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Origin of Biquadratic Exchange in Fe���Si���Fe
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The thickness and temperature dependences of the interlayer exchange coupling in well-defined mo-
lecular beam epitaxy-grown Fe�Si�Fe sandwich structures have been studied. The biquadratic coupling
shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially
on thickness. These observations can be well understood in the framework of Slonczewski’s loose spins
model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was
observed.

PACS numbers: 75.70.– i, 75.50.Bb, 75.60.–d
Recently, an exceptional type of coupling was found in
Fe�Si�Fe, strongly antiferromagnetic (AF) and varying ex-
ponentially with the spacer layer thickness [1]. This rather
unique behavior of the coupling is mediated by c-Fe12xSi
formed by Fe diffusion into the Si spacer layer [2] and
can be qualitatively understood in terms of the Bruno elec-
tronoptics model [3] with imaginary extremal Fermi vec-
tors or by the Anderson sd-mixing model [4].

Apart from bilinear exchange coupling also a bi-
quadratic contribution to the coupling was observed in
sputtered Fe�Si multilayers [5–10]. However, a quali-
tative and quantitative interpretation of the biquadratic
coupling in these multilayers is impossible due to lateral
and vertical variations of the coupling properties [8,10].
Nevertheless, the Fe�Si system is unique and particularly
attractive for studies on biquadratic coupling. Unlike
the oscillatory RKKY interactions, the monotonically
(exponentially) decaying intrinsic AF exchange coupling
limits the possible mechanisms for biquadratic exchange
and allows a flexible and large range of spacer thicknesses
to be studied.

In this Letter we present a study of biquadratic ex-
change coupling in well-defined molecular beam epitaxy
(MBE)-grown Fe�Si�Fe trilayers which do not suffer from
the complications reported for multilayers. Based on com-
bined detailed measurements of the temperature and thick-
ness dependence of the bilinear as well as the biquadratic
coupling constants, it is shown that biquadratic exchange
in Fe�Si�Fe is due to a small concentration of (super)para-
magnetic Fe clusters in the spacer layer, which act as
so-called “loose spins.” By exploiting the unique exponen-
tial character of the coupling, we are able to demonstrate
that J1 and J2 are caused by the same interaction poten-
tial, which is a basic ingredient for modeling the loose
spins coupling. Surprisingly, however, a contribution of
the loose spins to the bilinear coupling seems to be absent.

The Fe�Si�Fe layers were grown at room temperature
in a molecular beam epitaxy system (VG-Semicon V80M)
with a base pressure of 2 3 10211 mbar. An e-gun source
with feedback control of the flux was used for the deposi-
tion of Fe, whereas Si was evaporated from a temperature
0031-9007�00�84(8)�1812(4)$15.00
stabilized Knudsen cell. The thicknesses were controlled
by calibrated quartz crystal monitors. The layers were
grown at room temperature on Ge(001) substrates, which
were cleaned by several Ar1 sputter (700 ±C) and anneal
(780 ±C) treatments until a sharp Ge�001�-�2 3 1� LEED
pattern was observed.

Previous studies have shown that in these Fe�Si�Fe tri-
layers the Si spacer transforms to metallic c-Fe12xSi by Fe
and Si interdiffusion, and the whole stack grows epitaxially
bcc(001)-like on the Ge(001) substrate [1,2]. However,
this recrystallization only slightly alters the effective
thickness of the spacer layer, and therefore we will refer to
the nominal Si spacer layer thickness for the remainder of
this Letter. The temperature dependence of the coupling
was studied in six samples of the following composition:
Ge�001� 1 60 Å Fe 1 tSi Si 1 45 Å Fe 1 30 Å Si, with
tSi � 14, 14.5, 15, 15.25, 16, and 16.25 Å. The spacer
layer thickness dependence was measured in a wedge-
shaped sample composed of Ge�001� 1 60 Å Fe 1

