Subject View: 
HomePublicationsSearchMy AlertsMy ProfileHelp
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
69 of 84 Result ListPreviousNext

This document
SummaryPlus
Article
Journal Format-PDF (124 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Computational Materials Science

Volume 17, Issues 2-4
June 2000
Pages 477-482

PII: S0927-0256(00)00073-2
Copyright © 2000 Elsevier Science B.V. All rights reserved.

Distribution of magnetic moments and hyperfine fields for Fe/Cr multilayers with different interface roughness

V. M. Uzdin

Institut de Physique et Chimie des Matériaux de Strasbourg, 23, rue du Loess, F-67037 Strasbourg, France

Available online 2 June 2000.

Abstract

Distribution of d-electron magnetic moments has been calculated within the Periodic Anderson Model (PAM) for Fe/Cr superlattices with various interface roughness. Special random algorithms were developed for the modelling of stepped interfaces with different average size of the steps as well as for the modelling of interface alloying. Self-consistent calculation of magnetic moment distribution for alloyed interfaces show strong correlation with hyperfine fields (hff) on Fe nuclei, measured by the Mössbauer spectroscopy. It allows one to correlate the hff with specific environment of interfacial Fe atoms and leads to the essential correction of the empirical approach for the interpretation of Mössbauer spectra. New criterion for the testing of smoothness of the interface using Mössbauer data is suggested.

Author Keywords: Fe/Cr interface magnetism; Mössbauer spectroscopy

Article Outline

Acknowledgements
References


(13K)
Fig. 1. Distribution of hff in Fe/Cr structures. 57Fe layers are undelayered:
1. W(1 1 0)/Cr(1 1 0): 40 ML/Fe(1 1 0): 3 ML + 2 ML + 21 ML + 2 ML + 3 ML/Cr(1 1 0), [6];
2. W(1 1 0)/Cr(1 1 0): 40 ML/Fe(1 1 0): 3 ML + 25 ML + 3 ML/Cr(1 1 0), [6];
3. W(1 1 0)/Cr(1 1 0): 40 ML/Fe(1 1 0): 3 ML + 4 ML + 3 ML/Cr(1 1 0), [6];
4. W(1 1 0)/Cr(1 1 0): 40 ML/Fe(1 1 0): 6 ML/Cr(1 1 0), [6];
5. W(1 1 0)/Cr(1 1 0): 40 ML/Fe(1 1 0): 4 ML/Cr(1 1 0), [6];
6. W(1 1 0)/Cr(1 1 0): 40 ML/Fe(1 1 0): 3.3 ML/Cr(1 1 0), [6];
7. W(1 1 0)/Cr(1 1 0): 40 ML/Fe(1 1 0): 2 ML/Cr(1 1 0), [6];
8. Si/Fe: 60 Å [Cr: 11/Fe: 30 Å]60/Cr: 11 Å, [9];
9. MgO/Fe(0 0 1)/Cr(0 0 1), [8];
10. MgO/Cr: 50 Å [Fe(1 0 0): 3 ML + 8 ML + 3 ML/Cr(1 0 0): 8 ML]10, [7];
11. MgO/Cr: 50 Å/[Fe(1 0 0): 0.7 ML + 25 ML + 0.7 ML/Cr(1 0 0): 8 ML]10, [7];
12. MgO/Cr: 400 Å/Fe: 2 ML/Cr: 10 Å, [5]; GaAs/Fe: 10 Å/Ag: 1500 Å/Fe: 40 Å + 2 ML/Cr: 10 Å, [5];
13. calculations with PAM.


(6K)
Fig. 2. Distribution of magnetic moments for Fe atoms in 3 interface ML. Interdiffusion is modelled by epitaxy algorithm.

References

1. B. Heinrich, J.F. Cochran, D. Venus, K. Totland, D. Atlan, S. Govorkov and K. Myrtle. J. Appl. Phys. 79 (1996), p. 4518. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

2. C. Turtur and G. Bayreuther. Phys. Rev. Lett. 72 (1994), p. 1557. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

3. S. Miethaner and G. Bayreuther. J. Magn. Magn. Mater. 148 (1995), p. 42. Abstract-Compendex | Abstract-INSPEC | Abstract |  $Order Document

4. J.C. Slonczewski. J. Magn. Magn. Mater. 150 (1995), p. 13. Abstract | Journal Format-PDF (858 K)

5. F. Klinkhammer, C.H. Sauer, E.Yu. Tsymbal, S. Handschuh, Q. Leng and W. Zinn. J. Magn. Magn. Mater. 161 (1996), p. 49. Abstract-INSPEC | Abstract-Compendex |  $Order Document

6. J. Zukrowski, G. Liu, H. Fritzsche and U. Gradman. J. Magn. Magn. Mater. 145 (1996), p. 57.

7. H. Schrör, W. Keune, N. Hosoito, T. Shinjo, in: Proceedings of the 15th International Colloqium on Magnetic Films and Surfaces (ICMFS'97), p. 40.

8. R. Schad, P. Beliën, G. Verbanck, K. Temst, V.V. Moshchalkov, Y. Bruynseraede, D. Bahr, J. Falta, J. Dekoster and G. Langouche. Europhys. Lett. 44 (1998), p. 379. Abstract-INSPEC |  $Order Document

9. M. Kopcewicz, T. Luciski, F. Stobiecki and G. Reiss. J. Appl. Phys. 85 (1999), p. 5039. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

10. S.M. Dubel and J. Zukrowski. J. Magn. Magn. Mater. 23 (1981), p. 214.

11. R. Coehoorn. J. Magn. Magn. Mater. 151 (1995), p. 341. Abstract | Journal Format-PDF (881 K)

12. M. Freyess, D. Stoeffler and H. Dreyssé. Phys. Rev. B 56 (1997), p. 6047.

13. A.K. Kazanskij and V.M. Uzdin. Phys. Rev. B 52 (1995), p. 9477.

14. V.M. Uzdin, D. Knabben, F.U. Hillebrecht and E. Kisker. Phys. Rev. B 59 (1999), p. 1214. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

15. Y.J. Choi, I.C. Jeong, J.Y. Park, S.J. Kahng, J. Lee and Y. Kuk. Phys. Rev. B 59 (1999), p. 10918. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text
This document
SummaryPlus
Article
Journal Format-PDF (124 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Computational Materials Science
Volume 17, Issues 2-4
June 2000
Pages 477-482


69 of 84 Result ListPreviousNext
HomePublicationsSearchMy AlertsMy ProfileHelp

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.