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Abstract. Modern applications for thin film magnets involve unique requirements for the
control and design of specific magnetic properties. The exchange bias effect in
ferromagnet/antiferromagnet bilayers appears to be a useful feature for controlling one of the
most important characteristics of a ferromagnet: coercivity. Prospects for control and
enhancement of desirable effects depend upon a clear understanding of mechanisms
governing exchange bias. The processes underlying the existence and properties of exchange
bias are reviewed, with particular emphasis on the roles of interface structure and
temperature. Results from numerical simulations are used to illustrate how exchange bias is
modified by geometric structures at the interface and randomly placed defects. A general
theoretical formulation of the bias problem is proposed, and an expression for the interface
energy is derived. A key result is the existence of higher-order coupling terms when more
than one sublattice of the antiferromagnet is present at the interface. Results from
calculations of finite temperature effects on bias and coercivity are described, and the concept
of viscosity in the antiferromagnet is discussed. A brief discussion is also included of how a
dynamic linear response, such as ferromagnetic resonance or light scattering, can be used to
determine relevant anisotropy and exchange parameters.

1. Introduction

Much research into thin film magnetism over the past fifteen
years has been driven by important and useful features
associated with interfaces involving magnetic materials. A
well known achievement of this research has been the
development and application of giant magnetoresistance.
Since then, a new technology has emerged, ‘spin electronics’;
an area that has seen remarkable growth in recent years.
The integration of magnetic structures with semiconductor
technology on a nanoscopic scale is a goal currently pursued
with great vigour, particularly for applications in data storage
and sensing device technologies. A general introduction to
the topic has been given by Prinz (1995).

The key to the successful design of magnetic structures
for application is the ability to manipulate and control
magnetic properties. The basic energies involved are
exchange and anisotropy, where the former controls magnetic
ordering and the latter controls the preferred orientation.
Both are phenomenological descriptions of fundamental
correlations and energies associated with the electronic and
crystalline structure of a material. A powerful technique
for modifying and controlling magnetic characteristics is
based on the use of magnetic heterostructures with properties
governed by the interface region.

One of the most interesting interfaces for basic study
and application is the interface between a ferromagnet
and an antiferromagnet. A ferromagnet, such as iron,
has a large exchange parameter but a relatively small

anisotropy. This makes ferromagnetic order stable
at high temperatures but the orientation may not be,
particularly if the dimensions are a few nanometres. Many
antiferromagnets have large anisotropies and consequently
very stable orientations. In heterostructures, exchange
coupling between the ferromagnet and antiferromagnet
can, in principle, produce a ferromagnetic behaviour with
stable order and high anisotropy. In such a structure,
the anisotropy may behave as uni-directional—a feature
not found in ferromagnets. This phenomena is called
exchange bias because the hysteresis loop associated with the
ferromagnet/antiferromagnet structure can be centred about
a non-zero magnetic field.

The phenomena of exchange bias is a topic that has
been visited and revisited several times over the past forty
years, beginning with Meiklejohn and Bean (1956) and
Jacobs and Bean (1966). The reason is that there is an
inherent complexity in a structural combination that leads
to competing interactions. This is precisely what happens at
an interface where both ferromagnetic and antiferromagnetic
interactions can compete for magnetic order. The presence of
strong local anisotropies can also contribute, with the result
of unusual reversible and irreversible processes governing
the magnetization and static susceptibility. It has been
suggested that some aspects of the magnetic behaviour may
be closely related to those observed in disordered magnets
and spin glasses (Malozemoff 1988, Schlenker et al 1986,
Kouvel 1963).
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Figure 1. Shifted hysteresis in an exchange biased ferromagnet.
Characteristic fields are the bias, HE, and coercivities, Hc1 and Hc2.

1.1. Applications and relevant features

An example shifted hysteresis is sketched in figure 1. The
centre of the hysteresis loop is shifted from zero applied
magnetic field by an amount HE, the exchange bias field.
There are three different fields used to characterize the bias:
the left and right coercive fields, Hc1 and Hc2, and the bias
field.

One application for exchange bias is to ‘pin’ the
ferromagnet along a particular direction. If the applied
field strength is less than Hc1, for example, then the
ferromagnet will not reverse. This feature is of interest for
applications in spin valves and magnetic tunnel junctions.
Furthermore, because the interface exchange provides a
means for anisotropies in the antiferromagnet to affect
magnetic order in the ferromagnet, exchange bias is also of
interest in terms of ‘anisotropy engineering’. This is relevant,
for example, for modifying activation energies and volumes
in fine particles (Fulcomer and Charap 1972, van der Heijden
et al 1998b).

Relevant characteristics of the bias and coercivity fields
are immediately apparent. In terms of magnitude and design,
the sensitivity and dependence of the fields to interface
structure and quality are important. Stability to magnetic field
and thermal fluctuations is also a significant issue. Long-term
stability for the magnitude of the bias field and orientation of
the ferromagnet can also be important. Of particular interest
for design applications is the degree to which the bias and
coercive fields can be adjusted through film thickness, growth
conditions and choice of materials.

1.2. Proposed mechanisms

In the light of the above considerations, experimental studies
of exchange bias have presented a number of puzzles and
contradictions. Of these, the most serious has been an
inability for models of exchange bias to correctly predict the

magnitude of the bias or coercive fields. This was recognized
quite early, and led to the recognition of a number of processes
possibly involved in exchange bias (Néel 1967).

These additional considerations fall mostly into two
categories. The first is the recognition that reorientation of the
ferromagnet through application of an applied magnetic field
can require formation of magnetic domain wall structures
on either side of the interface (Mauri et al 1987, Koon
1997, Schulthess and Butler 1998, Stiles and McMichael
1999a, Camley et al 1999, Kiwi et al 1999b). The
second category was defined early on, with considerations
of domain formation and domain wall motion, pinning and
de-pinning during reversal of the ferromagnet (Meiklejohn
1962, Schlenker and Paccard 1967, Schlenker 1968a, 1968b,
Néel 1988). Since then, theories have been put forward that
describe domain and wall dynamics in the antiferromagnet
(Malozemoff 1987, Nemoto et al 1999, Nikitenko et al
2000, Kiwi et al 1999a), and also domain dynamics in the
ferromagnet component (Li and Zhang 2000, Kiwi et al
1999a, Leighton et al 2000).

Because the exchange bias is intimately connected with
details of the magnetization process during reversal and
the subsequent formation of hysteresis, considerations of
time dependence and irreversible processes are also relevant
(Schlenker 1968b, Fulcomer and Charap 1972, Schlenker
et al 1986). This has led to a number of more recent
examinations of thermal effects (van der Heijden et al 1998a,
1998b, Gökemeijer et al 1999, Farrow et al 1997). Magnetic
viscosity experiments have also been reported, including field
rate studies (Geoghegan et al 1998, Goodman et al 1999,
2000). The importance of thermal processes on exchange
bias and coercivity means that the magnetization history is
important (Miltényi et al 1999, Nogués et al 2000b), and can
result in a variety of curious behaviours including positive
exchange bias (Nogués et al 1996, 2000a).

There are many interesting results appearing from
experiments that provide challenges and testing grounds
for models of exchange bias mechanisms. One class
of these experiments is rotational hysteresis and torque
measurements. This technique was used quite early as a
natural way of measuring the uni-directional anisotropy and
is still valuable (Meiklejohn 1962, Schlenker 1968b, Tsunoda
et al 2000). There is a wealth of information available from
the analysis of spatial correlations during the magnetization
process that can be obtained from scanning probe studies
of domain formation and dynamics (Nikitenko et al 1998,
Kiwi et al 1999a, Fitzsimmons et al 2000). Ferromagnetic
resonance and light scattering studies of linear response also
offer unique views of exchange bias materials (McMichael
et al 1998, Mathieu et al 1998, Ercole et al 2000). Nonlinear
dynamic experiments are also possible and may provide
particularly interesting results on nonequilibrium processes
on short timescales (Ju et al 1999).

1.3. Outline

The emerging picture of mechanisms for exchange bias is
complicated by the dynamics of interface spins frustrated
by competing interactions. In order to provide a reasonably
coherent picture of the current state of understanding, the
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following discussion is organized somewhat along historical
lines. In section 2, one of the initial, and simplest,
models of exchange bias is described, and useful empirical
definitions for uni-directional anisotropy fields are presented.
Next, based on general energy considerations, refinements
are argued for with the introduction of a ‘partial wall’
picture. This leads naturally to a consideration of interface
structure and the question of imperfections discussed in
section 3. Stability requirements for exchange bias with
mixed sublattice interfaces are examined, and results from
numerical simulations on systems with structured interfaces
are described.

A theory of exchange bias is constructed in section 4
in order to justify the use of proposed models of the
interface energy, and to provide a means of defining useful
parameters for the interface region. The idea of stability is
further examined in terms of thermal processes and effects
in section 5 in the context of mean field theory and also
using Monte Carlo simulations for time-dependent effects.
Section 6 contains a brief summary of linear response
dynamics, with a particular focus on how resonance and
light scattering can be used to obtain measures of interface
parameters governing the exchange bias. The main points
and conclusions are summarized in section 7.

The mechanisms discussed in the following sections are
based on semi-classical theories of magnetization processes.
Interesting alternative formulations have also been explored
using magnon theory, but these will not be discussed here
(Suhl and Schuller 1998, Hong 1998). The discussion is
limited to exchange bias effects involving ferromagnets and
naturally occurring antiferromagnets, although it is noted that
combinations involving ‘artificial’ antiferromagnets can also
display bias shifts (Jiang et al 2000). Also, no attempt has
been made to survey the experimental literature. The reader
is instead referred to excellent reviews by Nogués et al (1999)
and Berkowitz and Takano (1999).

2. Basic mechanisms for perfect interfaces

A shifted hysteresis, such as that sketched in figure 1, can
be obtained experimentally in the following way. First, a
magnetic field is applied in order to saturate the ferromagnet
in the field direction. This is done at a temperature above the
ordering temperature TN of the antiferromagnet. The second
step is to cool the sample below TN while in the field. A shift
in the hysteresis loop can appear if measured after cooling.

