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Stochastic model of hysteresis

L. Pál
KFKI Atomic Energy Research Institute, P.O. Box 49, 1525 Budapest, Hungary

~Received 20 May 1999!

The methods of the probability theory have been used in order to build up a model of hysteresis which is
different from the well-known Preisach model. It is assumed that the system consists of large number of
abstract particles in which the variation of an external control parameter~e.g., the magnetic field! may result in
transitions between two statesS (1) and S (2). The state of a particle is characterized by the value11 or
21 of a random variable~e.g., the magnetization direction parallel or antiparallel to the magnetic field!. The
transitions are governed by two further random variables corresponding to theS (2)⇒S (1) and the
S (1)⇒S (2) transitions~e.g., ‘‘up switching’’ and ‘‘down switching magnetic field’’!. The method presented
here makes it possible to calculate the probability distribution and consequently the expectation value of the
number of particles in theS (1) ~or S (2)) state for both increasing and decreasing parameter values, i.e., the
hysteresis curves of the transitions can be determined. It turns out that the reversal points of the control
parameter are Markov points which determine the stochastic evolution of the process. It has been shown that
the branches of the hysteresis loop are converging to fixed limit curves when the number of cyclic back-and-
forth variations of the control parameter between two consecutive reversal points is large enough. This con-
vergence to limit curves gives a clear explanation of the accommodation process. The accommodated minor
loops show the return-point memory property but this property is obviously absent in the case of nonaccom-
modated minor loops which are not congruent and generally not closed. In contrast to the traditional Preisach
model the reversal point susceptibilities are nonzero finite values. The stochastic model can provide a surpris-
ingly good approximation of the Raylaigh quadratic law when the external parameter varies between two
sufficiently small values. The practical benefits of the model can be seen in the numerical analysis of the
derived equations. On one hand the calculated curves are in good qualitative agreement with the experimental
observations and on the other hand, the estimation of the joint distribution function of the up and down
switching fields can be performed by using the measured hysteresis curves.

PACS number~s!: 02.50.Ga, 02.50.Ey, 75.60.Ej
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I. INTRODUCTION

The phenomenon of the hysteresis, understood in a g
eral sense, has been investigated so intensively for m
decades that any list of references would be far from co
plete by any standards. It is very fortunate that in the last
years outstanding monographs@1–4# have been published in
this field, and thus the author does not feel obliged to cite
large amount of old but important references. However, i
considered important to mention two papers of Ka´dár @5,6#
whose work has played a stimulating role in getting to
idea of reconsideration of the hysteresis theory by the pre
author. There is no doubt that the abstract reformulation
the Preisach model@7# given by Krasnoselskii and Pok
rovskii @8# and summarized by Mayergoyz@1# in his book
resulted in an improved mathematical clarity in the hyst
esis theory, but the stochastic nature of the hysteresis stil
not been treated with sufficient mathematical rigor@16#.

The aim of the present paper is to define a stocha
model of hysteresis and to derive exact equations for
probability distribution functions describing the state var
tions in hysteretic processes as a function of increasing
well as decreasing control parameters. The vocabulary
magnetic hysteresis will be used for convenience from n
on, however, the concepts can easily be generalized for
hysteretic phenomenon.
PRE 611063-651X/2000/61~4!/3490~11!/$15.00
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II. DESCRIPTION OF THE MODEL

Let us assume that the unit volume of the system cons
of many small abstract regions, called ‘‘particles’’ which a
characterized by four random variablesm,l,xd , and xu .
The absolute value of the particle magnetization is deno
by m. If the particle magnetization is parallel~antiparallel! to
the external magnetic fieldH then the particle is in the stat
S (1)(S (2)) and l51(21). The random valuexd corre-
sponds to a local field at which the stateS (1) jumps to the
stateS (2) and similarly theS (2)⇒S (1) transition occurs at
the random local fieldxu . For simplicity thexu andxd will
be called theU and D fields. These two random variable
express the obvious fact that each particle ‘‘feels’’ not on
the external magnetic fieldH, but also the interaction field
due to the adjacent particles and the random field origina
from the inhomogenities of the surrounding environme
These particles characterized by the random variab
m,l,xd , andxu can be regarded as ‘‘independent’’ abstra
elements of the system, and they will be called ‘‘hysterons.’’