7 17 Å Si wedge 1 45 Å Fe 1 30 Å Si.
Figure 1 shows two normalized magneto-optical Kerr

effect (MOKE) hysteresis curves with the field applied
along the �100� easy axis, at 300 and 100 K for a nominal
Si thickness tSi � 15.25 Å. These magnetization curves
are representative for all of the other loops. At 300 K the
magnetization loop can be characterized by two switching
fields, indicated by H1 and H2 in the figure (defined in the
middle of the hysteresis). Going from high to low fields,
H1 corresponds to a reorientation of the magnetic moments
of the two Fe layers from a parallel to a perpendicular
alignment, and at H2 the alignment of the magnetizations
changes from perpendicular to antiparallel. The difference
between H1 and H2 is a measure of the biquadratic cou-
pling strength, J2, and the sum is characteristic for the
bilinear coupling strength, J1. When the biquadratic cou-
pling strength is larger than the bilinear coupling strength,
as is the case in Fig. 1(b) for 100 K, only one step is ob-
served in the magnetization loop. The perpendicular align-
ment of the moments of the Fe layers is then maintained
down to zero field. In the latter case J1 and J2 can be evalu-
ated only from a fit of the experimental curves. We note
© 2000 The American Physical Society
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FIG. 1. MOKE hysteresis curves for tSi � 15.25 Å with the
field along the �100� easy axis at (a) 300 K and (b) 100 K, and
corresponding fits (right hand side) of the experimental curves
with Eq. (1). The insets show the relative orientations of the
magnetic moments for different fields (dashed lines are the easy
axes and solid lines are the hard axes).

that sometimes small steps in the magnetization loops are
observed at low fields, as also can be seen in Fig. 1(b),
which are magneto-optical artifacts caused by a small mis-
alignment of the easy axis with respect to the field.

The magnetization hysteresis curves can be fitted by
considering the phenomenological expression for the areal
energy density of the two magnetic layers

E � 2m0MsH�t1 cos�f1 2 fH� 1 t2 cos�f2 2 fH��
1 Kt1 cos2�f1� sin2�f1� 1 Kt2 cos2�f2� sin2�f2�
2 J1 cos�f1 2 f2� 2 J2 cos2�f1 2 f2� , (1)

with Ms the saturation moment of layers 1 and 2 with
thicknesses t1 and t2. Here f1 and f2 are the angles be-
tween the magnetization of layers 1 and 2 and the �100�
easy axis, respectively, while fH is the angle between the
field H and the �100� axis. The cubic anisotropy con-
stant K was assumed equal for layers 1 and 2. An extra
uniaxial anisotropy as is sometimes observed for epitax-
ial ultrathin Fe(001) films on semiconductors like Ge and
GaAs (see, e.g., [11]), was not observed in the relatively
thick Fe films [.30 ML (monolayer)] used in our experi-
ments and thus neglected. J1 is the bilinear coupling
constant (,0 for AF coupling) and J2 is the biquadratic
coupling constant (,0 for 90± coupling). By a minimal-
ization of Eq. (1) as function of the applied field H, the
magnetization loops can be reproduced in a satisfactory
way by choosing the correct combination J1 and J2 as is
demonstrated on the right hand side of Fig. 1. Uncertain-
ties in the determination of the coupling constants when
2J2 . 2J1 are overcome by combining easy and hard
axes loops. The anisotropy K , evaluated from the shape
of easy and hard axes loops, decreases with increasing
temperature from about 3.5 3 104 J�m3 at 10 K to ap-
proximately 1.8 3 104 J�m3 at 300 K. The temperature
dependences of J1 and J2 resulting from the fits are plot-
ted in Figs. 2(a) and 2(b), respectively, for the six different
nominal Si thicknesses.