2.1. Rigid antiferromagnet model

Meiklejohn and Bean (1956, 1957) suggested that this shift
is due to a large anisotropy in the antiferromagnet and
a weaker exchange energy coupling the ferromagnet and
antiferromagnet. A schematic diagram of the process is
given in figure 2 for a ferromagnet with no anisotropy. In
figure 2(a), the saturating magnetic field is applied for a
temperature above TN. This aligns the ferromagnet, and after
cooling the system while still in the field, the magnetization
remains pinned along the original direction for small negative
fields, as in figure 2(b). A field large enough to overcome
the interlayer exchange reverses the ferromagnet, as shown in
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Figure 2. Meiklejohn and Bean mechanism for bias. In (a), a
saturating magnetic field is applied in order to align the
ferromagnet above TN. After cooling the system in field, the
magnetization remains pinned along the original direction when
the field is reversed as shown in (b). A sufficiently large field
reverses the ferromagnet in (c).

figure 2(c). On the reverse path, the ferromagnet rotates back
into the original positive direction while the applied field is
still negative. This gives a shifted magnetization curve as
shown in figure 1. The magnitude of the shift is equal to the
effective field associated with the interlayer exchange.

A hysteretic loop appears when anisotropy is included in
the ferromagnet. Bounds for the coercive fields, Hc1 andHc2,
can be found by examining the stability of a model energy of
the form

E = −HMtf cos θ − J cos θ + Kf sin2 θ. (1)

In this model, the applied magnetic field is H , M is
the saturation magnetization of the ferromagnet, tf is the
thickness of the ferromagnetic film, J is the interlayer
exchange between the ferromagnet and the antiferromagnet,
and Kf is a uniaxial anisotropy in the ferromagnet. The
angle θ is taken between M and the uniaxial anisotropy
easy axis. The field is aligned along the easy axis and the
magnetization is assumed to remain uniform in this model.
The most important restriction is that the antiferromagnet
remains rigidly aligned along the direction of its easy axis,
assumed to also lie parallel to the ferromagnet easy axis.

The energy has extrema corresponding to saturation in
the θ = 0 and π directions. Stability of the θ = 0
configuration is possible if J + H + 2Kf > 0, and stability
of the θ = π configuration is possible if 2Kf − J − H > 0.
This corresponds to coercive fields

Hc1 = −2Kf + J

Mtf
(2)

and

Hc2 = 2Kf − J

Mtf
. (3)

Because the coercive fields are not equal in magnitude, the
entire hysteresis is biased. The bias field in this model can
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be defined as the midpoint of the hysteresis and is directly
proportional to the exchange coupling:

HE = J

Mtf
. (4)

Note that the bias field is determined by competition between
the Zeeman energy and the interlayer exchange energy, and
therefore depends on the thickness of the ferromagnet.

It is useful to also note that the bias can be interpreted
as an exchange coupled anisotropy field acting on the
ferromagnet. The effective magnetic field acting on the
ferromagnet is defined as

Hf = − 1

M
∇fE. (5)

A notation defined in equation (5) will be used in later sections
and is the definition of f as a unit vector in the direction of the
ferromagnet magnetization. This results in the equivalence

cos θ = f · nf (6)

where nf is a unit vector defined in the direction of the
ferromagnetic easy axis.

Equation (5) applied to the energy in equation (1) gives

�Heff = −2Kf

M
f + (H + HE)nf . (7)

The first term represents the ferromagnet anisotropy fields,
but the third term is sometimes thought of as a contribution
from a uni-directional anisotropy of magnitude J/Mtf .

2.2. Partial wall model of the uncompensated interface

The remainder of this article is in some sense an extended
footnote to equation (7) detailing the various corrections
involved when considering exchange bias in thin film
magnetic multilayers. The first correction has been noted
by several authors, and is the recognition that a perfectly
rigid antiferromagnet, and a perfectly uniform ferromagnet,
may not properly describe the lowest energy magnetic
configuration near the interface (Néel 1967, Mauri et al 1987,
Koon 1997, Kiwi et al 1999b). This point will be examined in
detail in section 4 but, for the moment, an intuitive argument
serves to illustrate the basic idea.

Consider a long chain of N magnetic moments with
nearest neighbour ferromagnetic exchange coupling and
a uniaxial anisotropy energy. A configuration with the
moments at one end rotated 180◦ from the moments at the
other end will have an energy that depends on how the rotation
occurs. Suppose at each end the moments are aligned along
the easy axis in the positive z direction. If a magnetic domain
wall is formed, then neglecting magnetostatic contributions,
the energy of the twist will be proportional to

√
JfKf where

J is the exchange integral of the ferromagnetic chain. The
energy of this configuration is less than the energy needed
to align half of the moments along the +z direction and half
along the −z direction.

Now consider an exchange bias structure as a long
chain of N ferromagnetically coupled moments and N

antiferromagnetically coupled moments. The moments at

the interface are connected by an exchange energy J1.
According to the above argument, the configuration sketched
in figure 2(c) should be higher in energy than a configuration
in which the ferromagnet and antiferromagnet moments form
some type of twist. This means that the bias field given by
equation (4) is too large by an amount related to the energy
of a domain wall at the interface.

In general, it is energetically favourable to build a twist
into a magnetic chain by distributing the twist over a number
of moments. However, it is not always possible to form a
stable twist configuration near or across an interface. One
of the main points of this article is that this feature is a main
factor controlling exchange bias shifts and coercive fields.

Expressions for the bias field with a twist formed
in the antiferromagnet can be derived by including
the energy of a twist into the energy of the coupled
ferromagnet/antiferromagnet system. An uncompensated
interface with only one antiferromagnet sublattice is
considered first. Defining the vectors a and naf for the
direction of the interface antiferromagnet moment and the
antiferromagnet easy axis, respectively, the total energy of
the uncompensated system is

Eu = −HMtf · f + J1f · a + σ(1 − a · naf). (8)

This energy is written for arbitrary orientation of the applied
field H , and assumes no anisotropy in the ferromagnet. The
ferromagnet is assumed to rotate rigidly without forming
a significant twist. This is a reasonable assumption for
thin ferromagnet films with large exchange and small
anisotropies. The conditions for a twist formed in the
ferromagnet will be considered in section 4.

The bias field is defined here as the magnitude of H

necessary to align the ferromagnet perpendicular to the
applied field such that H · f = 0. This can be found
easily from the effective field calculated from the energy
of equation (8) using equation (5). In terms of an angle
ρ specifying the direction of the applied magnetic field H

measured relative to the antiferromagnet easy axis, the bias
field is given by

HE = J1

Mtf

cos θ√
1 + J1

2σ | sin θ | +
(
J1
2σ

)2
. (9)

There are several interesting features of this model.
Firstly, and most importantly, the magnitude of the bias field
is reduced by the formation of a twist in the antiferromagnet.
This is seen most clearly by considering the special case of
the field aligned along the antiferromagnet easy axis (ρ = 0):

HE = J1

Mtf

√
1 +

(
J1
2σ

)2
. (10)

The twist energy is an important correction to the
magnitude, as noted by Mauri et al (1987). The magnitude
of the correction can be estimated by noting that J1/σ has
the form of a domain wall length in units of atomic layers.
If J1 is of the order of magnitude of the antiferromagnet
exchange, then this length will be around ten layers. This
reduces HE by an order of magnitude from the untwisted
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bias result of equation (4). An interesting consequence is
that the antiferromagnet must be thick enough to support
partial wall formation. This leads to a dependence of the bias
field on the thickness of the antiferromagnet. Dependence on
antiferromagnet thickness of the bias field antiferromagnet
has been observed in several experiments (Allegranza and
Chen 1993, van Driel et al 2000, Xi and White 2000a).

The second important feature of equation (9) is that the
bias field is largest for directions along the antiferromagnet
easy axis, and zero for directions perpendicular to the easy
axis. This will be seen to be of particular importance in
section 3 when examining the effect of interface structure on
the bias field and properties. It is interesting to note that the θ
dependence of the bias field can be described by a few terms
in a cosine or sine expansion (Ambrose and Chien 1994,
Ambrose et al 1997). The angular dependence provides
information about the nature of the interface, and is one means
of characterizing imperfect interfaces (Wu and Chien 1998,
Dimitrov et al 1998, Tang et al 1999, Xi and White 1999,
Xi et al 1999a, Kim et al 2000).

The shape of the magnetization curve is also revealing
and can be determined by minimizing the energy of
equation (8). A way of locating a minimum energy
configuration is to require the torques

Γf = f × Hf (11)

and
Γaf = a × Ha (12)

to vanish and to check that the corresponding configuration
is actually a stable minimum of the energy. The effective
field Ha is defined for the antiferromagnet vector a in direct
analogy to equation (5) for the ferromagnet. The starting
point for the calculation is important, and is taken from
the solution at the previous field value when calculating
a hysteresis loop. A loop calculation is usually begun at
saturation.

An example magnetization curve produced by the partial
wall mechanism is shown in figure 3. The calculation was
performed by minimizing equation (8) as described above,
and the projection of the ferromagnet magnetization along the
applied field direction is shown as a function of the applied
field. The units are reduced with the magnetization given as
m/M = cos θ and the field as HMtf/σ .

Throughout this article, the exchange parameters are
given in units of σ . The value used for figure 3 is J1 = 1.
There is no hysteresis because there is no anisotropy in the
ferromagnet, and no unstable configurations for this field
range in the antiferromagnet. Note the asymptotic approach
to saturation for large negative field. This corresponds
to the formation of an almost 180◦ domain wall in the
antiferromagnet. A full 180◦ wall cannot exist unless it
penetrates into the ferromagnet across the interface, and in
fact may not be stable depending on anisotropy and exchange
parameters. Instabilities of partial wall formation will be
discussed in more detail in section 3, but the consequence
is simply that the reversible bias effect will disappear if the
applied field is increased beyond a certain value. This point
has been discussed by Stiles and McMichael (1999a) and
Stamps (2000), and is central to the idea of a ‘natural angle’
suggested by Camley et al (1999).