Figure 1 illustrates a possible realization of transitio
S (1)⇔S (2) of a hysteron. The transition curves form a ra
dom rectangular hysteresis loop which is almost in all ca
asymmetrical in the coordinate system of magnetization v
sus external magnetic field since theU andD fields are sup-
posed to be random.

Let us denote the hysterons in a system
h1 ,h2 , . . . ,hN , and letN (1) be the set of indices andn(1)
3490 © 2000 The American Physical Society
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the number of hysterons which are in the stateS (1) at a
given external fieldH. In this case the magnetization of th
system is given by the stochastic equation

dn(1)5 (
k51

N

lkmk ,

wheremk is the absolute value of the magnetization of t
hysteronhk , while

lk5H 1, if kPN (1),

21, if k{N (1).

Since the random variablesm1 ,m2 , . . . ,mN are mutually in-
dependent and have the same probability distribution fu
tion

P$mk<x%5L~x!, ;k51,2, . . . ,N,

it is obvious that the characteristic function of the distrib
tion function

P$dn(1)<x%5Rn(1)~x! ~1!

can be written in the form

Fn(1)~v!5E
2`

1`

eivxdRn(1)~x!5@w~2v!#NF w~v!

w~2v!G
n(1)

,

~2!

where

w~v!5E
2`

1`

eivxdL~x!5E
0

1`

eivxdL~x!. ~3!

In order to calculate the characteristic function

FIG. 1. A possible realization of the transitionS (1)⇔S (2).
c-

-

F~H,v!5 (
n(1)50

N

Fn(1)~v!pn(1)~H !

5@w~2v!#N (
n(1)50

N

pn(1)~H !F w~v!

w~2v!G
n(1)

,

~4!

we need the probability of findingn(1) hysterons in the state
S (1) at the external fieldH which is the endpoint of a well-
defined magnetization prehistory. The determination of t
probability and the derivation of the equations for ‘‘up’’ an
‘‘down’’ magnetizations versus magnetic field will be th
task of the next section.

III. DERIVATION OF THE FUNDAMENTAL EQUATIONS

A. Some basic relations

Let us denote byH(x,yuC) the joint distribution function
of the randomU and D fields. From the physical point o
view it is quite obvious that theU field cannot be smaller
than theD field, so the stochastic inequalityxu>xd must be
satisfied. It is easy to show@9# that the joint distribution
function of xu andxd satisfying the conditionC5$xu>xd%
can be written in the form

P$xu<x,xd<yuxu>xd%

5H~x,yuC!

5

E
2`

x

dx8E
2`

y

h~x8,y8!D~x82y8!dy8

E
2`

1`

dx8E
2`

x8
h~x8,y8!dy8

, ~5!

whereD(x) is the unit step function. It is clear that the join
density function of theU andD fields can be given by

h~x,yuC!5
h~x,y!

E
2`

1`

dx8E
2`

x8
h~x8,y8!dy8

D~x2y!, ~6!

provided that the conditionC is valid.
We need in the sequel two conditional probability dist

bution functions

P$xu<xuC%5H~x,`uC!5Fu~xuC!

5

E
2`

x

dx8E
2`

x8
h~x8,y8!dy8

E
2`

1`

dx8E
2`

x8
h~x8,y8!dy8

~7!

and
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P$xd<yuC%5H~`,yuC!5Fd~yuC!

5

E
2`

y

dy8E
y8

1`

h~x8,y8!dx8

E
2`

1`

dy8E
y8

1`

h~x8,y8!dx8

. ~8!

