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Stochastic model of hysteresis
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The methods of the probability theory have been used in order to build up a model of hysteresis which is
different from the well-known Preisach model. It is assumed that the system consists of large number of
abstract particles in which the variation of an external control pararfer; the magnetic fieJdnay result in
transitions between two staté¥ ") and S(7). The state of a particle is characterized by the vaiuk or
—1 of a random variabl¢e.g., the magnetization direction parallel or antiparallel to the magnetig. fiEthe
transitions are governed by two further random variables corresponding taSthe=S(") and the
S§M =80 transitions(e.qg., “up switching” and “down switching magnetic field” The method presented
here makes it possible to calculate the probability distribution and consequently the expectation value of the
number of particles in th&(*) (or S(7)) state for both increasing and decreasing parameter values, i.e., the
hysteresis curves of the transitions can be determined. It turns out that the reversal points of the control
parameter are Markov points which determine the stochastic evolution of the process. It has been shown that
the branches of the hysteresis loop are converging to fixed limit curves when the number of cyclic back-and-
forth variations of the control parameter between two consecutive reversal points is large enough. This con-
vergence to limit curves gives a clear explanation of the accommodation process. The accommodated minor
loops show the return-point memory property but this property is obviously absent in the case of nhonaccom-
modated minor loops which are not congruent and generally not closed. In contrast to the traditional Preisach
model the reversal point susceptibilities are nonzero finite values. The stochastic model can provide a surpris-
ingly good approximation of the Raylaigh quadratic law when the external parameter varies between two
sufficiently small values. The practical benefits of the model can be seen in the numerical analysis of the
derived equations. On one hand the calculated curves are in good qualitative agreement with the experimental
observations and on the other hand, the estimation of the joint distribution function of the up and down
switching fields can be performed by using the measured hysteresis curves.

PACS numbses): 02.50.Ga, 02.50.Ey, 75.60.Ej

I. INTRODUCTION Il. DESCRIPTION OF THE MODEL

Let us assume that the unit volume of the system consists
The phenomenon of the hysteresis, understood in a ge®f many small abstract regions, called “particles” which are

eral sense, has been investigated so intensively for margharacterized by four random variablgs\,xq, and x.
decades that any list of references would be far from comThe absolute value of the particle magnetization is denoted
plete by any standards. It is very fortunate that in the last feWpy «. If the particle magnetization is paraligintiparalle] to
years outstanding monograpHs-4] have been published in the external magnetic field then the particle is in the state
this field, and thus the author does not feel obliged to cite the? ' (S(™) and A=1(—1). The random valuey corre-
large amount of old but important references. However, it isSPonds to a local field at which the+st£é+)_1_umps to the
considered important to mention two papers Giiga[5,6]  StateS) and similarly thes”)=S*) transition occurs at

whose work has played a stimulating role in getting to theth® random local fielg, . For simplicity they, andxg will

Qe called theU and D fields. These two random variables
author. There is no doubt that the abstract reformulation of XPr¢SS the obwous_fac_t that each partlcle_z feels_ not only
he external magnetic fielt, but also the interaction field

tg(\a/sIZire[g]agr: diﬂ%eﬂnz;rgggnb byMzr:?né);z]lsilﬁ:l h?sn(:)oi)ik_ due to the adjacent particles and the random field originated
y Vayerg from the inhomogenities of the surrounding environment.

resulted in an improved mathematical clarity in the hyster—.l.hese particles characterized by the random variables

esis theory, but the stochastic nature of the hysteresis still has "
' N\, x4, andy, can be regarded as “independent” abstract
not been treated with sufficient mathematical rifjo@]. Fo o Xd Xu g P

) - ’ .elements of the system, and they will be callduySterons’

The aim of the present paper is to define a stochastic rigyre 1 jllustrates a possible realization of transitions
model of hysteresis and to derive exact equations for thg(+)<, 5(-) of a hysteron. The transition curves form a ran-
probability distribution functions describing the state varia-gom rectangular hysteresis loop which is almost in all cases
tions in hysteretic processes as a function of increasing agsymmetrical in the coordinate system of magnetization ver-
well as decreasing control parameters. The vocabulary ofus external magnetic field since teandD fields are sup-
magnetic hysteresis will be used for convenience from nowosed to be random.
on, however, the concepts can easily be generalized for any Let us denote the hysterons in a system by
hysteretic phenomenon. hi,h,, ... hy, and let\V") be the set of indices andf ™)
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| H we need the probability of finding!*) hysterons in the state
11 S™) at the external field which is the endpoint of a well-
\ defined magnetization prehistory. The determination of this
\ probability and the derivation of the equations for “up” and
- T “down” magnetizations versus magnetic field will be the
\ task of the next section.
Ill. DERIVATION OF THE FUNDAMENTAL EQUATIONS
FIG. 1. A possible realization of the transitig e S,
A. Some basic relations
the number of hysterons which are in the st&fe”) at a Let us denote byH(x,y|C) the joint distribution function
given external fieltH. In this case the magnetization of the of the randomU and D fields. From the physical point of
system is given by the stochastic equation view it is quite obvious that th&) field cannot be smaller
than theD field, so the stochastic inequaligy,= x4 must be
N satisfied. It is easy to sho\®] that the joint distribution
Sn()= 20 Nibics function of y,, and y4 satisfying the conditio®={y,= x4}
k=1 can be written in the form
where u, is the absolute value of the magnetization of the POu=x.xa=Ylxu=xa}
hysteronh,, while =H(x,y|0)
. X y
N 1, |kaN(+), f dxlf h(X,,y’)A(X’_y’)dy,
k: _ — e — e
~1, ifks N, = e NG
f dx’f h(x’,y")dy’
Since the random variables; , ., . . . ,uy are mutually in-
dependent and have the same probability distribution func- ) ) ) _ o
tion whereA(x) is the unit step function. It is clear that the joint
density function of theJ andD fields can be given by
P{u=x}=L(x), Yk=1,2,... N,
hex.vlC) = h(x,y) Alx— 5
it is obvious that the characteristic function of the distribu- (x.y|0)= e X o ; (x=y), (6
tion function J_m dx f_wh(x y'dy