−0.5 0.0 0.5
H tF M/σ

−1

−0.5

0

0.5

1

m
/M

Figure 3. Magnetization along the direction of an applied
magnetic field as a function of the field for an exchange biased
structure. The interface has only one antiferromagnet sublattice
present (uncompensated) and J1 = 1. There is no anisotropy in the
ferromagnet, and the bias involves a twist formed in the
antiferromagnet. Note the asymptotic approach to saturation for
negative field.

2.3. Magnetic configurations for the compensated
interface

A large number of possible interface structures are
compensated or partially compensated in that multiple
antiferromagnet sublattices may be present and couple to
the ferromagnet. This is clearly also possible with disorder
present at the interface. The consequences on exchange
bias are many, and will be described at length in the
following sections. The extreme case of full compensation
for an interface between a ferromagnet and a two sublattice
antiferromagnet is considered first.

Full compensation means equal fractions of both
sublattices are present at the interface, as illustrated in
figure 4(b). The ferromagnet is then exchange coupled
equally to both sublattices. If the antiferromagnet moments
are rigidly antiparallel in the interface plane, there is no net
moment for the ferromagnet to interact with. The result
is that all orientations of the ferromagnet with respect to
the antiferromagnet have the same energy. The conclusion
is that there can be no exchange bias effect without a net
antiferromagnetic moment at the interface.

Based on results of numerical simulations, Koon (1997)
suggested that exchange coupling to a ferromagnet at
a compensated interface could automatically generate a
small magnetic moment through a spontaneous canting of
antiferromagnetic spins. The idea is that spins in the interface
region are frustrated by competing antiferromagnetic
exchange between the two sublattices and the ferromagnet.
The competition results in a canted configuration where
the spins deviate slightly from the easy axis direction
in such a way as to generate a net magnetic moment.
The ferromagnet aligns antiparallel to this moment, and
consequently orientates perpendicular to the antiferromagnet
easy axis. The resulting configuration is sketched in
figure 4(c).

The feature of perpendicular orientation of the
ferromagnet relative to the antiferromagnet easy axis is
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Figure 4. Schematic structure of a two sublattice antiferromagnet
at (a) an uncompensated interface and (b) a fully compensated
interface. Spin canting at a compensated interface is illustrated
in (c).

closely related in principle to the idea of biquadratic coupling.
In a model by Slonczewski (1991), variations in the sign of
coupling along an interface between two ferromagnetic films
were shown to result in a perpendicular orientation of the
films.

An energy describing this form depends on the square
of the cosine of the angle between the two films, and has
been suggested to approximate the effect of coupling at a
compensated ferromagnet/antiferromagnet interface (Stiles
and McMichael 1999a, Stamps 2000). A modified version
of equation (8) includes this biquadratic term:

Einter = −HMtf ·f+J1f ·a+J2(f ·a)2+σ(1−a·naf). (13)

The perpendicular coupling appears in the J2 term.
In section 4, this energy will be derived from a general
argument and shown to be a second-order term in the
exchange coupling between a ferromagnet and a canted
antiferromagnet. It is the only term that appears when the
interface is fully compensated. The J2 contribution to the
coupling also involves a number of stability conditions that
will be discussed in section 3.

The method used above to derive an expression for the
bias field can also be used in this case. If the applied field is
aligned perpendicular to the antiferromagnet easy axis, the
bias field turns out to be

HE = σ

2tFM

√
1 −

(
σ

4J2

)2

. (14)

Note that a bias field does not exist for all values of the
exchange coupling J2. The exchange must satisfy J2 > σ

which means that the interface exchange must be larger than
the energy required to form a wall in the antiferromagnet.
The reason is that a partial wall mechanism for bias in the
case of a compensated interface requires that the canting of
interfacial spins be preserved through large angle rotations

n af

H

f

a

θ

α

ρ

Figure 5. Angles for the applied field, ferromagnet, and
antiferromagnet defined in reference to the antiferromagnet
uniaxial anisotropy axis naf .

of the ferromagnet. This turns out to be possible only by
forming a stable domain wall in the antiferromagnet while
keeping the ferromagnet mostly aligned with the canted
moment. The exchange coupling must therefore be large
enough to preserve the relative orientation of the ferromagnet
and antiferromagnet interface moments during the entire
reversal process.

Before turning to the problem of exchange bias at general
interfaces, mention should also be made of another type of
partial wall model proposed by Kiwi (1999b). The argument
is that exchange bias may be possible at a compensated
interface if canting is present, but if the partial wall is formed
in the ferromagnet as opposed to the antiferromagnet. Kiwi’s
calculations suggest that magnitudes for HE comparable to
observed values are possible in this model. This mechanism
will be examined again at the end of section 4.

3. Stability, interface structure and defects

General features of the exchange bias were described in the
previous section for perfect compensated and uncompensated
interfaces. In order to discuss exchange bias at partially
compensated interfaces, it is first necessary to examine
another important issue: stability (Schulthess and Butler
1998, Camley et al 1999, Kim et al 1999, Stiles and
McMichael 1999a).

Considerations for stability were mentioned early
in section 2 with regard to coercivity for the rigid
antiferromagnet model. A more general description
of coercivity is now given in terms of partial wall
formation. However, a basic distinction appears. In the
rigid antiferromagnet model, the coercivity depended on
anisotropies intrinsic to the ferromagnet. Here it will be
shown that anisotropy in the ferromagnet is not necessary
for coercivity observed in exchange biased structures.

3.1. Energy barriers to partial wall formation

The formation of energy barriers is a useful way of
understanding the process of ferromagnet reversal with
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Figure 6. Energy contour plots for reversal of the ferromagnet in an applied magnetic field. The horizontal axis is the angle describing the
orientation of the antiferromagnet, α, and the vertical axis is the angle describing the orientation of the ferromagnet, θ , as defined in figure 5.
The interface is uncompensated with J1 = 0.1 and J2 = 0.01. The applied field is aligned along ρ = 0 with magnitude HMtf/σ = 0.5 in
(a), HMtf/σ = 0 in (b), HMtf/σ = −0.12 in (c) and HMtf/σ = −0.5 in (d). The darkest regions have the lowest energy.

exchange bias in the partial wall model (Stamps 2000). There
are at least two types of barrier important to consider. The
first are barriers involved for rotation of magnetization in the
plane of the interface, and the second are barriers related
to out-of-plane rotation of the magnetizations. In-plane
rotation processes are considered first for uncompensated,
compensated and partially compensated interfaces.

To understand how in-plane barriers affect exchange
bias, it is useful to examine the energies of various magnetic
configurations described by equation (13) for different values
of the exchange parameters. In section 4, arguments will be
presented to show that the energy in equation (13) describes
an uncompensated interface if J1 	 J2 and a compensated
interface if J1 = 0. It will also be argued that a partially
compensated (or ‘mixed’) interface is described when J1 is
comparable to J2.

To begin, consider exchange bias for an uncompensated
interface. The energy of a magnetic configuration can be
conveniently specified in the above model by defining angles
shown in figure 5. The angle α specifies the orientation of a,
and θ describes the orientation of f .

A contour plot of energy calculated from equation (13)
is shown in figure 6. The exchange parameters are J1 = 0.1
and J2 = J 2

1 so that J1 	 J2. The horizontal axis is the
angle describing the orientation of the antiferromagnet, α,
and the vertical axis is the angle describing the orientation of
the ferromagnet, θ . The applied field is aligned along θ = 0.

The applied field is HMtf/σ = 0.5 in figure 6(a), and
corresponds to the field cooling direction. There is a single,

well defined potential well at θ = α = 0. The well lengthens
in the θ direction as the field is reduced. This is seen in
figure 6(b) where H = 0. The well lengthens and splits
into two separate wells as the field is made negative. The
minima are at non-zero α values so that a small twist exists
in the antiferromagnet. At HMtf/σ = −0.12, shown in
figure 6(c), there are two distinct wells near θ = π/2 and
3π/2. The wells separate, moving towards θ = π and
−π as the field becomes more negative. This is shown in
figure 6(d) forHMtf/σ = −0.5. The magnetization process
is reversible as the field is made positive again. This means
a shifted magnetization curve and stable bias.

If the partial wall is stable to out-of-plane fluctuations,
there is no minimum value of J1 necessary for bias. The
case of fully compensated interfaces is very different, as
discussed in the previous section where it was found that a
minimum value of J2 is necessary for reversible bias to exist.
Energy contours for a compensated interface are shown in
figure 7 for J1 = 0 and J2 = 0.04. The applied field is
applied perpendicular to the antiferromagnet anisotropy axis
with ρ = π/2. At HMtf/σ = 0.05 in figure 7(a), a deep
well is at θ/2 and is taken as the cooling direction. A well
begins to form at θ = 3π/2 as the field is reduced. At
HMtf/σ = 0.01 the wells are separated by a small barrier,
as shown in figure 7(b). At HMtf/σ = 0 (figure 7(c)) they
are equally deep and symmetrically placed about θ = 0.

Reversal of the field causes the θ = 3π/2 well to deepen
and the θ = π/2 well to become shallow. At a large negative
field, the π/2 well becomes unstable and the magnetization
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Figure 7. Energy contour plots for reversal of the ferromagnet
with a compensated interface. The exchange is J2 = 0.04 and the
applied field is aligned along ρ = π/2 with magnitude
HMtf/σ = 0.5 in (a), HMtf/σ = 0.01 in (b) and HMtf/σ = 0
in (c). The value of J2 is too small for exchange bias in this
example, and only irreversible changes of the magnetization from
one well to the other are possible.

moves to the 3π/2 well. The magnetization remains in the
θ = 3π/2 well until it becomes unstable at a large positive
field as the field is cycled back into the original cooling
direction. The hysteresis is symmetrical about H = 0 in
this case and there is no exchange bias.

