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Abstract

We investigate phase transitions of a classical XXZ model with easy-plane anisotropy, on a two-layer triangular lattice
with ferromagnetic and antiferromagnetic layers by using Monte Carlo simulations. It turns out that the chirality shows a
very steep increase as temperature increases in a temperature range; the value of a critical exponent for this change is
estimated. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 75.10.Hk; 05.50qq; 75.30K; 75.40.c
Keywords: Classical Heisenberg model; Frustration; Two-layer; Chirality

Magnetic thin films, layered magnets or magnets
on superlattices show interesting properties that are

w xdifferent from bulk properties 1–3 . We expect that
some systems on a lattice consisting of multi-layers
show quite interesting behaviors, which do not exist
in a system on a single layer nor in three-dimen-

w xsional bulk systems 4–13 . Even in a simple mag-
netic model such as an XY model, we may have a
completely different nature of phase transitions in
systems on a few layers from that in two-dimen-
sional systems or from that in three-dimensional bulk

w xsystems 14,15 .
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In the thermodynamic limit, there is no phase
transition in the ferromagnetic classical Heisenberg

w xmodel on two-dimensional lattices 16 . There is no
long-range order but there exists the so-called

Ž .Kosterlitz–Thouless KT type transition in the anti-
ferromagnetic classical Heisenberg model on the tri-

w xangular lattice 17,18 . As for the KT transition of
Ž .the XY model the plane rotator model , see for

w xexample Refs. 19–21 . In the present Letter, we are
interested in phase transitions in an anisotropic clas-
sical Heisenberg model with an easy-plane anisotro-
py, namely a classical XXZ model with strong XY
anisotropy; we simply call this model an XXZ model
hereafter. For the XXZ model, it has been shown that
there exist the KT transition and also the chirality

w xtransition, when the system is fully frustrated 22,23 .
This situation is similar to the XY model with full

w xfrustration 24–26 . Hence we investigate phase tran-
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sitions for an XXZ model on a two-layer triangular
lattice with a ferromagnetic layer and an antiferro-
magnetic layer.

We consider an XXZ model with an easy-plane
anisotropy on a two-layer triangular lattice. Each of
two triangular lattices is denoted by L and L ,1 2

respectively. We assume Heisenberg spins, s and ti i
< <for igL and L , respectively, where Ns L s1 2 1

< <L ; NsL=L for each layer and L is the linear2
Ž .size of L ks1,2 . Then the two-layer triangulark

lattice is denoted by L: LsL qL and hence1 2
< <L s2 N. The Hamiltonian is given as follows:

HsyI s xs x qs ys y qj s zs zŽ .Ý i j i j i j
Ž .i , j

yJ t x t x q t y t y qj t z t zŽ .Ý i j i j i j
Ž .i , j

yK s x t x qs y t y qj s z t z , 1Ž .Ž .Ý i i i i i i
i

where j is an anisotropy parameter with 0Fj-1;
we assume js0.5 in the present Letter. Here we
have assumed that intralayer interactions exist only
between spins at nearest-neighbor lattice sites on
each of L and L ; those interaction constants are1 2

Ž .denoted by I and J, respectively. The sum with i, j
indicates a summation over nearest-neighbor pairs of
sites on L or L . We have also assumed that1 2

interlayer exchange interactions exist only between
spins at a site i on L and at its corresponding site i1

on L ; this interaction constant is denoted by K.2

The sum with i indicates a summation over pairs of
sites i on L qL . We assume the periodic bound-1 2

ary conditions for each layer L or L .1 2

We notice that there is a relation:

OO I , J , K sOO I , J ,yK 2Ž . Ž . Ž .

Ž .for a thermodynamic quantity OO I, J, K . Then we
assume that K)0 without loss of generality. In the
present Letter, we investigate the system with Is
y1, Ks1 and J)0; namely the exchange interac-

Ž .tions on the upper layer Ul L is antiferromagnetic1
Ž .and that on the lower layer Ll L is ferromagnetic.2

Ž .We investigate the system by Monte Carlo MC
simulations. Hereafter we just mention only the val-

ues of J in order to indicate the system. We have
performed our MC simulations for Ls24,36 and 48.
We have used random spin configurations as initial
spin configurations in our MC simulations. A MC

² :average, OO , for a quantity OO is calculated by

n1
² :OO s OO t , 3Ž . Ž .Ý

nyn0 tsn q10

where we choose n s2.5=105 MC steps, ns5=0

105 MC steps, and also n s5=105 MC steps and0

ns106 MC steps, depending upon the system size
and the values of temperature. We set the Boltzmann
constant k to 1 throughout the present Letter.