P{ 6, (+)=<X}=R,(+)(X 1
& $= R0 @ provided that the conditiod is valid.
We need in the sequel two conditional probability distri-

can be written in the form bution functions

d>n(+)(w)=fj;ei‘”denH)(X):[(P(—w)]N %ru), P{xu=x|C}=H(x,2|C) =F «(x[C)
(2) X x/
where ) fﬁxdx’ﬁxh(x’,y’)dy’
- . | e [ hocynay
(p(w)ZJ_w e"”(dL(x):JO e “*dL(x). (3) * - @

In order to calculate the characteristic function and
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P{xa=<YIC}=H(*,y|C)=F4(y[C) 3
y +oo a2 AN
f dy’f h(x',y")dx’ g . m /
— y’
_ e gy AN
| Tay | hocynax 27 N\ /N /N
I z \ [N/ / O\
Evidently F,(x|C) is the probability that theJ field of a 21 \\ \Y/ / E\/V/ \\
given hysteron is not larger thax while F4(y|C) is the V\/ —
probability that theD field is not larger thary assuming in -2
both cases that the conditighis fulfilled. By using the Di- 0 D e PARAMSTER 5
richlet’s theorem for changing the sequence of integration it
is obvious that FIG. 2. Two equivalentH(t) curves.
+ oo X/ + oo + o
jiw dx’ fﬁwh(x’,y’)dy’= J:w dy’ Jy, h(x",y")dx". of extrema is the same for both curves, but the time distance

and the shape of sections between the consecutive extrema

For the sake of further considerations it is necesarry tére different. o . _
introduce twotransition probabilitiesdenoted byw,(H,1H) Itis assumed that the magnetizing process which consists
andwy(H, | H). LetH, be a fixed value of the external mag- Of random transitionsS*)<S(™) of hysterons does not
netic field and let us suppose that the state of a given hysf€el” the variation speed oH(t) between the consecutive
teron |SS(_) atHl . By using e|ementary theoremS, it can be extremum Values, l.e., the magnet|2|ng proceﬁaﬂc The

proved that if the external field increases monotonically fromevolution of the process in each subinterVed; ,H;.1], ]
H, to H=H, then =1,2,..., isstochasically determined by the extremin

and by the actual values &f(t) following H;, but the pro-

H x cess does not depend on the time derivativeH¢f). This
Hldxfwh(x,y)dy property is calledrate independencén the nonstochastic
Wy(HiTH) = —— < (9)  theory of hysteresif2] but it will be applied in this stochas-
f dxf h(x,y)dy tic theory too. Denote the maximum reversal fields by odd
H — and the minimum ones by even indices. In this case it is clear
that

is the probability of the transitios()=S(") occuring in
the interval[H,TH]. Similarly, letH , be an other fixed value Ho 1=Hy<Hoi1,
and S the state of a hysteron &t,. If the external field

decreases now monotonically froy, to H<H,, then . .
and naturally any one of the inequalitigls, , ;=H,,_; and

Hy +oo Hok+1=Hp—1 can be valid.
JH dYJy h(x,y)dx Now, let us defineghe random functiorg{" (H,_1|H)
Wo(H, [ H)= — — (100 which gives the number of hysterons in the staté) at the
f udyJ' h(x,y)dx decreasing external fieldH belonging to the interval
—w )y [Hox_1l Hyl. Similarly, denote byt(")(H,, 1 H) the num-

ber of hysterons in the stat®{") at the increasing external
field H belonging to the intervdlH,, THo1 1]-

We suppose that at the starting point of the magnetizing
process each hysteron is in t§&™) state, that is the system
B. Stochastic magnetizing process is in the state of negative saturation. In the following this fact

Let us introduce the “time parameterte[0,+] and Wil be expressed by the stochastic equatidfi)=0. Evi-
define a real valued, external field functibr{t) which con-  dently any other state of the system could as well be chosen
sists of monotone increasing and decreasing sections of difor the starting point, this choice, however, does not really
ferent length. Denote by, Hy, ... Hj, ..., theextre- matter since the influence of the starting state on the evolu-
mum values of the functionH(t) belonging to the tion of the process — as it will be shown — disappears very
subsequent time pointg<t,<---<t;<---.Itis clear that ~rapidly. _ -
if H(t;)=H; is a local maximum thei (t;_;)=H;_; and In order to descrlb(_al t.he magnetizing process we should
H(t;+1) =Hj1 must be local minimums which are not nec- determine two probabilities. One of them is
essarily equal. In the following the sequengde;} will be
called magnetizing pattand the elements of this sequence + d +
are callec?points gfpreversal If the functionsH)(t) C;nd P{&y" (Hacr 1l H) =n8s 1 (H)]€5ian=0}