J1 is antiferromagnetic and decreases slowly with in-
creasing temperature for all Si thicknesses. In a previous
paper by de Vries et al. [1] it was shown that the origin
of the exponential thickness dependence of J1 can be un-
derstood within the Anderson sd-mixing model applied
to Fe�Si by Shi et al. [12] or within the framework of
Bruno’s theory introducing the concept of an imaginary
critical Fermi wave vector [3]. Both models predict a
different temperature dependence. However, the tempera-
ture dependence of J1 is rather small, and we cannot rule
out completely that the small temperature dependence ob-
served is a result of a decrease of the (surface) magne-
tization of the Fe layers. Nevertheless, at this point the
temperature dependence of J1 seems to be in favor of the
sd-mixing model by Shi et al., which predicts a decreasing
coupling strength with increasing temperature, in contrast
to Bruno’s model.

The biquadratic coupling J2, shown in Fig. 2(b), has a
much stronger temperature dependence than J1. There are
a number of possible mechanisms for this biquadratic cou-
pling. First of all, J2 may be of intrinsic origin as was
claimed recently [9]. We reject this possibility because the
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FIG. 2. Temperature dependence of (a) J1 and (b) J2 for six
Si thicknesses as indicated in the figure. The solid lines in (b)
are fits to the experimental data with Eq. (5), as explained in
the text.
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magnitude of an intrinsic second order term J2 is generally
orders of magnitude smaller than J1, much smaller than
observed experimentally [3]. Furthermore, the tempera-
ture dependence should be less dramatic. Two other ex-
trinsic mechanisms for biquadratic coupling are proposed
by Slonczewski.

The fluctuation mechanism for biquadratic exchange
[13] predicts a J2 when spatial fluctuations of the
interlayer thickness cause a competition between ferro-
magnetic and antiferromagnetic coupling for neighboring
regions. The resulting frustration can lead to a perpendicu-
lar alignment of the magnetic moments, when the size of
the thickness fluctuations is below the size of the domain
walls. For Fe�Si, however, the bilinear coupling J1 always
favors an antiparallel alignment of the magnetic layers
and therefore lateral thickness variations do not lead to
a frustration of the coupling here [14]. Furthermore, the
fluctuation mechanism predicts a temperature dependence
J2�T � ~ �J1�T ��2. As shown in Fig. 2(a), J1 is decreased
only by 20% to 30% at 300 K compared to 10 K, while
J2 decreases by a factor of 19, ruling out an interpretation
in terms of the fluctuation model. We also note that
magnetic dipole fields created by roughness can result
in a biquadratic alignment of the moments [15]. The
magnitude of this contribution is however small.

The second mechanism proposed by Slonczewski is bi-
quadratic coupling mediated by paramagnetic atoms in the
spacer layer [16]. These so-called “loose spins” can couple
to both ferromagnetic layers via an indirect exchange,
which also is responsible for J1 (we will come back to
this point later). The total interaction potential U between
loose spins and ferromagnetic layers is the vector sum of
the interaction U1 and U2 of the loose spins with ferromag-
netic layers 1 and 2, respectively, and can be expressed as

U�u� � �U2
1 1 U2

2 1 2U1U2 cos�u��1�2, (2)

where u is the angle between the two moments. The free
energy per loose spin is

f�T , u� � 2kBT ln

√
sinh��1 1 �2S�21�U�u��kBT �

sinh�U�u��2SkBT �

!
,

(3)

with S the atomic spin and T the temperature. The macro-
scopic free energy per unit spacer area F � ca22f, with c
the areal density of loose spins and a the nearest neighbor
distance between atoms, can be expanded in

F�u� � J0 2 J1 cos�u� 2 J2 cos2�u� 1 . . . , (4)

where

J2�T � � 2
1
2

ca22� f�T , 0� 1 f�T , p� 2 2f�T , p�2��

(5)

is the loose spins contribution to the biquadratic coupling.
Previously, this loose spins model has been successfully
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applied to explain the biquadratic coupling in the RKKY
systems Fe�Al�Fe, Fe�Au�Fe, and Fe�Ag�Fe [16–19].
Especially in the Fe�Ag�Fe system the loose spins model
has been proven to explain the biquadratic coupling di-
rectly by depositing an ultrathin Fe layer in the center of
the Ag spacer. Without the ultrathin Fe layer this system
shows no loose spins behavior.