The corresponding hysteresis curve is shown in figure 8
where the magnetization as a function of field is calculated
by minimizing the energy in equation (13). The value of J2

used in this example is not large enough to support a biased
magnetization curve. An interesting point is that hysteresis
appears even though there is no anisotropy in the ferromagnet.
The magnitude of the hysteresis depends on the magnitude
of J2.
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Figure 8. Hysteresis for exchange bias with a compensated
interface in the partial wall model. The initial potential well
becomes unstable and the magnetization shifts to another well at
HMtf/σ = ±0.06. The result is that the ferromagnet follows
paths in different quadrants of θ . The hysteresis loop is
symmetrical about H = 0 so that no bias appears.

If a value for J2 greater than the wall energy is used,
numerical micromagnetic models show that a partial wall
type of bias can exist (Koon 1997, Kim et al 1999).
The results obtained from equation (13) in this limit are
in qualitative agreement with micromagnetic results, and
insight can be gained by examining the energy landscape.

An example of the energy contours with J2 = 9 is shown
in figure 9. The most striking feature is a skewing of the
valleys so that a path appears for the ferromagnet between
θ = π/2 and θ = 3π/2 that never crosses a barrier. This can
be seen by comparing figures 9(a) and (b) where the field is
HMtf/σ = 2 and −2, respectively. If the magnetization
begins at saturation in the minimum at θ = π/2 (as in
figure 9(a)) then it will remain in the valley containing the
minimum as the field is reduced to zero. The minimum shifts,
but does not move into the θ < 0 region untilHMtf/σ = −2.
As the field is made more negative, the minimum slowly
approaches θ = 3π/2. The antiferromagnet is considerably
twisted at this point, with a large value of α due to the large
J2. The process is reversible if the field is reduced to zero
and increased again into the positive direction. The result is
a biased magnetization curve without hysteresis, as for the
uncompensated example of figure 3.

The reversible bias exists because there is a barrier
between wells in two different valleys. The barrier
decreases in height as the field is made more negative.
If the magnetization crosses this barrier, reversal of the
magnetization becomes irreversible and hysteresis appears
without exchange bias.

3.2. Natural angle and mixed interfaces

There are two important aspects to the mixed interface case.
The first is that all of the above considerations regarding
stability apply. Irreversible processes are unavoidable for
values of exchange less than the wall energy and hysteretic
behaviour appears. The second aspect is that although
hysteresis appears, the loops may be asymmetric, shifted,

R254



Topical review

θ

πππ

π

α
(a)

α

θ

πππ

π

(b)

Figure 9. Energy contour plots for reversal of a ferromagnet with
a compensated interface. Here J2 = 3σ/2 and the applied field is
again aligned along θ = π/2. The applied field magnitude is
HMtf/σ = 2 in (a) and HMtf/σ = −2 in (b). The value of J2

skews the energy valleys in such a way as to provide a path for the
ferromagnet that never crosses a barrier. This allows exchange
bias to appear as a reversible magnetization process.

or both. The reason is that the magnetization returns
through a different quadrant of θ than it went through in
the forward path, and these paths may involve different
effective fields because of coupling to both sublattices of the
antiferromagnet.

Examples of different forward and return paths are
shown by the magnetization loops in figure 10. These
loops are calculated with J1 = 0.2 and J2 = 0.16 for
different orientations of the applied field. The hysteresis
loops are asymmetric about their midpoints and shifted for
field orientations between ρ = 0 and ρ = π/2.

The reason for the asymmetry can be understood by
comparing the energy landscape for the forward and reverse
magnetization paths. Energy contours for an asymmetric
case of figure 10 are shown in figure 11 with ρ = π/6.
The field has magnitude HMtf/σ = +0.5 in figure 11(a),
HMtf/σ = 0 in figure 11(b) and HMtf/σ = −0.5 in
figure 11(c). The key feature is that J2 skews the energy
surface so that each well passes through a different set of
α values as the field is changed. Because α measures
the magnitude of the twist of the partial wall in the
antiferromagnet, it also measures the effective field acting on
the ferromagnet. Because the forward and reverse paths of the
hysteresis curve take the ferromagnet through different sets of
effective fields, the shape of the loop in the forward direction
can be very different from the shape of the loop in the reverse
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Figure 10. Hysteresis loops for a mixed interface with different
orientations of the applied field. The exchange parameters are
J1 = 0.2 and J2 = 0.16. The angle of the applied field is ρ. The
loops are asymmetric for most angles.

direction. The result is an asymmetric hysteresis that reflects
the different internal effective fields involved when taking the
magnetization through the forward and reverse directions.

It is interesting to note that the appearance of asymmetry
in hysteresis is sometimes attributed to domain wall pinning
and de-pinning along different points on the hysteresis loop
(Goodman et al 2000). The above explanation is consistent
with this view in that it describes de-pinning of partial walls
formed in the direction normal to the interface.

The appearance of asymmetric hysteresis can be
characterized by the definition of a ‘natural’ angle, θnat. This
angle specifies the equilibrium orientation of the ferromagnet
in zero applied field (Camley et al 1999) and will be further
discussed below in relation to rough interfaces.

3.3. Instability to out-of-plane fluctuations

As illustrated above, exchange bias and coercivity are
sensitive to existence conditions for partial wall formation
near the interface. The treatment so far has considered
only rotations of the ferromagnet and antiferromagnet in a
common plane, implicitly assumed to be a plane parallel to
the interface. A more general model allows the extra degrees
of freedom for the magnetizations in each layer to rotate in
separate planes. This is very difficult to treat analytically,
and numerical methods are necessary.

Because the film geometry involves large shape
anisotropies arising from demagnetizing fields in the
ferromagnet, the assumption of in-plane rotation is
reasonable for soft ferromagnets. It is then possible to
propose, as done by Stiles and McMichael (1999a), a
particular type of out-of-plane rotation for magnetization
processes in the antiferromagnet. The assumption is that,
at least for granular structures, both sublattices of the
antiferromagnet can be present at the interface and twists
in the antiferromagnet can exist due to canting between
the sublattice magnetizations. The idea is that the twist
can be reduced or released through a 180◦ rotation through
a plane normal to the interface. This process takes the
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Figure 11. Energy surface contour plots for a mixed interface.
The applied field is along the ρ = π/6 direction and J1 = 0.2 and
J2 = 0.16 as in figure 10. The energy surface for HMtf/σ = +0.5
is shown in (a), for HMtf/σ = 0 in (b), and for HMtf/σ = −0.5
in (c). Note how different the energy contours are for ±H ,
corresponding to different magnitudes of effective fields acting on
the ferromagnet for forward and reverse magnetization processes.

antiferromagnet moments out of the film plane during this
rotation. A sketch of this process is shown in figure 12.

This picture is consistent with numerical simulations on
spin lattices for perfectly compensated interfaces (Schulthess
and Butler 1998, Kim et al 1999, Camley et al 1999, Stamps
2000). In these studies, precession of the spins out-of-plane
is found to de-pin the partial wall and thereby remove the bias
shift in cases where the interface is fully compensated. The
energy associated with the out-of-plane rotation depends on
the existence of any easy plane anisotropies. An easy plane
anisotropy, leading to a preferential planar orientation of the
antiferromagnet spins, can serve to stabilize the partial wall

Figure 12. Out-of-plane rotation of antiferromagnet moments as
an irreversible process. An event is described as the reversal of the
moment coupling the antiferromagnet to a ferromagnet. The
reversal is accomplished by an out-of-plane rotation, shown here
for a compensated interface (Stiles and McMichael 1999b).

in the antiferromagnet against out-of-plane precession. Note
that while it is convenient to refer to planes parallel to the
interface, in general the same considerations apply to any
plane favoured by the antiferromagnet moments.

The above considerations can be quantified by adding
a term representing the cost in energy of rotating
antiferromagnet moments through an angle ψ specifying
an out-of-plane rotation. This term can be estimated by
supposing that only moments within a domain wall length
� of the interface are involved (Stamps 2000). Allowing
for an easy plane anisotropy of magnitude K0, the energy
represents a barrier EB:

EB = �K0 sin2 ψ. (15)

Inclusion of this energy into equation (13) makes it possible
to examine the stability of the exchange bias to fluctuations
out of the film plane. Inserting the expression for EB into
equation (13) and allowing for the extra ψ degree of freedom
for a, stability can be examined by calculating ∂2E

∂ψ2 . If the
interface is fully compensated such that J1 = 0, a partial wall
allowing reversible exchange bias is stable only if

�K0 > J2. (16)

This result assumes that all moments a distance � into
the antiferromagnet participate equally. A less restrictive
approach is to examine the stability using a numerical
simulation for an array of classical spin vectors representing
the magnetic moments. Details of the approach taken for this
problem are discussed elsewhere (Kim et al 1999, Wee and
Stamps 2001), but the essentials are as follows.

Vectors Si are used to represent local magnetic moments
and are associated with lattice sites i in a three-dimensional
array. The lattice structure is taken as simple cubic with
nearest-neighbour exchange Ji,j and local site uniaxial
anisotropies Ki . The ferromagnet layers have a positive
Ji,j = Jf , and the antiferromagnet layers have negativeJi,j =
JAF. The anisotropy is non-zero only in the antiferromagnet.
The exchange between moments at the interface is Ji,j = JI.

Equilibrium configurations are found by numerically
integrating torque equations using a relaxation method. The
idea is to find zero torque configurations by numerically
integrating the Landau–Lifshitz equations of motion for
each spin. Dissipation is included as a damping term that
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Figure 13. Region of stability for exchange bias at a compensated
interface. The region above the curve indicates values of K and JI

for which exchange bias is stable for applied fields in the range
−σ < HM < σ . Points below this curve do not produce
reversible exchange bias (Kim et al 1999).

preserves the magnitude of the vectors. After sufficient
time, each spin relaxes into an equilibrium orientation where
the torques vanish. This method is particularly useful
for this problem because it avoids unstable equilibrium
configurations that often create problems with other energy
minimization techniques.

The Landau–Lifshitz equations of motion for each Si in
the array are

d

dt
Si = −γSi × ∇Si

H + λSi × Si × ∇Si
H (17)

where the local effective field is calculated from

H =
N∑
i,j

Ji,jSi · Sj +
N∑
i

[
−gµBH · Si + Ki

(
Si · n̂af

)2
]
.