H()(t) have the same magnetizing path then they are said to =P [Hayer 1 H,ND, ((H)[0] (11)
be equivalent for any magnetizing process irrespective of the

form of the time function between the individual extrema. In

Fig. 2 twoequivalent Ht) functionsare seen. The sequence and the other is

gives the probability of the transitio§")=S (™) occuring
in the interval[H, | H].
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PLECD (Hy THY=n8D(H) €4, =0} exactly n%(H)—n{ . (H,._;) hysterons of stateS(™)
have to transform to the sta®{") in the interval[HJH].
(U) (u) 2k
K[HakTH,n2i (H)[0]. (12) The probability of this event is given by
It is important to note that the reversal poir(esxtremum (u)[szTH n(u)(H)|n(2cll<)—1(H2k)]

values
N-— nzk—l(sz)

Hq{,H>, ... Ho_1,Ho,H
1,012, W I2k—1,T12k P 12k+ 1> ) n(”)(H)—n(z‘f()il(HZk)

are Markov points of the stochastic procesgﬁéﬁ)(H iTH)
and&{")(H;, 1| H), and therefore we can write the following X [Wy(H T H) 80050 a(H20
equations:

PSP, [ Has 1L H NS, 1 (H)[0]

(1 —wy(Hy H)JN a0, (16)

In order to symplify the further calculations let us intro-

N @ ducethe generating functions
= 2 P2K+1 @
nSP (Ho: 1) =0 o 1(Hake1lH,2)
X [Haie L HnSe 1 (F)INGY (i 1) ISl S © 9
. = 2 pShalHac L Hn§, (H)[0]2"26
X Hok 1,05 (Hay+1)[0] (13 ns, 1(H)=0
and (17)
PSOLH ! H.ng)(H)]0] and
N " (u)
= > TR(HulH,2) = > pSIHa H NG (H)[0]z"2 M.
Sk 1(Hz0=0 gy (H)=0

(18)

X[Ha T H, S (H) S 1 (Ho) TS
[Had (H)Inz-2(Ha01P2cy By using the Eqs(13) and(15) we getthe first fundamental
X[Hox_ 1l Ha,nSY 1 (Ho|0]. (14)  equationin the form

As it has already been mentioned the hysterons can bel se, 1(Haes 11H,2) =TS Ho T Har 1,a(Has 1,H,2)],
regarded as independent of each other particles and, there- (19
fore, it is an easy task to determine the probability that the
number ofS(*) hysterons is exactly equal to a non-negative'V"€"€
integer not larger thai, at an either decreasing or increas- _
ing external fieldH provided that the number a§(*) hys- A(Hakr1,H,2) =Wa(Haie 1 JH) + [1=Wo(Hai 1L H) ]2
terons is known at the last reversal point before arriving.at (20

The probabilityp$?, [ Hais 1L H.nSP, 1(H) IS (Hak-1)]  The second fundamental equatitmiows from the relations
can be obtained as a result of the following consrderatron I{14) and (16). We have
the number ofS(*) hysterons at the reversal porlﬁtzkﬂ is
equal ton%)(Hye 1), (th)en — in order to havely, ,(H) T'W(HyH,2)=[c(Ha H,2)INTD
hysterons in the stat8' ™’ at the external fieltH<H ., ; —
exactly n%(Hy.1)—n%, ,(H) hysterons of stateS(") X[Hak-1lHac.b(Ha.H.2) ] (2D)
have to transform to the stats(”) in the interval

: i . . where
[Ho. 1/ H]. It is obvious that the probability of this event
can be given by C(Hax,H,2)=1—(1-2)wy(H I H) (22
P 1l Haks 1 L H.NEY 1 (F) NG (o 1)] and
nb(H ))
2k+1 (u) (d)
= [Wa(Haiq | H) ]2 ) =22 () b(Ha H,2)= = 23
( Sy 1(H) e (Ha ) c(Hyk,H,2) 23
><[1—wd(H2k+1lH)]“(zi)H(H). (15 Now we will derive the characteristic function of the
probability that the system magnetization is not larger than
Similarly, to determine the probability at a decreasing external fightlwhich follows the last rever-
PSO[H o TH, n(“)(H)|n(2?(),1(H2k)] one has to recognize that sal pointH.. ;. Introducing the notation
if the number ofS ~) hysterons at the reversal poidb, is
equal toN—n{_,(H,,), then — in order to havey(H) )= P(w) 24

hysterons in the stat§(*) at the external field=H,, — o(—w)
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and by using the relatio(il7) we obtain from Eq(4) where

Py(Hor1lH,0)=[o(— ) INTED, ([Hoe 1 [ H, ()]
(25)

Similarly, if we use Eq(18) then the characteristic function
of the probability that the magnetization of the system is no
larger thanx at an increasing external field after the last
reversal pointH,, can be obtained from E@4) in the form

®y(HalH,0)=[¢(— ) INTE[Hy TH, g(@)]. (26)
follows from the other fundamental ER1).