Evidently Fu(xuC) is the probability that theU field of a
given hysteron is not larger thanx, while Fd(yuC) is the
probability that theD field is not larger thany assuming in
both cases that the conditionC is fulfilled. By using the Di-
richlet’s theorem for changing the sequence of integratio
is obvious that

E
2`

1`

dx8E
2`

x8
h~x8,y8!dy85E

2`

1`

dy8E
y8

1`

h~x8,y8!dx8.

For the sake of further considerations it is necesarry
introduce twotransition probabilitiesdenoted bywu(Hl↑H)
andwd(Hu↓H). Let Hl be a fixed value of the external mag
netic field and let us suppose that the state of a given h
teron isS (2) at Hl . By using elementary theorems, it can
proved that if the external field increases monotonically fr
Hl to H>Hl then

wu~Hl↑H !5

E
Hl

H

dxE
2`

x

h~x,y!dy

E
Hl

1`

dxE
2`

x

h~x,y!dy

~9!

is the probability of the transitionS (2)⇒S (1) occuring in
the interval@Hl↑H#. Similarly, letHu be an other fixed value
andS (1) the state of a hysteron atHu . If the external field
decreases now monotonically fromHu to H<Hu then

wd~Hu↓H !5

E
H

Hu
dyE

y

1`

h~x,y!dx

E
2`

Hu
dyE

y

1`

h~x,y!dx

~10!

gives the probability of the transitionS (1)⇒S (2) occuring
in the interval@Hu↓H#.

B. Stochastic magnetizing process

Let us introduce the ‘‘time parameter’’tP@0,1`# and
define a real valued, external field functionH(t) which con-
sists of monotone increasing and decreasing sections of
ferent length. Denote byH1 ,H2 , . . . ,H j , . . . , the extre-
mum values of the functionH(t) belonging to the
subsequent time pointst1,t2,•••,t j,•••. It is clear that
if H(t j )5H j is a local maximum thenH(t j 21)5H j 21 and
H(t j 11)5H j 11 must be local minimums which are not ne
essarily equal. In the following the sequence$H j% will be
called magnetizing pathand the elements of this sequen
are calledpoints of reversal. If the functionsH (1)(t) and
H (2)(t) have the same magnetizing path then they are sa
be equivalent for any magnetizing process irrespective of
form of the time function between the individual extrema.
Fig. 2 twoequivalent H(t) functionsare seen. The sequenc
it

o

s-

if-

to
e

of extrema is the same for both curves, but the time dista
and the shape of sections between the consecutive ext
are different.

It is assumed that the magnetizing process which cons
of random transitionsS (1)⇔S (2) of hysterons does no
‘‘feel’’ the variation speed ofH(t) between the consecutiv
extremum values, i.e., the magnetizing process isstatic. The
evolution of the process in each subinterval@H j ,H j 11#, j
51,2, . . . , isstochasically determined by the extremumH j
and by the actual values ofH(t) following H j , but the pro-
cess does not depend on the time derivative ofH(t). This
property is calledrate independencein the nonstochastic
theory of hysteresis@2# but it will be applied in this stochas
tic theory too. Denote the maximum reversal fields by o
and the minimum ones by even indices. In this case it is c
that

H2k21>H2k<H2k11 ,

and naturally any one of the inequalitiesH2k11>H2k21 and
H2k11<H2k21 can be valid.

Now, let us definethe random functionjd
(1)(H2k21↓H)

which gives the number of hysterons in the stateS (1) at the
decreasing external fieldH belonging to the interval
@H2k21↓H2k#. Similarly, denote byju

(1)(H2k↑H) the num-
ber of hysterons in the stateS (1) at the increasing externa
field H belonging to the interval@H2k↑H2k11#.

We suppose that at the starting point of the magnetiz
process each hysteron is in theS (2) state, that is the system
is in the state of negative saturation. In the following this fa
will be expressed by the stochastic equationjstart

(1)50. Evi-
dently any other state of the system could as well be cho
for the starting point, this choice, however, does not rea
matter since the influence of the starting state on the ev
tion of the process — as it will be shown — disappears v
rapidly.