(18)
In order to identify coercive mechanisms associated with
the antiferromagnet, anisotropy is not included in the
ferromagnet. The antiferromagnet anisotropy is uniaxial
with the easy axis in the naf direction. Several numerical
integrations were compared, and a fifth-order predictor
corrector method appeared to be one of the more stable and
efficient for this problem.

This numerical model was used to generate the phase
diagram in figure 13. The array consisted of a 4 × 4 × 30
block of vector spins representing ten ferromagnet layers
exchange coupled to twenty antiferromagnet layers. The
exchange coupling the two layers is JI. Regions above the
curve correspond to values of JI and K for which exchange
bias is stable for applied fields in the range −σ < HM < σ .
The region below the curve are values that do not produce
exchange bias in this field range.

3.4. Exchange bias at rough interfaces

Certain crystallographic orientations can produce flat, mixed
interfaces but, in general, mixed interfaces may be due to
geometric roughness. There have been several experiments

(a)

(b)

Figure 14. Schematic diagram of geometric roughness at
interfaces. Roughness produced by line defects is sketched for
(a) a compensated interface and (b) an uncompensated interface
(Kim et al 2000).
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Figure 15. Modification of the natural angle with interface line
defects. The natural angle for compensated (solid squares) and
uncompensated (open circles) interfaces is shown as a function of
line spacing. The natural angle can be varied over a 90◦ range in
each case (Kim et al 2000).

that examine aspects of the interface and film quality
(Uyama et al 1997, Lederman et al 1997, Escorcia-Aparicio
1998, Nogués et al 1999, Sort et al 1999, Schulthess and
Butler 1999, Chopra et al 2000, Leighton et al 2000).

For numerical simulation, a structured interface along
one direction was examined. An example is sketched in
figure 14 for lines of ferromagnet moments penetrating
into the antiferromagnet at compensated and uncompensated
interfaces. Results from numerical simulations of interfaces
with line defects display features similar to those described
in the previous section for mixed interfaces. In particular,
there is a natural angle for the zero field orientation of the
ferromagnet. The magnitude of the angle depends on the
density of lines, and can be varied over a 90◦ range.

R257



Topical review

0 90 180 270 360
θH (deg)

−0.4

−0.2

0.0

0.2

0.4

H
E

Figure 16. Exchange bias with line defects as a function of
applied field orientation. The line spacing is $ = 4. The solid
squares represent line defects at a compensated interface, and the
open circles represent line defects at an uncompensated interface
(Kim et al 2000).

This dependence is shown in figure 15 where the natural
angle θnat is shown as a function of spacing $ between
interface line defects. Results for compensated interfaces
are shown by the solid squares, and for uncompensated
interfaces by the open circles. The extreme values at
$ = 2 correspond to the situation of an initially fully
compensated interface made uncompensated by alternating
lines of defects across the interface. Similarly, the converse
of an initially uncompensated interface made compensated
is also possible. A change in the natural angle appears as
a change in the magnitude for different orientation angles,
(θH in this figure) of the applied field. An example is shown
in figure 16, calculated using the numerical spin array model
with JI = 10J . The solid squares represent a compensated
interface with line defects spaced with period $ = 4. The
open circles represent an uncompensated interface with line
defects spaced with the same period.

The main effect is a shift of the bias field maximum
from the perfect interface values of 90◦ for the compensated
interface, and 0◦ for the uncompensated interface. The
shift is the magnitude of the natural angle. Note the
discontinuities near the extrema of the bias curves. These
signal the instability of the ferromagnet configuration and
the subsequent reconfiguration into different energy minima.
These results appear to be consistent with experimental data
reported by Nogués et al (1999).

This behaviour can be conveniently characterized
through the idea of natural angle introduced earlier. The
asymmetry in twist angle is depicted in figure 17 where
the two paths taken by the ferromagnet magnetization are
indicated in terms of the antiferromagnet twist and natural
angle. Clockwise rotation of the ferromagnet magnetization
in the initial field cooled potential well is shown by
figure 17(a) for the natural angle, θnat, greater than the angle
of the applied field. This creates a twist in the antiferromagnet
of magnitude φ1 as shown in figure 17(b). Counterclockwise
rotation with θnat less than the angle of the applied field,
indicated in figure 17(c), is associated with being in the

other potential well. This has a different associated natural
angle, and creates a different magnitude twist φ2, as shown
in figure 17(d).

3.5. Random defects: bias enhancement and coercivity

The importance of domain structure and dynamics on
exchange bias was recognized in the earliest experiments
(Meiklejohn 1962). Malozemoff (1987) made quantitative
estimates of reduced exchange bias fields based on a
domain wall pinning model. Recent experiments using
ion-irradiation and non-magnetic impurity implantation
techniques have provided useful additional experimental
input on the problem (Mewes et al 2000, Miltényi et al 2000).
A particularly interesting finding has been the observation of
enhancements of the bias for low numbers of defects. One
argument is that the initial introduction of defects serves to
free unsaturated domains (Miltényi et al 2000).

The numerical approach described above was used to
examine effects of local changes in anisotropy and exchange
on the magnetic hysteresis of exchange bias structures (Kim
and Stamps 2001). A summary of results is shown in figure 18
for an uncompensated interface. The normalized bias field
was calculated with defects placed in a particular layer L of
the antiferromagnet. In figure 18(a), the exchange integral
Ji,j is reduced to zero at random sites within a layer of spins
in the antiferromagnet. Each layer is indexed by an integer
L where the interfacial layer is L = 0 and the bottom layer
is L = 14. The layer defect density, n(L), is defined by the
fraction of the unit cell that is occupied by imperfections.

The bias field decreases to zero quickly withn for defects
located at or near the interface. Defects in layers deeper in
the antiferromagnet cause the bias field to decrease with a
different functional dependence on n. Defects more than a
domain wall length away from the interface have little effect
on the bias field. In figure 18(b), only the anisotropy Ki is
changed at random sites within a layer atL. The anisotropy at
chosen sites is increased by a factor of 10 from the other sites.
The effect of increasing the anisotropy is to change the partial
domain wall energy in the antiferromagnet and increase the
bias field. The largest enhancement of the bias field occurs
for imperfections placed directly at the interface. Note that it
is possible to obtain an enhancement of the bias field at small
defect concentrations by simultaneously reducing exchange
near defects and increasing anisotropy. The enhancement is
governed primarily by interface exchange and anisotropy.

A similar increase in the bias field is observed for local
enhancements of anisotropy for compensated interfaces, but
larger defect concentrations result in a complete suppression
of exchange-bias. This suppression appears to be linked with
the inability to form partial walls in the antiferromagnet.
Coercivity is strongly affected with the creation of large,
asymmetric hysteresis loops. Defects responsible for
changes in coercivity were found to be primarily associated
with locations in the antiferromagnet away from the
interface. The asymmetry results from the pinning of the
antiferromagnet wall formed as the ferromagnet rotates into
the reverse field. As the external field is increased in the
forward direction, the wall is de-pinned and the ferromagnet
aligns with the field.
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Figure 17. Asymmetry of the antiferromagnet twist for a mixed interface. Clockwise rotation of the ferromagnet magnetization with θnat

greater than the applied field angle is shown in (a) and (b). This creates a twist in the antiferromagnet of magnitude φ1 as shown in (b).
Counterclockwise rotation for θnat less than the applied field angle is shown in (c) and (d). The magnitude twist φ2 is different from φ1

(Kim et al 2000).
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Figure 18. The bias field calculated as a function of layer defect concentration n(L), with defects represented as (a) reduced Ji,j and
(b) increased Ki for an uncompensated interface. The circles represent L = 0, the squares represent L = 2, and the triangles represent
L = 4. Note the competing effects of reduced interface exchange and increased interface anisotropy.

4. Theory of exchange bias

The previous two sections contain descriptions of exchange
bias and coercivity based on models for partial wall formation
and asymmetric hysteresis. With the exception of the
numerical simulations, the models are formulated in terms of
the energy given in equation (13). The numerical simulations
allow explorations of structural dependences in that they are
formulated in terms of a spin vector array model given by
equation (18).

The purpose of this section is to build a connection
between these two approaches. This will be accomplished
with a justification of the use of equation (13) by showing that
it follows directly from equation (18). As a consequence, it
will be seen that the bilinear and biquadratic exchange terms
in equation (13) are related to and determined by the degree
of compensation at the interface. It will also be shown that
the ratio J1/

√
J2 relates directly to the relative fractions of

each antiferromagnet sublattice present at the interface.
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4.1. Transition to a continuum and interface region

The first step in bridging the gap between equations (18) and
(13) is to go from a discrete array of lattice spin vectors to
a continuous field of magnetizations. This is done in the
usual way by replacing the spin vector Si at a site i by the
continuous variable S(x). Coupling terms between spins
at neighbouring sites are dealt with by assuming that S(x)
changes slowly over lattice spacing length scales.