These two characteristic functions describe completely the By intoducingthe relative magnetizations

stochastic behavior of the magnetizing process in both in-

creasing and decreasing external magnetic fields. It is appar- ) 1 @

ent from the above considerations that the stochastic model m2k+1(H2k+1lH|O)=NM MZKs1(Ha 1L H[0) (33)
developed by us has been built up without any reference to a s
particular nature of hysteresis and therefore, its generality ignd
at least as high as that of the Krasnoselskii and Pokrovskii
[8] model.

dIr' Y (Hy 1 H,2)
N(Zuk)(HZKTH|0)={2k(—2kT

dz

t'I' he recursive relation
NS (H il H|0) = Nwy(H o TH) + NS 3 (H o1 Hi0)
X[1=wy(HyTH)] (32

1
M (Ha T H[0) =1 ME (HadHIO),  (39)
S

C. Calculation of the hysteresis curves
from Egs.(27), (29) and(30), (32) after elementary calcula-
tions the following recursive relations are obtained:

M, 1(Haii 1L H|0)

=[1+ MG (Had Har1]0) 1 Wo(Hapes 1 L H) -1
(35)

The expectation value of the magnetic momggtdue to
the kth hysteron can be given by

de(w)
do

Ef =it =M.

w=0

By using this expression we can write the expectation value
of the magnetization of the system at the decreasing externghg
field H following the reversal poinH,, , ; in the form

(u)
myy (HokTH[0)
ill:dq)d(H2k+llH=w)

=2Wy(Hay TH) +[1+mE  (Ha 11 HpJ0)]

dw "0
X[1=wy(HyTH)]—1. 36
=M$D:1(Hoi [ HIO) LW ) (39
_ (d) _ In order to solve this system of recursive equations we
2M N2 1(Haice 1 LHIO) =NM, - (27) need the formula fothe starting branctof the relative mag-
where netization. Sincehe negative saturationas been chosen as
the initial state of the system it follows from E() that if
dl'® . (Hoes 1l H,2) H=Hy=—, then
N%‘i’H(HMHlm:{ o .
2= wy(HiTH)=F,(H[O),

1
(28)

) and so the equation for the starting branch will be
From the fundamental E¢19) we obtain

NS, 1 (Hayr 1L H|O)

=N (H o T Hoys 1] 0)[ 1= Wy(Hopes 1 | H) .

m{(—0TH|0)=2F,(H|C) - 1. (37)

This branch can be also calléitke limiting ascending branch
because there is no branch below ittHé positive saturation
(290  would be the initial state then it is easy to show tliae

_ o limiting descending brancban be written in the form
The expectation value of the magnetization of the system at

the external magnetic fielth increasing after the reversal m{® (0| H|0)=2F 4(H|C)—1, (39
field H,, can be obtained from the equation
whereF4(H|C) is defined by the expressidB), and at the
d®y(HyTH, 0) same time it is obvious that the limiting descending branch
do has the property that there is no other branch above it. The
¢ two limiting curves formthe major hysteresis loogrhich
=M% (Hy TH|O) defines an area where all other loops should be located.
By using the expressio(87) for the starting branch and
=2M NS (H 1 H[0) — N M, (300 Eq.(35) we can obtain the first descending branch

ifl

=0
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m{P(H,1H[0)=2F ,(H,|C)[1—wy(H,TH)]—1, (39)

which is attached to the limiting ascending branch at the

pointH ;. This descending branch is called by Mayergby

the first-order transition curveThe fieldH,; where the first-

order transition curve starts from, will be callsthrt field

STOCHASTIC MODEL OF HYSTERESIS
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m$(HgT H|0)=2F ,(H,|C)[ 1—wqa(H, Hg)]
X[1—wy(HgTH)]+2w,(HgTH)— 1
(44)

for the ascending branch of the same loop. It is to note that

Denote byH, the next reversal point where the magnetizingaccording to the Mayergoyz's terminology the first minor
field begins again to increase. The corresponding ascendirigop consists of a first-order descending and a second-order

branch, i.e.the second-order transition curig given by the
formula

m{(H,1H|0)=2w,(H,1H)

+L1+m@ (Hy [ Hp) I[1—wy(HoTH)]—1.
(40)

This procedure can be continued and it is seen that there is

ascending transition curves. Following the reversal points of
the magnetizing field this procedure can be continued and we
can obtain both the descending and ascending branches of
relative magnetization for any minor loop.

One can provea very important limit theoremnamely,
there exist twdimit curves

no need to take into account any special requirement in order
to describe the field dependence of the average magnetizénd

tion since the Markov points of the magnetizing field deter-

mine exaclty the stochastic behavior of the process.

D. Stationarity of hysteresis loops

lim m&Y_ 1 (Hy L H[0)=mg(H | H), (45)
k— o
lim m&2 (HgTH|0)=my(HylH), (46)

k— o0

which are determining a closed minor loop. In other words,

Let us investigate now the variation of the magnetizationthe magnetizing process becomes stationary with increasing
for a special sequences of reversal fiellst as suppose that number of cycles. It means the system “forgets” gradually

H2k+l:HUI \Y k:O,l, . ,Wh”e H2k:Hd1 Vk:1,2, ey

its initial state by repeating the magnetizing cycle. This for-

andH,=H,, i.e., the magnetizing field is varying between getting process can be related to the well-knax@sommo-
two extreme value$i, andHy. The field variation which dation process The original Preisach model results in an
starts with a decrease of the the external magnetic field immediate formatiorof the minor hysteresis loop after only
from the reversal poinH, until it reaches the next reversal one cycle of back-and-forth variation of the input between

point Hy and then turns to increase to the neat¢gtvalue,

any two consecutive extremum values. However, this conse-

is called the magnetizing cycle. The magnetizing cycle requence of the I_Dreisach model contr_adicts to well _knoyvn ex-
sults in a hysteresis loop called the minor hysteresis loopperimental finding that the hysteresis loop formation is pre-
The first cycle corresponds to the variation of the externaceded by an accommodation process which can be

field between the reversal poink$;=H,=H,, whereH,

sometimes appreciabl@0,11. In order to describe this ac-

=Hz;=H, and H,=H,, while kth cycle is done by the commodation process the traditional Preisach model was
variation of the magnetizing field between the reversal pointgnodified in the “moving” and the “product” model$12].