In order to describe the magnetizing process we sho
determine two probabilities. One of them is

P$jd
(1)~H2k11↓H !5n2k11

(d) ~H !ujstart
(1) 50%

5p2k11
(d) @H2k11↓H,n2k11

(d) ~H !u0# ~11!

and the other is

FIG. 2. Two equivalentH(t) curves.
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P$ju
(1)~H2k↑H !5n2k

(u)~H !ujstart
(1) 50%

5p2k
(u)@H2k↑H,n2k

(u)~H !u0#. ~12!

It is important to note that the reversal points~extremum
values!

H1 ,H2 , . . . ,H2k21 ,H2k ,H2k11 , . . . ,

are Markov points of the stochastic processesju
(1)(H j↑H)

andjd
(1)(H j 11↓H), and therefore we can write the followin

equations:

p2k11
(d) @H2k11↓H,n2k11

(d) ~H !u0#

5 (
n2k

(u)(H2k11)50

N

p2k11
(d)

3@H2k11↓H,n2k11
(d) ~H !un2k

(u)~H2k11!#p2k
(u)@H2k↑

3H2k11 ,n2k
(u)~H2k11!u0# ~13!

and

p2k
(u)@H2k↑H,n2k

(u)~H !u0#

5 (
n2k21

(d) (H2k)50

N

p2k
(u)

3@H2k↑H,n2k
(u)~H !un2k21

(d) ~H2k!#p2k21
(d)

3@H2k21↓H2k ,n2k21
(d) ~H2k!u0#. ~14!

As it has already been mentioned the hysterons can
regarded as independent of each other particles and, th
fore, it is an easy task to determine the probability that
number ofS (1) hysterons is exactly equal to a non-negat
integer not larger thanN, at an either decreasing or increa
ing external fieldH provided that the number ofS (1) hys-
terons is known at the last reversal point before arriving aH.

The probabilityp2k11
(d) @H2k11↓H,n2k11

(d) (H)un2k
(u)(H2k11)#

can be obtained as a result of the following consideration
the number ofS (1) hysterons at the reversal pointH2k11 is
equal ton2k

(u)(H2k11), then — in order to haven2k11
(d) (H)

hysterons in the stateS (1) at the external fieldH<H2k11 —
exactly n2k

(u)(H2k11)2n2k11
(d) (H) hysterons of stateS (1)

have to transform to the stateS (2) in the interval
@H2k11↓H#. It is obvious that the probability of this even
can be given by

p2k11
(d) @H2k11↓H,n2k11

(d) ~H !un2k
(u)~H2k11!#

5S n2k
(u)~H2k11!

n2k11
(d) ~H !

D @wd~H2k11↓H !#n2k
(u)(H2k11)2n2k11

(d) (H)

3@12wd~H2k11↓H !#n2k11
(d) (H). ~15!

Similarly, to determine the probability
p2k

(u)@H2k↑H,n2k
(u)(H)un2k21

(d) (H2k)# one has to recognize tha
if the number ofS (2) hysterons at the reversal pointH2k is
equal toN2n2k21

(d) (H2k), then — in order to haven2k
(u)(H)

hysterons in the stateS (1) at the external fieldH>H2k —
be
re-
e

If

exactly n2k
(u)(H)2n2k21

(d) (H2k21) hysterons of stateS (2)

have to transform to the stateS (1) in the interval@H2k↑H#.
The probability of this event is given by

p2k
(u)@H2k↑H,n2k

(u)~H !un2k21
(d) ~H2k!#

5S N2n2k21
(d) ~H2k!

n2k
(u)~H !2n2k21

(d) ~H2k!
D

3@wu~H2k↑H !#n2k
(u)(H)2n2k21

(d) (H2k)

@1 2wu~H2k↑H !#N2n2k
(u)(H). ~16!

In order to symplify the further calculations let us intro
ducethe generating functions

G2k11
(d) ~H2k11↓H,z!