The beginning energy is based on the Hamiltonian of
equation (18) and is written in a notation that explicitly
distinguishes between spins in the ferromagnet and each
antiferromagnet sublattice. The respective lattice vectors
are identified by unit vectors fi , ai and bi . The total
energy is written as a sum of energies in the ferromagnet,
antiferromagnet and at the interface:

E = Ef + Eaf + Einter. (19)

The energy in the ferromagnet is

Ef =
∑
i∈ferro

[
−H ·fi−

∑
〈i,j 〉

Ji,jfi ·fj −Ki

(
fi · n̂f

)2
]

(20)

the energy in the antiferromagnet is

Eaf =
∑

i∈antiferro

[
− H · (ai + bi +

∑
〈i,j〉

Ji,jai · bj − Ki

×
[(

ai · n̂af
)2

+
(
bi · n̂af

)2
] ]

(21)

and the exchange coupling energy across the interface is

Einter =
∑

i,j∈interface

Jafi · aj −
∑
〈i,j〉

Jbfi · bj . (22)

At this point it is convenient to transform the
antiferromagnet spin vectors into a new representation that
will be useful for discussing the case of canted interface spins.
The representation is in terms of longitudinal and transverse
vectors li and ti defined as

li = ai + bi (23)

ti = ai − bi . (24)

The next step is to rewrite the energies in terms of spin
vector variables that are continuous functions of position.
These are f(x) for the ferromagnet, l(x) and t(x) for the
antiferromagnet. The exchange energy terms are constructed
by expanding the spin vector fields about neighbouring lattice
sites. For example, if the vector pointing from the site at i to
the site at j is δ, then

f(x + δ) ≈ f(x) + δ · ∇f (x) + 1
2 (δ · ∇)2 f(x). (25)

This procedure is followed for each of the magnetization
fields. Away from the surfaces and interfaces, the terms
linear in δ vanish in the exchange energy sums, leaving only
the terms quadratic in δ. At the outer surfaces, this is not
the case, and there are associated boundary conditions that
can act to pin dynamic fluctuations. These dynamic pinning
equations are automatically satisfied at the free surfaces by
solutions to the equilibrium problem.
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Figure 19. Geometry. The interface region is sketched in (a). The
antiferromagnet is in the y < ε half space, and the ferromagnet is
in the y > ε half space. The interface region contains magnetic
moments from each material and the boundaries are defined to
intercept only exchange couplings between like moments. In (b),
the angles θ , φ, and ξ are defined, specifying the transformed
magnetizations. The angles are functions of position, y.

The boundary conditions at the interface between the
ferromagnet and antiferromagnet may be imperfect and
difficult to treat in a manner useful for further analytic
calculations. For this reason, an interface region is defined
between the ferromagnet and the antiferromagnet. The
geometry of this region is shown in figure 19. The interface
region extends between y = +ε and y = −ε, and the
boundaries are defined to lie in regions where the material
is homogeneous. The boundary at y = −ε intercepts only
exchange couplings between antiferromagnet moments, and
the boundary at y = ε intercepts only exchange couplings
between ferromagnet moments. The advantage of this
definition is that in going from discrete sums to integrals,
the exchange energy terms in Ef and Eaf will not lead to
additional boundary conditions due to discontinuities in the
magnetization fields at the boundaries with the interface
region. Formulated this way, an average over the interface
region can be made such that roughness and imperfection
effects can be treated with the definition of average exchange
coupling parameters.

For simplicity, variations in the magnetizations parallel
to the interface plane are not considered, so that f , l and t

depend only on y. The energies per area in the ferromagnet
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and antiferromagnet are

Ef =
∫ ∞

ε

[
−H · f − Kf (f · nf)

2 − f · Df
∂2

∂y2
f

]
dy

(26)

Eaf =
∫ −ε

−∞

[
− H · l − Kaf

[
(l · naf)

2 + (t · naf)
2
]

+Daf

(
t · ∂2

∂y2
t − l · ∂2

∂y2
l

) ]
dy. (27)

Exchange stiffness constants have been defined as Df =
zfJfδ

2/2 and Daf = zafJafδ
2/2 to include all geometrical

information, such as coordination number and lattice spacing.
An exchange energy in the interface region is now

constructed. The thickness of the region is 2ε and is
assumed to be small. The interface is assumed to be mixed
on length scales small enough such that average exchange
coupling integrals Ja and Jb can be defined as a measure of
the average coupling between the ferromagnet and the two
antiferromagnet sublattices. The interface exchange energy
per area is then written as

Einter = 2ε
[
J+f · l + J−f · t

]
(28)

where
J± = Ja ± Jb. (29)

The J± will turn out to be related to the J1 and J2 parameters
introduced in section 2.

4.2. Energy minimization and boundary conditions

The total energy per area, E = Ef + Eaf + Einter, is to be
minimized by considering variations of the orientations of f ,
l and t. There are also constraints to be considered, namely
that |f | = 1 and |a| = |b| = 1. The latter implies that l and
t are constrained by the relation

l2 + t2 = 2. (30)

The constraints can be conveniently imposed by using
an angular representation for the magnetizations. In addition
to θ defined in figure 5, the angle φ is defined for the l
and t vectors. This is referenced to the same direction as
θ and is illustrated in figure 19(b). It is also necessary to
define an angle to specify the direction of l relative to the
sublattice moments. This is done with the angle ξ also shown
in figure 19(b). The magnitudes of the antiferromagnet
magnetizations are then |l| = √

2 cos ξ and |t| = √
2 sin ξ ,

consistent with equation (30). Note that the magnetization
angles are functions of y.

A simplification can now be made for the case of
large antiferromagnet exchange coupling. If Daf is large,
the sublattice magnetizations remain nearly antiparallel
everywhere. This means |l| is small, which suggests
expanding ξ about π/2. Defining β = π/2 − ξ , where
β � 1, the total energy per area can be written as

E ≈
∫ ∞

φ

[−HM cos(θ − ρ) + Dfθ
2
y − Kf cos2 θ

]
dy

+
∫ φ

−∞

[
−

√
2HM cos(φ − ρ)β

+2Daf
(
1 − 2β2

) (
β2
y − φ2

y

)
−2Kaf

(
β2 cos2 φ +

(
1 − β2

)
sin2 φ

) ]
dy

+
√

2ε

[
J+β0 cos(θ0 − φ0) − J−

(
1 − 1

2β
2
0

)
× sin(θ0 − φ0)

]
.

(31)

Because the angles are assumed to be constant over the
interface region, ε is set to zero as a limit in the integrals and
the interface energy contributions are evaluated at y = 0. The
subscripted angles θ0, β0 and φ0 denote evaluation at y = 0.
Note that β is the magnitude of the interface antiferromagnet
moment, and that the interlayer exchange J+ term is linear
in β. This term couples the ferromagnet to the net interface
moment and, in the case of full compensation where J− = 0,
is the only interlayer exchange coupling.

The extrema of the energy are found by varying E with
respect to each angle:

δE
δθ

= δE
δβ

= δE
δφ

= 0. (32)

These relations result in three differential equations with
associated boundary conditions. The boundary conditions
at y = ±∞ are satisfied by requiring the first derivatives of
each angle (θy, βy, φy) to vanish at infinity. The boundary
conditions at ±ε involve terms obtained from the variations
of Einter.

Using the notation xyy = ∂2x
∂y2 , an equation for the

antiferromagnet determined by varying φ is

4Daf
(
2β2 − 1

)
φyy + 16Dafββy −

√
2βHM sin(φ − ρ)

−2Kaf
(
1 − 2β2

)
sin(2φ) = 0. (33)

The associated interface boundary condition is

4Daf
(
2β2

0 − 1
)
φy(0) +

√
2ε

[
J+β0 sin(θ0 − φ0)

+J−
(
1 − 1

2β
2
)

cos (θ0 − φ0)
] = 0. (34)

Similarly, the equation for the longitudinal antiferromagnet
component β is

4Daf
(
2β2 − 1

)
βyy + 8Dafββ

2
y −

√
2HM cos(φ − ρ)

−4Kafβ cos(2φ) = 0 (35)

with the interface boundary condition

4Daf
(
2β2

0 − 1
)
βy(0) −

√
2ε

× [
J+ cos(θ0 − φ0) + J−β0 sin(θ0 − φ0)

] = 0. (36)

For the moment, it is sufficient to consider a thin
ferromagnet film and neglect any deformation of the
ferromagnet order. With the assumption that θ is independent
of film thickness, the energy in the ferromagnet is Ef =
−HMtf cos(θ − ρ). The minimization condition for θ

requires

HMtf sin(θ0 − ρ) − 2
√

2ε

× [
J+β0 sin(θ0 − φ0) + J− cos(θ0 − φ0)

] = φ. (37)

This last equation is the boundary condition on the
ferromagnet. Note that the interlayer exchange part of the
boundary conditions for θ and φ are the same to first order
in β. For simplicity, anisotropy in the ferromagnet is also
neglected.
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4.3. The interface exchange energy

An expression for the system energy of the form proposed
in equation (13) is now constructed. Assumptions are that
canting of the antiferromagnet at the interface is small and
that there is no significant twist in the ferromagnet.

The assumption that the canting in the antiferromagnet
is small means that β and βy are small. This allows
equation (35) to be linearized. The solutions of the linearized
equation are exponential for certain values of φ0:

β = C± exp(±�y) (38)

where

� =
√
Kaf

Daf
cos(2φ0). (39)

The negative solution diverges as y → −∞, so the positive
solution is chosen. The solution describes an antiferromagnet
canted at the interface with a net moment of magnitude β0.
Far from the interface, the sublattices are antiparallel with no
canting. This solution only applies for a restricted range of
φ. Outside this range, the solution becomes oscillatory and
is no longer localized to the interface.

In order for φ to become large, it is necessary to induce
a significant twist into the antiferromagnet. This in turn
requires a strong interlayer exchange and a sizable moment
β. The linearized theory discussed above is not valid in this
case and additional orders of β would need to be kept in
equation (35). The observation that φ is small also allows
the approximation

� ≈
√
Kaf

Daf
. (40)

The boundary condition, equation (36), determines C:

C = − J+ cos(θ0 − φ0)

σβ + J− sin(θ0 − φ0)
. (41)

Here σβ = 4
√
KafDaf/

√
2. Because the interlayer

coupling cannot be large, then J−/σβ can be treated as an
expansion parameter. The resulting expression for β0 is
then substituted into the ferromagnet and antiferromagnet
boundary conditions given by equations (37) and (34).
Keeping only lowest order J− terms in C, the result for the
ferromagnet boundary condition becomes

HMtf sin(θ0 − ρ) − θ− sin(θ0 + α0)

−θ2
+

σa
sin(θ0 + α0) cos(θ0 + α0) = 0. (42)

Note that the angle φ has been written in terms of α and that
α0 denotes α(0).

As noted previously, the boundary condition for
the antiferromagnet angle φ contains identical interlayer
exchange terms but involves φy(0). It is straightforward to
solve equation (33) for φ(y) and φy(y). Substitution into the
boundary condition equation (34) results in

σa sin φ0 − θ− sin(θ0 + α0) − θ2
+

σa
sin(θ0 + α0) cos(θ0 + α0)

= 0. (43)

Here σa = 8
√
KafDaf and θ± = 2

√
2 ∈ J±.