We have calculated the internal energy, the spe-
cific heat, the chirality and Binder parameters. The
internal energy is given as

1
² :Es H . 4Ž .

2 N

The specific heat is obtained by

1
22² : ² :Cs H y H . 5� 4 Ž .22 NT

The chirality is defined for a smallest up-triangle,
namely an elementary upward triangle on each plane.
For example, the chirality, k s , on L plane isi jk 1

given as follows:

2
sk s s =s qs =s qs =s Pe , 6Ž .Ž .i jk i j j k k i z'3 3

where e is the unit vector of z-component in thez
� 4spin space. A set of sites i, j,k expresses three sites

labeled counterclockwise on an up-triangle of lattice
L . In a similar way, we define the chiralities k t

1 i jk

on lattice L . The averaged chirality for the whole2

system is defined by

1
ks k qk , 7Ž . Ž .s t2

where

1 1
s tk s k , k s k . 8² : ² : Ž .Ý Ýs i jk t i jkN NŽ . Ž .ijk ijk
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Ž . Ž .The sum with ijk in Eq. 8 is taken over all the
elementary up-triangles on the lattice L or L . The1 2

Binder parameter is defined as

22M¦ ;Ž .s

U M s1y . 9Ž . Ž .s 223 M² :s

Here we have

M s s , 10Ž .Ýs i
igL

where s is either s or t .i i i

The specific heat C is shown in Fig. 1 for Js
0.10, 0.18, 0.30 and 0.5 as functions of temperature.
We see two peaks in the specific heat for those
values of J except Js0.10. From the behaviors of
the specific heat, there are two critical values for J,
namely J and J ; J is estimated as 0.17 and Jc1 c2 c1 c2

as 0.35. We find only one sharp peak for J-J .c1

There are two sharp peaks for J -J-J ; al-c1 c2

though we do not show here, we find that these two
peaks show size-dependencies for data by Ls24,36
and 48. The peak near Ts0.4 is sharp as we see; we
denote the peak temperature for this sharp peak by
T and notice that the values of T do not dependch ch

much on the value of J. The peak temperature for
the other sharp peak of the specific heat is denoted
by T . We have a sharp peak and a broad peak forcl

J)J . We denote the peak temperature for thisc2

sharp peak by T and notice that the values of Tch ch

do not depend much on the value of J for J)J ,c2

too. On the other hand, a broad peak at temperature
higher than T shows no size dependence, and thench

it is reasonable to think that the transition for this
broad peak is of the Kosterlitz–Thouless type. We
denote this peak temperature by T . Although weKT

need more comprehensive calculations in order to
estimate T , for example, by calculating the helicityKT

modulus, we estimate it here by the peak temperature

Ž .Fig. 1. The specific heat as functions of temperature for Js0.1, 0.18, 0.3 and 0.5. In the inset, we show the chirality on the upper layer Ul
Ž .and on the lower layer Ll for Js0.1,0.18,0.3 and 0.5.
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because we are not interested in estimation of T inKT

the present Letter. In the inset of Fig. 1, we show
behaviors of the chirality, k and k . We see clearlys t

that the chirality for Js0.18 increases steeply just
< <below Tr I s0.1, as temperature increases. The

chirality for Js0.30 shows a similar behavior as
that for Js0.18, although the increasing seems not
so steep; this is due to the finite size effect. The
chirality becomes zero at T as the temperaturech

increases.
We estimate roughly the values of T , T andcl ch

T by using the system with Ls24 from the peakKT

temperature of the specific heat. In Fig. 2, we give a
phase diagram in the J versus temperature plane; we
denote the paramagnetic phase by P, the KT phase
by KT and the chiral phase by C. In the chiral phase,
we see a critical line between J -J-J whichc c1 2

terminates at a low temperature; this is a critical end
point.