Hok-1=Ha=Hoks1, WhereHy 1 =Ho 1 =Hy and Hy
=Hq for k=1,2, .. .. For thedescending branch of tHeh
minor loop one can obtain from E@35) the following ex-
pression:

m& 1 (H, | H[0)
=[1+m&) ,(HgTHy0)[1—wg(H, H)]—1.
(41)

while for the ascending branch of theh minor loop the
relation

M (HgTH|0)=2w,(HqTH)
+[1+m5(Hy [ Hgl0)]
X[1-wy(HqTH)]-1 (42)

can be derived from E(36). By using Eq.(37) we have

miP(H, L H[0)=2F (H,[O[1-wa(H, H)]- 1, (43

for the descending branch of the first minor loop and

One has to mention that the modification of the moving
model performed by Mayergoy4] (see Sec. Il. 5, pp. 108—
114) gives not only a possible variant of the accommodation
but defines a sufficient condition too for the convergence of
the process. The stochastic model developed by us contains
the phenomenon of accommodation inherently as a conse-
quence of the limit theorert¥5) and (46).

The formulas for the limit curves defined by E¢45) and
(46) can be obtained by some elementary calculations as fol-
lows:

my(H,H)=2Q(Hy,H)wW,(HgTH)[1—-wy(H,[H)]-1
7

and

my(HgTH)=1-2Q(Hqy,H)wq(HylHa)[1—wy(HqTH)],
(48)

where

Q(Hg,Hy) =[wg(HylHg) +wy(HgTH,)
—wgy(Hy H)w,(HgTH) 1™
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From these equations two important relations can be derived,
namely,

mg(HylHy)=my(HgTH,) andmy(Hy[Hg)=my(HgTHq),

which show that the return-point memory property is fulfiled
for the accommodated minor hysteresis loops. It is also ob-
vious, that the accommodated minor loops due to the same
pair of reversal field$14 andH ,=H are not only congruent

but identical since the field valuddy and H, unambigu-
ously determine the the branches of stationary loops. One
has to mention that the accommodated branchge | H)
andmy(—TH) are exactly identical with the limiting de-
scending and ascending branches which indicates the consis-

y-values

x-values

tency of the theory.
The explicit form of the expressionsy(H,/H) and

FIG. 3. Contour plot ofh(x,y|C) defined by Eq.(6) where
h(x,y) is given by Eq.(54) with parameter value$i.=0.2¢0

my(HyTH) which describe the descending and the ascending-0.6, andC,=0.5.
branches of the stationary minor loop between two reversal

fields Hy andH,=H4 has a great advantage in numerical
calculations in comparision with the well-known Everett in-

tegral. It is to be noted that the expressiohs) and(48) are

suitable to describe not only symmetrical lagymmetrical
hysteresis loop$oo and it is easy to show that symmetrical

hysteresis loops can be obtained only if the functigr,y)

has amirror symmetryexpressed by
h(x,y)=h(-y,—Xx). (49

In the following the mirror symmetry ofi(x,y) will be as-

sumed.
It is worthwhile to derive the formula fathe virgin curve

of the magnetizatiodepending on the parameters of the den-
sity functionh(x,y|C). After some simple manipulations we

obtain
mo(H)=2 si(H) ~1, (50
° Si(H)+s,(H)—sy(H)sp(H) ™
where
J+defx h(x,y)dy
Sy(H)= " (51)
f_def_xh(x,y)dy
and
f+def+wh(x,y)dx
sy(H)=— . (52
fmdyfwh(x,y)dx
el y

If the function h(x,y) satisfies the symmetry relatid@9)
then it is easy to prove that

limmy(H)=0
H—0

andthe initial susceptibilitydefined by

dmo(H)_ fo h(x,0)dx

dH  [*= [
f dxf h(x,y)dy
0 — o

is different from zero in contrary to the classical Preisach
model which gives a nonrealistic zero slope of the virgin
curve atH=0.

Xa= lim (53)

H—0

IV. NUMERICAL CALCULATIONS AND DISCUSSION

In order to compute the magnetization vs field curves we
have to know the joint density function(x,y|C) of the U
and D fields. Since these fields are the sum of many small
random components it is reasonable to assume that the cen-
tral limit theorem is approximately valid and so the function
h(x,y) in h(x,y|C) can be chosen in the form

1
exp — Xx—H,)?
2mo2\1-C? p{ 202(1—0,2)[( o)

h(x,y)=

—ZCr(X—Hc)(y+Hc)+(Y+Hc)2]J, (54

where the meaning of the constaiis,o, andC, is clear
from the elements of the probability theory. Figure 3 shows
the contour plot ofh(x,y|C) defined by Eq(6) for the pa-
rameterdH.=0.20=0.6, andC,=0.5. The contours are be-
longing to the following values ofh(x,y|C)=0.1, 0.2;
0.3(0.050.65 and 0.682. The last one is slightly smaller than
ma&xvy)h(x,y|C)=O.682923~ -. The discontinouity along the
line y—x=0 can be clearly seen in the figure. In the sequel
this formula will be used in all of our numerical calculations
provided that the correlation coefficie@, is equal to zero,
i.e., h(x,y)=f(X)f(—y) wheref is the density function of
the normal distribution. This case correspondthi product
modelintroduced by Biorci and Pescefti3] and used con-
sequently by Kda [5,6,17.