Unlike the other mechanisms for biquadratic coupling,
the loose spins model predicts a strong temperature
dependence of J2. Indeed, the huge increase of J2 shown
in Fig. 2(b) with decreasing temperature is a very strong
indication for a loose spins origin. Figure 2(b) is sup-
plemented with fits of J2�T � with the loose spins model
(solid lines), assuming S � 1 and U � U1 � U2, which
means that the loose spins are atoms near the midplane of
the spacer or randomly distributed. The areal loose spins
density c and the interaction potential U were adjusted for
the fit. As can be seen in the figure, the loose spins model
is in very good agreement with the experimental data. The
density of loose spins following from the fits converged
consistently to approximately 1% for all thicknesses, and
U�kB � 343, 334, 292, 266, 222, and 199 K for tSi �
14, 14.5, 15, 15.25, 16, and 16.25 Å, respectively. In
another approach one can assume c � 2 and allow for
U1 fi U2, which describes the case of two loose spins
layers near the edge of the ferromagnetic interfaces [16].
However, with these assumptions our data cannot be
described, because this leads to a plateau in J2 for lower
temperatures, not observed experimentally.

In the loose spins model the interaction potential U
is driven by the intrinsic bilinear coupling J1 between
the ferromagnetic layer and the loose spins in the spacer.
Qualitatively this can be proven by measuring the thickness
dependences of both the bilinear and the biquadratic cou-
pling. Figure 3 shows J1 and J2 at room temperature as a
function of the nominal Si spacer layer thickness measured
on the wedge-shaped sample. We have plotted the coupling
parameters only for tSi between 12.8 and 16.25 Å, when
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FIG. 3. Thickness dependence of J1 (open circles) and J2
(solid squares) at room temperature. The solid lines illustrate
the exponential decay with the Si thickness.
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J1 and J2 could be separated unambiguously. Indeed, both
J1 and J2 decrease exponentially with the Si spacer layer
thickness with approximately the same decay length. This
shows that indeed both J1 and J2 are intimately related and
find their origin in the same mechanism.

Furthermore, the unique exponential thickness depen-
dence of the intrinsic exchange interaction enables us to
perform a more quantitative analysis of J1. From the fits
for J2�tSi� we can obtain the strength of the driving intrin-
sic bilinear interaction J1 under the assumption that the
loose spins are located at the midplane. Given the expo-
nential character of J1 as shown in Fig. 3 and characterized
by l, we can calculate the intrinsic J1�tSi� at 0 K between
the magnetic electrodes:

J1�tSi, 0 K� � a22e2tSi�2lU . (6)

This results in J1 � 0.13, 0.10, 0.072, 0.058, 0.035,
and 0.028 mJ�m2 for tSi � 14, 14.5, 15, 15.25, 16,
and 16.25 Å, respectively, in good agreement with the
actually measured low temperature bilinear coupling [see
Fig. 2(a)]. This surprising result, given the simplicity of
the model, leads to two important conclusions: First of
all, the intrinsic J1 is apparently the only contribution
to the overall bilinear coupling and virtually no bilinear
loose spins contribution is observed. Qualitatively this
conclusion is also reflected in the relatively small tem-
perature dependence of J1 as already discussed earlier.
Second, this is the first direct proof of one of the basic
assumptions of Slonczewski’s loose spins model that the
interaction potential driving the coupling via loose spins
is the same as the intrinsic interaction mechanism.

The absence of a bilinear loose spins contribution in
systems where J2 originates from loose spins is well docu-
mented and is not restricted to our rather unique Fe�Si sys-
tem. Although the available data are scarce in literature,
also in the RKKY-driven Fe�Ag�Fe system the bilinear
loose spins contribution is only 20% of the value expected
from the Slonczewski model [19]. Apparently, further re-
finements of the theory seem to be necessary. The prospect
of predicting the bilinear loose spins contribution has been
questioned already by Slonczewski because of scattering
effects of the loose spins atoms on the electron waves ne-
glected in the original model [20].
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