This completes the justification of the interlayer energy
proposed in equation (13). Both minimization conditions,
equations (42) and (43), can be obtained from equation (13)
if the following identifications are made:

J1 = 2
√

2 ∈ (Ja − Jb) (44)

J2 =
[
2
√

2 ∈ (Ja + Jb)
]2

2σa
. (45)

The biquadratic J2 term involves the sum of the two sublattice
exchange terms to second order and is present even in the case
of completely uncompensated interfaces where either Ja or
Jb is zero. However, in the case of full compensation, where
Ja = Jb, only biquadratic coupling is possible.

As stressed above, the identifications in equation (45) are
based on arguments supposing that β and φ are small. This
is consistent with interlayer exchange coupling that is also
relatively weak, at least when compared to the magnitude
of the energy of wall formation σβ . These are physically
reasonable assumptions and restrictions, and are sufficiently
general to include the case of exchange bias by asymmetric
loop formation described in section 3. The only cases in
which the energy in equation (13) has not been shown to be
a good approximation are ones in which J+ is comparable to
or greater than σβ .

Finally, it is interesting to note that measurement of the
ratio J1/

√
J2 is proportional to the degree of compensation

f :

f = Ja − Jb

Ja + Jb
. (46)

4.4. Partial wall in the ferromagnet

As suggested by Kiwi et al (1999b), partial wall formation
in the ferromagnet can also support exchange bias at a
compensated interface. This can also be obtained from the
above theory in limiting cases of thick and thin films.

The general minimization condition on θ for the
ferromagnet is

2Dfθyy − HM sin(θ − ρ) − Kf sin(2θ) = 0 (47)

with the associated interface boundary condition

2Dfθy(0)+2
√

2ε
[
J+β0 sin(θ0 − φ0) + J− cos(θ0 − φ0)

]=0.
(48)

Neglecting Kf , solutions for θ(y) and θy(y) can be
derived and used to calculate an energy Ef . In the limit of
a very thick ferromagnet, such that θ(tf) = ρ, this energy
has the form

Ef = 2HMtf + 1
2

√
HMDf sin

(
θ0 − ρ − tf

√
2HM/Df

)
.

(49)
Numerical analysis shows that the ferromagnet partial wall
model can produce a reversible exchange bias if J2 is larger
than

√
HMDf for the entire range of magnetic H fields.
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5. Exchange bias at finite temperatures

A natural question to ask, when considering stability
conditions for magnetic configurations near the interface, is
how exchange bias and coercivity are influenced by thermal
fluctuations. One way to approach the problem is to use to
derive thermally averaged effective fields from equation (18)
and to examine how the stability of magnetic configurations
change with temperature. This can be accomplished with a
mean field approach which provides a useful description for
equilibrium averages.

Thermal fluctuations are also important, and cause the
exchange bias and coercivity to display time-dependent
behaviour in analogy to viscous effects observed for
ferromagnets. This idea has been examined by several
authors (Néel 1988, Fulcomer and Charap 1972, Stiles
and McMichael 1999b, Stamps 2000), and studied
experimentally for a number of systems (Schlenker 1968b,
Schlenker et al 1986, Goodman et al 1999, 2000, Geoghegan
et al 1998). Fluctuations are particularly important
in understanding how equilibrium is established because
the stability of a given magnetic state depends on the
existence of energy barriers separating one configuration
from another. Thermal fluctuations can cause irreversible
transitions between configurations, and there is always some
probability that such an event will occur in a finite time at
any temperature T .

Results from mean field theory are discussed below,
followed by a description of thermal activation processes
using Monte Carlo simulations.

5.1. Mean field theory and exchange bias

Thermally averaged behaviour of the exchange bias can
be calculated using a modified version of the numerical
model described in section 3 (Kim et al 1999, McGrath and
Camley 2000, Wee and Stamps 2001). Thermal averages
of the effective fields appearing in the equations of motion,
equation (17), are made and used in the calculation of
magnetization. Thermally averaged effective fields Hi are
calculated from equation (18) using the Brillouin function
B(x) in the substitution (Carrico et al 1994)

Sz
i → 〈Sz

i 〉 = S B(gµBSi · Hi/kBT ). (50)

Temperature is T and kB is Boltzmann’s constant. Here Sz
i

refers to the component of Si along the equilibrium direction
at site i.

Note that the thermal average introduces a self-
consistency problem into the calculation of the effective
fields at every array site i. Determination of the equilibrium
direction is therefore done in an iterative manner by following
the time integrations of the dissipative equation (17) and
recalculating the thermal average from equation (50) at
each time step. A self-consistent static equilibrium solution
emerges after sufficient time.

As the temperature is increased, the local effective
fields are reduced, thereby also changing the shape of
a potential well governing the stability of a particular
magnetic configuration. A de-stabilizing of the exchange
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Figure 20. Energy of the antiferromagnet at different
temperatures as a function of ferromagnet orientation. The
interface is compensated and the interlayer exchange is large
enough to support reversible exchange bias at zero temperature.
At T = 0, the minimum of energy configuration is for the
ferromagnet to be perpendicular to the antiferromagnet easy axis
at θ = 90◦ (Kim et al 1999).

bias can result with irreversible transitions between magnetic
configurations.

This process is illustrated in figure 20 by plotting the
energy of the antiferromagnet as a function of the ferromagnet
orientation at different temperatures. The interface is
compensated, and the interlayer exchange is chosen such
that a reversible exchange bias is possible at T = 0.
The equilibrium orientation of the ferromagnet is along the
θ = +90◦ direction, corresponding to the minimum in the
antiferromagnet energy. As temperature is increased, a
discontinuity in the energy appears as the ferromagnet is
rotated away from the θ = 90◦ direction. The discontinuity
signals the instability of the configuration and a change into
a stable configuration. The process is irreversible, and the
resulting hysteresis loop is symmetric without exchange bias.

This result was found for numerical studies of
compensated and uncompensated interfaces, and is a general
feature of increasing temperature. As the temperature is
increased, the angle at which the discontinuity appears
moves closer to the θ = 90◦ direction. This means that
at low temperatures, the instability will not appear until
the ferromagnet is rotated through large angles by a strong
applied field. At high temperatures, the instability will occur
at a smaller applied field strength. Therefore, the coercivity
decreases with increasing temperature and the hysteresis loop
narrows.

5.2. Time dependence and viscosity

As pointed out in section 3, the bias effect can appear as
a purely reversible magnetization process or, in the case of
partially compensated interfaces, as asymmetric hysteresis.
There is another component to the problem as well. Thermal
processes can lead to changes in the magnetic configurations
by overcoming energy barriers. There is a probability that
such an event will occur in a finite time. The probability of
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an event depends on the barrier energy and the temperature
of the magnetic structure.

Time-dependent effects at finite temperatures can be
explored using Monte Carlo simulations (Lyberatos et al
1996). A model system suitable for this type of approach
is based on the configuration energy in equation (13) and the
barrier energy given in equation (15) (Stamps 2000). The
simulation is carried out on a set of N ‘grains’ where each
grain is a ferromagnet/antiferromagnet bilayer within which
the magnetizations are free to rotate in directions specified by
θ, α and ψ , but do not otherwise form domains. The grains
therefore represent single domain particles large enough to
support partial walls, but too small to support multi-domain
structures.

The equilibrium configuration of each grain is
determined for a given direction and magnitude of an external
applied field using a relaxation method similar in spirit to
that discussed in section 3. Because thermal fluctuations
are included explicitly, it is only necessary to use the
dissipative terms rather than the full Landau–Lifshitz form.
The equilibrium configurations are then found by numerically
integrating

df

dt
= λf × f × Hf (51)

and
da

dt
= λa × a × Ha. (52)

After sufficient time, the resulting configuration ceases to
change and satisfies the requirement that the torques, given
by equations (11) and (12), vanish. This approach appears to
be stable and computationally fast, thereby allowing a large
number of grains to be considered for purposes of averaging.
A Metropolis algorithm is implemented in a form suitable
for defining the number of events occurring in a time interval
�t .

An ‘event’ is here defined as an irreversible change in
the magnetic configuration of a grain. As shown in the
analysis of energy surfaces in section 3, at most only two
configurations are possible. These correspond to partial
walls in the antiferromagnet that rotate a clockwise away
from the anisotropy axis, and partial walls that rotate a

counterclockwise from the anisotropy axis. The irreversible
event is a change from one type of partial wall to the other,
achieved when a thermal fluctuation has an energy equal to or
greater than the barrier energy Eb of equation (15). Suppose
that a grain is at equilibrium with a particular value of θ and
α. An event is defined by letting α → α + π in Eb and
finding the new values of θ and α consistent with this new
configuration.

The number of such events occurring in time �t is
assumed to follow the distribution

n(t) = N

τ
exp

[
−N�t

τ
exp

(
− Eb

kBT

)]
. (53)

The new parameter in equation (53) is τ , the relaxation
time associated with the reversal. Time dependence can
then be studied using standard Monte Carlo simulations with
equation (53) as the acceptance probability where each Monte
Carlo step corresponds to one �t .
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Figure 21. Magnetic hysteresis as a function of rate. Hysteresis
loops calculated using a Monte Carlo method are shown for
different rates of change R of the applied field. Coercivities
develop according to the rate at which the field is changed. The
loops widen as the rate is reduced because there is more time for
thermal activated events in the antiferromagnet to cause
irreversible changes (Stamps 2000).

An interesting experiment is to examine the approach to
equilibrium by varying the rate at which the magnetization
loops are taken. This was done recently in experiments by
Goodman et al (1999, 2000), with results similar to those
described below. An example of the numerical results is
shown in figure 21 where hysteresis is plotted for three
different rates of change of the applied field.

The field was changed at each time step in these
simulations at a rate R = HMtf/σ · �t . The initial
configuration in each case was defined by saturating all grains
with a field at HMtf = 2σ in the positive direction and
allowing the simulation to run until equilibrium was reached.
The field was then cycled at rate R in order to produce the
curves shown in the figure. If the rate is large, so that the
time steps between extreme field values is small, the number
of thermally driven events is also small. This means that
the hysteresis loop will be narrow. As the rate is reduced,
meaning more time for a loop, a larger number of events
occurs. The hysteresis therefore widens with decreasing rate.