The relative magnetization vs field curves are shown in
Fig. 4. The parameter values used for the calculation are
H.=0.40=0.6, andC,=0. The values of magnetizing field
are given here and in the further figures in a properly chosen



PRE 61 STOCHASTIC MODEL OF HYSTERESIS 3497

-

A N N N
=z | .
o Soo | LIMIT VALUE: 0.7635...
T E \ N
N N 0.8 LN
[ | [ ] [ ] [ ] [ ] [ ] [ ] [ ] ] m
> 207
(0] G} * [ ]
< <
\
= = |H =04 Ha=-02]
” ; SO 1 I
= 205 — —
< g | ©=06 | Hu= 08
o 04 = ,
o o | ‘ ‘
K | 0.3
-3 -2 -1 0 1 2 3 0 2 4 6 8 10 12
AGNETIZING FIELD NUMBER OF CYCLES

FIG. 4. Limiting branches LA, LD, and magnetization versus  FIG. 6. Convergence of the relative magnetization in the rever-
field curves starting from the reversal poiig=1.2, H,=—0.8, sal pointH ,= 0.8 with increasing number of cycles to the lirfiie.,
H;=0.7, andH,= —0.6. The magnetization curves are indicated by the stationaryvalue.

1, 2, 3, and 4.

from, occupies a higher position than the point A, and the
_end po]icnt Cd ofbthe it?]creasi?gB k:t))ratnt%h 8]‘ ihe seé:otnd mir:ﬁr
i - : ; op is found above the poin ut the distance between the
iting ascending and descending branches, while the CurVépgoiﬁts CandBis smalle? than that between the points B and
indexed in the figure by 1, 2, 3, 4 are the first, second—,A By repeating the magnetizing cycle between the reversal
third-, and fourth-order transition curves defined by the e tiids Ham — 0.2 andH. =08 the difference between the
versal pointsH;=1.2H,=—-0.8H3;=0.6H,=—0.6. It is d ’ u oo

worth noting that the all information about the past history of?hrg1 né:rr;%séﬁ(fe;hgosna\l/rg%éylghe):nik?[eccl?rr\?:ssv\%%%u?éls/mn%%g%;? Ig 1€

the magnetizing process is transfered by the state of the SY&losed stationary hysteresis loatenoted by LC. The mag-

tem in the last reversal point. For example, the fourth-order’ ;> .
transition curve 4 which is plotted in the field interval hetizing curves measured by Carter and Richdtd on

[—0.6,1.5, is determined by the state in the reversal pointhi"CQn steel(4.3% S) are surprisingly similar to that plotted
H,=-0.6. in Fig. 5.

It is well known that in the traditional Preisach model the ~In order to demonstrate the speed of the convergence, the
minor loops which describe the cyclic change of the magnenonagcommodated relgtlve magnetizations have been calcu-
tization with back-and-forth variation of the magnetizing !ated in the reversal poirti,,= 0.8 for the subsequent cycles.
field between the same two limiting values are congruent anfigure 6 shows that the stationaiye., the limit value of the
the formation of a closed minor loop is realized in one cycle, Magnetization can be very well approached by repeating the
i.e., the accommodation proceisabsent. In contrast to this Ccycle 89 times in the case of parameter valtigs=0.40
the stochastic model contains inherently the accommodatiofr 0-6, andH,=0.3. _ _
process which is clearly demonstrated in Fig. 5. For the sake The nonaccommodated minor loops due to the same pair
of orientation the limiting ascending branch LA is also plot- Of reversal fields are evidently not congruent and generally
ted in Fig. 5 where it is seen that the descending branch gi"e not closed. However, this noncongruency has nothing in
the first minor loop starts from the point A due to the first common with that introduced and discussed in details by
reversal fieldH,=0.8 and after reaching the reversal point Kadar [5,15]. The noncongruency of the nonaccommodated
H,=Hq4=—0.2 it turns to increase to the point B which Minor loops bounded by the same field limits has a quite
corresponds to the next reversal fiélg=H,=0.8. One can @ffgrent origin in the stochastic model, namely, the nonequi-
observe thathe first minor loopis not closed, the point B librium response of the system for the cyclic back-and-forth

where the decreasing branchtbe second minor looptarts ~ variation of the external magnetic field between two con-
secutive reversal points. It is obvious consequence of the

non-stationarity of minor loops that the return-point memory

arbitrary unit. The curves LA and LD correspond to the lim

> 1 property is absent in these loops.
2 ‘ He=04 MO /7' In order to study the properties of noncongruency of this
N 05 : ‘ S D type the first minor loops belonging to different start fields
W | o=0s == vl are calculated. Denote byH=H_,—H4 the difference be-
= A A . u . d .
g o | 1= / tween the consecutive reversal fields. For the characteriza-
= / tion of the nonaccommodated first minor loops due to differ-
= 4 : ent start field#H , let us introduce two parameters defined by
F.05 A n
< S [xa 7
@ | ,
o _— W=W(H;,AH)=  max [my(H;|H)
-1
Hi—AHs<H<H,;
-1 0.5 0 0.5 1

