlattice. The data are taken at the half-order antiferromagnetic peak. The strong diffuse scattering occurs only below the Curie temperature of about 450 K.

References

1. G.P. Felcher. Phys. Rev. B 24 (1981), p. 1595. Abstract-INSPEC   | $Order Document | Full-text via CrossRef

2. G.P. Felcher. Physica B 267¯268 (1999), p. 154. SummaryPlus | Full Text + Links | PDF (211 K)

3. C.F. Majkrazak. Physica B 213 (1995), p. 904.

4. C.F. Majkrazak. Physica B 221 (1996), p. 342.

5. G.P. Felcher. Physica B 192 (1993), p. 137. Abstract-INSPEC | Abstract-Compendex   | $Order Document

6. A. Schreyer. J. Phys. Soc. Japan 65 Suppl. A 1 (1996), p. 13.

7. P. Böni et al.. Physica B 267 (1999), p. 320. SummaryPlus | Full Text + Links | PDF (342 K)

8. B. Dieny. J. Magn. Magn. Mater. 136 (1994), p. 335. Abstract-INSPEC | Abstract-Compendex   | $Order Document

9. A. Schreyer et al.. Phys. Rev. Lett. 79 (1997), p. 4914. Abstract-INSPEC   | $Order Document | APS full text | Full-text via CrossRef

10. A. Schreyer et al., J. Magn. Magn. Mater. (2000) accepted..

11. J.C. Slonczewski. J. Magn. Magn. Mater. 150 (1995), p. 13. Abstract | PDF (858 K)

12. E.E. Fullerton, S.D. Bader and J.L. Robertson. Phys. Rev. Lett. 77 (1996), p. 1382. Abstract-Compendex | Abstract-INSPEC   | $Order Document | APS full text | Full-text via CrossRef

13. V.V. Ustinov et al.. Phys. Rev. B 54 (1996), p. 15958. Abstract-INSPEC   | $Order Document | Full-text via CrossRef

14. J. Nogués and I.K. Schuller. J. Magn. Magn. Mater. 192 (1999), p. 203. Abstract | PDF (383 K)

15. J.S. Jiang, G.P. Felcher, A. Inomata, R. Goyette, C. Nelson, S.D. Bader, preprint..

16. J. Nogués et al.. Phys. Rev. Lett. 76 (1996), p. 4624. Abstract-INSPEC   | $Order Document | APS full text | Full-text via CrossRef

17. J. Nogués et al.. Phys. Rev. B 59 (1999), p. 6984. Abstract-INSPEC   | $Order Document | APS full text | Full-text via CrossRef

18. Y. Ijiri et al.. Phys. Rev. Lett 80 (1998), p. 608. Abstract-Compendex | Abstract-INSPEC   | $Order Document | APS full text | Full-text via CrossRef

19. Th. Mühge et al.. Phys. Rev. B 55 (1977), p. 8945.

20. S.K. Sinha, E.B. Sirota, S. Garoff and H.B. Stanley. Phys. Rev. B 38 (1988), p. 2297. Abstract-INSPEC   | $Order Document | Full-text via CrossRef

21. B.P. Toperverg et al., in these Proceedings (ECN '99), Physica B 276¯278 (2000)..

22. P. Bödeker et al.. Phys. Rev. Lett. 81 (1998), p. 914. Abstract-INSPEC   | $Order Document | APS full text

Corresponding Author Contact Information Corresponding author. Tel.: +49-234-700-3649; fax: +49-234-709-4173; email: hartmut.zabel@ruhr-uni-bochum.de
This Document
SummaryPlus
Full Text + Links
PDF (226 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Physica B: Condensed Matter
Volumes 276-278, March 2000, Pages 17-21


4 of 449 Result ListPreviousNext
HomeBrowseSearch FormsMy AlertsMy ProfileHelp (Opens new window) ScienceDirect Logo

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.