5 (
n2k11

(d) (H)50

N

p2k11
(d) @H2k11↓H,n2k11

(d) ~H !u0#zn2k11
(d) (H)

~17!

and

G2k
(u)~H2k↑H,z!5 (

n2k
(u)(H)50

N

p2k
(u)@H2k↑H,n2k

(u)~H !u0#zn2k
(u)(H).

~18!

By using the Eqs.~13! and~15! we getthe first fundamental
equationin the form

G2k11
(d) ~H2k11↓H,z!5G2k

(u)@H2k↑H2k11 ,a~H2k11 ,H,z!#,

~19!

where

a~H2k11 ,H,z!5wd~H2k11↓H !1@12wd~H2k11↓H !#z.

~20!

The second fundamental equationfollows from the relations
~14! and ~16!. We have

G2k
(u)~H2k↑H,z!5@c~H2k ,H,z!#NG2k21

(d)

3@H2k21↓H2k ,b~H2k ,H,z!#, ~21!

where

c~H2k ,H,z!512~12z!wu~H2k↑H ! ~22!

and

b~H2k ,H,z!5
z

c~H2k ,H,z!
. ~23!

Now we will derive the characteristic function of th
probability that the system magnetization is not larger thax
at a decreasing external fieldH which follows the last rever-
sal pointH2k11. Introducing the notation

c~v!5
w~v!

w~2v!
~24!
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and by using the relation~17! we obtain from Eq.~4!

Fd~H2k11↓H,v!5@w~2v!#NG2k11
(d) @H2k11↓H,c~v!#.

~25!

Similarly, if we use Eq.~18! then the characteristic functio
of the probability that the magnetization of the system is
larger thanx at an increasing external fieldH after the last
reversal pointH2k can be obtained from Eq.~4! in the form

Fu~H2k↑H,v!5@w~2v!#NG2k
(u)@H2k↑H,c~v!#. ~26!

These two characteristic functions describe completely
stochastic behavior of the magnetizing process in both
creasing and decreasing external magnetic fields. It is ap
ent from the above considerations that the stochastic m
developed by us has been built up without any reference
particular nature of hysteresis and therefore, its generalit
at least as high as that of the Krasnoselskii and Pokrov
@8# model.

C. Calculation of the hysteresis curves

The expectation value of the magnetic momentmk due to
the kth hysteron can be given by

E$mk%5 i 21Fdw~v!

dv G
v50

5Ms .

By using this expression we can write the expectation va
of the magnetization of the system at the decreasing exte
field H following the reversal pointH2k11 in the form

i 21FdFd~H2k11↓H,v!

dv G
v50

5M2k11
(d) ~H2k11↓Hu0!

52MsN2k11
(d) ~H2k11↓Hu0!2NMs , ~27!

where

N2k11
(d) ~H2k11↓Hu0!5FdG2k11

(d) ~H2k11↓H,z!

dz G
z51

.

~28!

From the fundamental Eq.~19! we obtain

N2k11
(d) ~H2k11↓Hu0!

5N2k
(u)~H2k↑H2k11u0!@12wd~H2k11↓H !#.

~29!

The expectation value of the magnetization of the system
the external magnetic fieldH increasing after the reversa
field H2k can be obtained from the equation

i 21FdFu~H2k↑H,v!

dv G
v50

5M2k
(u)~H2k↑Hu0!

52MsN2k
(u)~H2k↑Hu0!2NMs , ~30!
t

e
-

ar-
el
a
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ii

e
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where

N2k
(u)~H2k↑Hu0!5FdG2k

(u)~H2k↑H,z!

dz G
z51

. ~31!

The recursive relation

N2k
(u)~H2k↑Hu0!5Nwu~H2k↑H !1N2k21

(d) ~H2k21↓H2ku0!