MAGNETIZING FIELD
—my(H;—AHTH
FIG. 5. Accommodation process of the minor loop in consecu- 2(Hs TH]
tive magnetizing cycles between the reversal pdihts- —0.2 and
H,=0.8. The loop LC is the accommodated minor loop. and
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FIG. 7. Width W of the first-order minor loops and the differ- FIG. 9. The nonaccommodat_ed NR and the stationary SR rela-
e remanences versus start field due to different points of the

ence O between the values of the descending and ascendir%'gi ding limiting b h
branches in the reversal poiHt,=0.8 versus start field. ascending fimiting branch.

_ _ It seems to be useful to calculate thecommodated (sta-
O=0(H{,AH)=my(H;—AHTH;)—my(H{[H). _ _ ; . -
(Hy, AH)=my(H, THy)=mi(H1[Hy) tionary) hysteresis loopr different pairs of reversal points

The dependence of these parameters on the startHieid ~ Ha and H,=Hgy. The hysteresis loops plotted in Fig. 11
shown in Fig. 7 for the parameter valuek,=—0.2AH  correspond to the reversal poiritg=—1.5H,=1.5 (loop
=1. The author of the present paper is far not convincedML1), Hq=-1H,=1 (loop ML2), Hq=-0.5H,=05
whether the experimental data contradict or support the norfloop ML3). For the calculation we used the parameter val-
congruency of this type because of the lack of careful meau€sH.=0.4 ando=0.6. For the sake of completenets®
surements. virgin curve VC calculated by Eq(50) and the major loop

It seems to be useful to investigate the remanence prog-L bounded by the limiting ascending and descending
erties of systems described by the stochastic model. In Fig. gurves are also shown in the figure. The stochastic model
the first-order descending curves which start from differenclearly shows that all accommodated minor loops corre-
points of the ascending limiting branch LA can be seen. Théponding to cyclic inputs between the same two consecutive
curves starting from the points due to the field valires extreml_Jm values are not only congrue_nt but simply identical.
=1.6H,=1.4H;=1.2H,=1 are plotted to the points of In Fig. 12 three accommodated flrst-order_ minor loops
remanences R1, R2, R3, R4 which are obviously differenflenoted by 1, 2, 3 can be seen. The descending branches of
from the stationary(i.e., the accommodatgdvalues. The the loops are started from the field vali¢s-0.5, 0.3, 0, and
nonaccommodated NR and stationary remanences SR vers@ach of the ascending branches returns exactly to the same
start field are shown in Fig. 9. As it is seen the nonaccomPoint that the corresponding descending branch left. The re-
modated remanences can be negative below a critical sta4'ning curves have an apparent slope discontinuity with re-
field CR since the initial negative saturation has a significangiard to the major loop ALA.
effect on the first-order transition curves. The stationary re- At this point it is worth to make a remark of somewhat
manence curve SR calculated from E@47) and (48) is historical nature. As it is well-known Preisach’s idea for his
non-negative in all points of the start field interval. model was originated from thquadratic Rayleigh relation

The influence of the parametes on the shape of the Which can be easily obtaingd4] assuming a uniform dis-
major hysteresis loop can be seen in Fig. 10. As it is exiribution of theU andD fields over the “Preisach triangle.”
pected the larger is the parametethe wider is the hyster- It is interesting to note that in the stochastic model the cal-

esis loop, i.e., the larger nonhomogeneity in a syseiq, in ~ culated hysteresis loops almost perfectly coincide with that
a magnetic Samp)e'esults ina h|gher “coercive force.” calculated by the Ray|e|gh formula when the reversal fields

Hy andH,=H, and so the magnetizing field e[Hg4,H ]

1.5

3 1.5 ]
g1 8 R —
s R e ey
Eosl [re| Lot = /| /s
Y o0s E = 05 /
5} m Y / /
< R3 | | > ] = -
= g 0] | / k’i“ 6=0.6

0 0
w ] ) - I < /7 ;
> ra /| [ | o= || =
£ R4 / ‘LA}* G 0.6—l» |.u_05:| o=02 [ 5 /
<.05 / E AN A
o / 'E S L/l/
« 4 -1

-1 E

-1 -0.5 0 0.5 1 1.5 2 25 -1.5
MAGNETIZING FIELD 3 2 1 0 1 2 3
AGNETIZING FIELD

FIG. 8. The limiting ascending brandbA and four first-order
descending curves ending in nonaccommodated remanences de- FIG. 10. Influence of the parameteron the shape of the major
noted byR1, R2, R3 andR4. hysteresis loop in the case Bff,=0.4.
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FIG. 11. The virgin curve VC, the major loop LL and three ~ FIG. 13. The hysteresis loop between "small” reversal points
accommodated hysteresis loops ML1, ML2, ML3 calculated forand the quadratic Rayleigh curves denoted by squares.