The most interesting feature of these hysteresis curves
is that the initial backward process is independent of rate
as the field is reduced on the initial reverse path. The
reason is that the grains are initially at equilibrium, and
this equilibrium is independent of applied field until the
ferromagnet rotates. The applied field only affects the
antiferromagnet by reorientating the ferromagnet, so no
events occur until the magnetization begins reversal. This
explanation is consistent with the interpretation by Goodman
et al (2000), of observed features along points on the
hysteresis curve. The time during which the magnetization is
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Figure 22. Coercive fields as a function of loop number for a
sequence of hysteresis loops. Results are shown for an
uncompensated interface, where the bilinear J1 term dominates,
and for a compensated interface where the biquadratic J2 term
dominates. The bias field decreases overall, and limiting values for
the bias and coercive fields are reached with repeated cycling
(Stamps 2000).

reversing and reversed is the time during which events leading
to hysteresis can occur.

If instead a different experiment is carried out in which
the field is cycled continuously, then both coercive fields
defining the loop boundaries will change. This is illustrated
in figure 22 where coercive fields from a sequence of loops are
shown. The loop number is shown on the horizontal axis. The
solid curves represent an uncompensated interface (where
the J1 term dominates) and the dashed curves represent
a compensated interface (where the J2 term dominates).
The field rate is constant during each loop with magnitude
R = 0.2. The tendency is to reduce the bias field magnitude,
and also both coercive fields reduce in magnitude. The
coercivity decreases quickly at first, and reach limiting values
that depend upon temperature and field rate R.

It should be stressed that the coercivity in these
simulations is due entirely to irreversible processes in the
antiferromagnet. This is an interesting observation because
it means that, in principle, it may be possible to use
the ferromagnet component of exchange bias materials to
observe magnetization processes in the antiferromagnet. In
this regard, the above rate dependent effects are caused
by magnetic viscosity in the antiferromagnet (Fulcomer
and Charap 1972, van der Heijden et al 1998a). The
magnetization at a reversed field changes according to the
distribution in equation (53) and a viscosity parameter can
be defined in terms of the time rate of change of the
magnetization. The phenomena of anomalous viscosity,
where the slope of the magnetization versus time curve
changes sign, may arise in systems with competing intergrain

exchange and magnetostatic energies (Geoghegan et al 1998,
Stamps 2000).

It is useful to note the differences between the thermal
behaviour described by the fluctuation mechanism and mean
field theory. In the mean field calculations, the coercivity
decreases with increasing temperature and is appropriate
for low-temperature processes on timescales where large
fluctuations do not occur. The thermal activation model
shows an initial increase in the coercivity measured through
field rate dependence and represents processes that occur as
the system approaches equilibrium. This behaviour can be
expected for higher temperatures where large fluctuations
are likely to occur in measurable times. Furthermore, the
existence of distributions of energy barriers, to both in-plane
and out-of-plane fluctuations, are important in determining
the long time behaviour of the viscosity and in determining
effects of interaction between grains.

Finally, an important observation is that the temperature
dependence of the bias and coercive fields can be different
even though similar wall pinning and de-pinning mechanisms
are involved. This means that coercivity can exist at
temperatures where the bias field cannot, and may even be
enhanced at temperatures for which bias is suppressed (Wee
and Stamps 2001).

6. Studies of linear dynamics

Competition between interlayer exchange coupling and
anisotropies determines the mechanisms responsible for
exchange bias. In this regard, experimental measurements
of uniaxial and easy plane anisotropies associated with the
antiferromagnet and interface would be very useful.

Linear response experiments, such as ferromagnetic
resonance or Brillouin light scattering, have been used with
great success to identify and measure interface and surface
anisotropies and interlayer exchange in multilayer systems
(Hillebrands and Güntherodt 1994). In a calculation of spin
wave frequencies, Stamps et al (1996) argued that these
same techniques applied to exchange coupled bilayers can
provide quantitative measures of the easy plane and uniaxial
anisotropies in an antiferromagnet.

The reason is that the frequencies of long wavelength
spin wave modes are sensitive to components of the local
internal magnetic fields associated with small deviations of
the magnetization from equilibrium. The internal fields at the
interfaces can be different from those inside the films, and it
is often possible to identify effects of interface and surface
local fields through frequency measurements.

The exchange bias structure is particularly nice to
study because frequencies associated with spin waves
in the ferromagnet can be readily measured. Interface
driven changes in the spin wave frequencies can be
studied and related to interlayer exchange and anisotropy
parameters associated with the antiferromagnet. Because
an antiferromagnet such as CoO has a lower ordering
temperature than ferromagnetic Co, thermal effects can be
used to help identify the antiferromagnet contributions to the
frequencies.

This technique was used by Ercole et al (2000) on
Co/CoO bilayers in a light scattering study of exchange bias.
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Other studies have been made by Mathieu et al (1998) on
Permalloy/FeMn multilayers, in an investigation of angular
dependence of bias on field orientation. Ferromagnetic
resonance experiments provide similar information, and have
been carried out by several groups on a variety of exchange
coupled systems (Stoecklein et al 1988, Krebs et al 1993,
McMichael et al 1998, Rubinstein et al 1999).

This technique is not limited to bilayers. Calculations
of linear response for magnetic trilayers consisting of an
exchange coupled ferromagnet/antiferromagnet/ferromagnet
show that it is possible to distinguish between different forms
of interlayer exchange coupling mechanisms (Chirita et al
1998). Proposed forms for interlayer exchange include that
of equation (13), and a form suggested by Slonczewski (1991)
for a mixed interface:

Einter = C+(θ1 − θ2)
2. (54)

The two angles specify the orientations of the magnetizations
in the separate films. The effects of this energy on spin
wave frequencies is dramatically different from that of
equation (13) when frequencies are measured as a function
of applied field. It is also noted that experiments and
calculations on magnetization properties of similar trilayer
structures have been reported (Filipkowski et al 1995, Xi and
White 2000b) in which this type of coupling was considered.

7. Summary and conclusions

The problem of exchange bias is interesting and important
because in order to understand it fully one must understand
some of the most difficult issues basic to magnetism. These
issues include questions of magnetic ordering in frustrated
systems, exchange interactions and correlations at interfaces,
and disorder and impurity effects at the interface.

One of the themes outlined in this article was the problem
of magnetic order and magnetization processes at less than
perfect interfaces. It has been argued that the magnetic and
thermal stability of magnetic configurations formed on either
side of the interface control the appearance of exchange bias
shifts in magnetization measurements. A consequence is
that two different types of exchange bias may exist: one
in which the process is the reversible formation of partial
walls, and the other whereby asymmetric hysteresis loops
are produced by irreversible processes. The formation of
asymmetric hysteresis can occur without complete loss of
partial wall reversible bias if the interfaces are mixed, and
result in shifted and asymmetric loops.

A tool for characterizing exchange bias at mixed
and geometrically rough interfaces is the concept of a
natural angle. Determination of the natural angle provides
a measure directly related to the degree by which the
antiferromagnet sublattices are mixed at the interface. This
also has consequences on the magnitude and type of
effective exchange field acting on the ferromagnet. A direct
relationship exists between the natural angle, the bilinear
and biquadratic exchange energies, and the amount of each
sublattice present at the interface.

The behaviour with temperature is particularly important
with regards to stability of the exchange bias. Mean field

calculations show that coercive fields and the exchange bias
field decrease with increasing temperature. A fluctuation
theory of thermal activation over energy barriers allows a
description of the rate at which equilibrium is approached.
The approach to equilibrium can be studied with field
rate experiments, in which an initial increase in coercivity
simultaneous with a decrease in exchange bias field is
predicted and observed. The timescales on which this
happens depend on the barriers to thermal activation.
These are partly determined by the exchange parameters,
magnetostatic interaction energies in the ferromagnet,
wall and anisotropy energies in the ferromagnet and
antiferromagnet, and interface and out-of-plane anisotropies
in the antiferromagnet. A consequence is that measurements
of the exchange bias can be sensitive to the method of
measurement, with particular dependence on the timescales
involved (Xi et al 1999b, Goodman et al 1999, 2000, Stamps
2000).

The magnetic configuration within a domain wall length
of the interface determines the bias field and coercivity
in the micromagnetic mechanisms described here. The
type of configuration possible at different temperatures is
sensitive to the geometry of the interface region, and several
features of exchange bias and coercivity can be controlled
by introducing structure at the interface. Exchange bias
in small particles and grains composed of ferromagnetic
and antiferromagnetic materials are particularly sensitive
to geometry. Film thicknesses, grain sizes and particle
dimensions of the order of domain wall lengths can prohibit
or destabilize partial wall formation and increase sensitivity
to thermal fluctuations. A consequence is that control of the
magnetization history can be used to modify the bias and
coercivity (Miltényi et al 1999, Nogués et al 2000b). An
extreme example is the observation of positive exchange bias
shifts, understood in terms of cooling in applied fields large
enough to saturate the antiferromagnet in its paramagnetic
phase (Nogués et al 1996, 2000a).

Finally, a particularly fascinating aspect is the question
of how domain wall motion and nucleation affect coercivity
in ferromagnet/antiferromagnet heterostructures. The partial
wall formation and stability issues discussed in previous
sections are concerned primarily with wall pinning to
the interface. Pinning mechanisms against domain wall
motion along the interface also exist (Dantas and Carriço
1998). There is also the possibility of self-pinning of
walls in exchange coupled films, with associated energies
and dynamics resonances (Stamps et al 1997, Dantas et al
2001). The additional complexity and novel features of the
exchange coupled interface make the problem of domain wall
nucleation and dynamics particularly rich.
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Miltényi P, Gierlings M, Keller J, Beschoten B, Güntherodt G,
Nowak U and Usadel K D 2000 Diluted antiferromagnets in
exchange bias: proof of the domain state model Phys. Rev.
Lett. 84 4224–7
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