In order to investigate the nature of the phase
transition at temperatures where the sharp peaks are
observed in the specific heat between J -J-J ,c c1 2

we have to estimate the critical temperature as pre-
cise as possible. For this purpose, we calculate the
Binder parameters. Some results are shown in Figs. 3
and 4; we have estimated as T s0.3928 and T sch cl

0.0970, respectively, for Js0.18. We have found
that the Binder parameters for each layer show more
clearly the behaviors of crossing than the Binder
parameter for the whole system. We make finite-size
scaling analyses for the specific heat and the chiral-

Ž .ity in the inset at T s0.3928 in Fig. 5 andch

T s0.0970 in Fig. 6, respectively. From the finite-cl

size scaling analyses for the specific heat and the
chirality at T , we have found that the values ofch

Ž .critical exponents, n ,a and b are 1.00"0.05, 0 ln
and 0.125"0.05, respectively. In order to investi-
gate the behavior of the chirality at T , we define thecl

critical exponent b as follows:

bŽc.k ;k ya T yT TQT , 11Ž . Ž . Ž .t t cl cl

where k Žc. is the maximum value of the chirality kt t
Ž .on the ferromagnetic layer Ul and a is a constant.

< <Fig. 2. Phase diagram in J versus Tr I plane.
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Fig. 3. Binder parameter for determination of critical temperature T . In the inset, we show the whole behavior of the Binder parameter forcl

the lower layer.

Fig. 4. Binder parameter for determination of critical temperature T . In the inset, we show the whole behavior of the Binder parameter forch

the upper layer.
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Fig. 5. Finite-size scaling analysis of the specific heat C for the system with Isy1, Ks1,js0.5 and Js0.18 near T . In the set, wech
Ž . Ž .show a finite size scaling analysis of the chirality for the upper layer Ul and that for the whole system Tot .

Fig. 6. Finite-size scaling analysis of the specific heat C for the system with Isy1, Ks1,js0.5 and Js0.18 near T . In the set, wecl

show a finite size scaling analysis of the chirality for the upper layer.
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We have found that the values of n and b are
0.875"0.05 and 0.255"0.05, respectively. The er-
rors for the values of critical exponents are estimated
by the fitness for the finite-size scaling. We believe
that this critical behavior is a new finding for the
XXZ model. We found a similar behavior in the
two-layer XY model and in the three layer XY

w xmodel 14,15 . In this way, we think that this quite
new critical behavior occurs commonly in the XY
model and also in the XXZ model of lattices consist-
ing with layers when there is competing of ordering
among ferromagnetic planes and frustrated planes.
We have the chirality transitions similar to that in the
XY model on the antiferromagnetic triangular lattice
for J-J . For J)J , we also have a chiralityc c1 2

transition from the KT phase to the chirality phase.
In conclusion, we have investigated critical phe-

nomena and a phase diagram for an XXZ model with
anisotropy parameter js0.5 on a two-layer triangu-
lar lattice with a ferromagnetic layer and an antifer-
romagnetic layer. The interlayer interaction constant
is assumed to be ferromagnetic without loss of gen-
erality. We have constructed the phase diagram in an
interaction parameter versus temperature plane. We
have found that there are three phases, namely the

Ž .paramagnetic phase, the Kosterlitz–Thouless KT
phase and the chirality phase and that there is a
critical line in the chirality phase in some range of
interaction parameters for the ferromagnetic layers.
Similar behaviors are also found for the system with
other values of the anisotropy parameter, js 0, 0.7
and 0.9. In order to clarify the critical behaviors of
the system, we have made finite-size scaling analy-
ses for the specific heat and the chirality at a range
of interaction parameters in which the critical line
appears in the chirality phase. When we compare the
obtained values of critical exponents and the phase
diagram with those for the two-layer and the three-
layer systems of the XY model investigated previ-
ously, we find that the present system belongs to the
same universality class as that for those XY models.
We will discuss elsewhere details of the finite-size
analyses for the chirality, the specific heat and the
susceptibility of the present system with several val-
ues of j . It is also interesting to investigate crossover

effects as the strength of the coupling K varies. This
is left as a future problem.
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