different pairs of reversal points in the case of parameter values . ) . )
H.=0.4 ando=0.6. a Dirac-delta-like singularity along the boundery of the Prei-

sach triangle, as it was shown by Mayergdyz. The sus-

are sufficiently small. The hysteresis loop R defined by receptibility vs magnetizing field is seen in Fig. 14 for the
versal pointsH,=0.5 andH4= — 0.5 in Fig. 13 can be very Parameter valuesl;=0.2 ando=0.6. The shape of the cal-
well approximated by the equations culated curve can be expected on the basis of physical con-
siderations and corresponds to those found experimentally.
md(0.5|H)=C{¥+ C{PH + CPH?, The estimation of the joint density functioh(x,y|C)
from measured hysteresis curves was beyond the scope of
mY(0.51H)=C{" + C{H+CWH?, our present theoretical consideration. Of course, one may
attempt in simple cases to estimate the parameters of a plau-
where sible density functiorie.g., Eq.(54)] by an appropriate data
evaluation procedure.
cW=-c{"=0.13035. -,
V. CONCLUSIONS
c{@=c{¥=0.79301 - -, _ .
It has been shown that the Preisach model can be im-
C(zd): _C(ZU): —0.54251 . . proved by describing the hysteresis astachastic process
defined on a set of all possible values of the control param-
in the case of parameter valulg=0.2 ando=0.6. In Fig. eter the reversdturning po_ints of which_arc_e Mgrkov poi.nts
13 the squares correspond to the values calculated by 1 the process. The one dimensional distribution _funct|on of
quadratic equations. The excellent aggreement with th&1€ Stochastic process has been exactly determined and the
curves of the stochastic model indicates that the Rayleigi'@gnetizations versus up and down magnetic fields have
law can be reproduced in a straightforward way in the stobeen calculated as expectation values of the_ stochastic pro-
chastic model. cess. It has been proven that the magnetizing process be-
This model differs from the original Preisach model in a COMes Stationary with increasing number of magnetizing
very essential point in relation to theversal point suscep- CYcles. It means that for the description of the accommoda-
tibility. Namely, the nonzero initial susceptibility at the turn- ion process there is no need of any artificial auxiliary as-
ing points is an inherent property of the stochastic modelSUMPtion since the stochastic model contains the phenom-
while the traditional Preisach model can produce positiveeNon of accommodation inherently. In general case the

initial slope only if the Preisach function is supposed to haveNodel is able to describe the symmetric as well as the asym-
metric hysteresis. In relatively small magnetizing fields the

5 4‘ Hl =04 ’E“Tgtyé/ !
2 — e —_—
E 0s 0=06 I e / // > el — N He=02]
& - E
g N / /< 2 E
w @ V4 < 3 04 \
= /A | Tw] 2 A\
K05 - >
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-1 0.5 0 0.5 1 0 0 0.5 ) 15 N

MAGNETIZING FIELD MAGNETIZING FIELD

FIG. 12. Three accommodated first-order minor loops denoted FIG. 14. The irreversible susceptibility versus magnetizing
by 1, 2, 3 and the shifted ascending branch ALA. field H.
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guadratic Rayleigh law can be easily obtained from the equabut the nonstationary loops are noncongruent and in general
tions of the stochastic model. It is important to note that thenot closed.

turning point susceptibilities have nonzero finite values in

contrary to the traqmonal Preisach model which does not ACKNOWLEDGMENT

take consequently into account the random nature of the el-

ementary switching process. Finally, the stochastic model The author wishes to acknowledge stimulating discus-
shows that all stationary loops corresponding to the samsions with Mr. G. Kalar, who helped greatly in completing
two limiting values of the magnetizing field are equivalentthis paper.

[1]I. D. Mayergoyz, Mathematical Models of Hysteresis [11] R.O. Carter and D.L. Richards, J. Am. Ceram. S&¢. 199

(Springer-Verlag, Berlin, 1991 (1950.
[2] A. Visintin, Differential Models of HysteresigSpringer- [12] E. Della Torre and G. Ka&r, IEEE Trans. Magn23, 2823
Verlag, Berlin, 1994 (1987.
[3] A. Ivanyi, Hysteresis Models in Electromagnetic Computation[13] G. Biorci and D. Pescetti, Nuovo Cimento 829 (1958.
(Akademiai Kiado, Budapest, 1997 [14] R. Becker and W. Dxing, Ferromagnetismu¢Springer, Ber-
[4] G. Bertotti, Hysteresis in MagnetisrtAcademic, San Diego, lin, 1939 (in German, p. 222.
1998. [15] G. Kadar and E. Della Torre, IEEE Trans. Mag@3, 2820
[5] G. Kada, J. Appl. Phys61, 4013(1987. (1987.

[6] G. Kadar, Phys. ScrT25, 161(1989.

[7] F. Preisach, Z. Phy®4, 277 (1935.

[8] M.A. Krasnoselskii and A.V. Pokrovskii, Sov. Math. DoRI2,
1388(1971).

[9] L. P4, Foundation of the Probability Calculus and Statistics
(Akademiai Kiado, Budapest, 1995(in Hungarian, Vol. 1, p.
122.

[10] W.S. Melville, J. Inst. Electron End7, 165 (1950.

[16] After the first submission of this manuscript a very interesting
paper was publishedG. Bertotti, I.D. Mayergoyz, V. Basso,
and A. Magni, Phys. Rev. B0, 1428(1999] about the func-
tional integration approach to hysteresis over an abstract prob-
ability space of Kolmogorov. This approach is different from
that which is described in present paper and has certainly a
much wider field of possible applications.