3@12wu~H2k↑H !# ~32!

follows from the other fundamental Eq.~21!.
By intoducingthe relative magnetizations

m2k11
(d) ~H2k11↓Hu0!5

1

NMs
M2k11

(d) ~H2k11↓Hu0! ~33!

and

m2k
(u)~H2k↑Hu0!5

1

NMs
M2k

(u)~H2k↑Hu0!, ~34!

from Eqs.~27!, ~29! and~30!, ~32! after elementary calcula
tions the following recursive relations are obtained:

m2k11
(d) ~H2k11↓Hu0!

5@11m2k
(u)~H2k↑H2k11u0!#@12wd~H2k11↓H !#21

~35!

and

m2k
(u)~H2k↑Hu0!

52wu~H2k↑H !1@11m2k21
(d) ~H2k21↓H2ku0!#

3@12wu~H2k↑H !#21. ~36!

In order to solve this system of recursive equations
need the formula forthe starting branchof the relative mag-
netization. Sincethe negative saturationhas been chosen a
the initial state of the system it follows from Eq.~9! that if
Hl⇒H052`, then

wu~Hl↑H !⇒Fu~HuC!,

and so the equation for the starting branch will be

m0
(u)~2`↑Hu0!52Fu~HuC!21. ~37!

This branch can be also calledthe limiting ascending branch
because there is no branch below it. Ifthe positive saturation
would be the initial state then it is easy to show thatthe
limiting descending branchcan be written in the form

m0
(d)~`↓Hu0!52Fd~HuC!21, ~38!

whereFd(HuC) is defined by the expression~8!, and at the
same time it is obvious that the limiting descending bran
has the property that there is no other branch above it.
two limiting curves formthe major hysteresis loopwhich
defines an area where all other loops should be located.

By using the expression~37! for the starting branch and
Eq. ~35! we can obtain the first descending branch
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m1
(d)~H1↑Hu0!52Fu~H1uC!@12wd~H1↑H !#21, ~39!

which is attached to the limiting ascending branch at
point H1. This descending branch is called by Mayergoyz@1#
the first-order transition curve. The fieldH1 where the first-
order transition curve starts from, will be calledstart field.
Denote byH2 the next reversal point where the magnetizi
field begins again to increase. The corresponding ascen
branch, i.e.,the second-order transition curveis given by the
formula

m2
(u)~H2↑Hu0!52wu~H2↑H !

1@11m1
(d)~H1↓H2!#@12wu~H2↑H !#21.

~40!

This procedure can be continued and it is seen that the
no need to take into account any special requirement in o
to describe the field dependence of the average magne
tion since the Markov points of the magnetizing field det
mine exaclty the stochastic behavior of the process.

D. Stationarity of hysteresis loops

Let us investigate now the variation of the magnetizat
for a special sequences of reversal fields. Let as suppose tha
H2k115Hu , ; k50,1, . . . ,while H2k5Hd , ;k51,2, . . . ,
andHu>Hd , i.e., the magnetizing field is varying betwee
two extreme valuesHu and Hd . The field variation which
starts with a decrease of the the external magnetic fielH
from the reversal pointHu until it reaches the next reversa
point Hd and then turns to increase to the nearestHu value,
is called the magnetizing cycle. The magnetizing cycle
sults in a hysteresis loop called the minor hysteresis lo
The first cycle corresponds to the variation of the exter
field between the reversal pointsH1⇒H2⇒H3, whereH1
5H35Hu and H25Hd , while kth cycle is done by the
variation of the magnetizing field between the reversal po
H2k21⇒H2k⇒H2k11, whereH2k215H2k115Hu and H2k
5Hd for k51,2, . . . . For thedescending branch of thekth
minor loop one can obtain from Eq.~35! the following ex-
pression:

m2k21
(d) ~Hu↓Hu0!

5@11m2k22
(u) ~Hd↑Huu0!#@12wd~Hu↓H !#21.

~41!

while for the ascending branch of thekth minor loop the
relation

m2k
(u)~Hd↑Hu0!52wu~Hd↑H !

1@11m2k21
(d) ~Hu↓Hdu0!#

3@12wu~Hd↑H !#21 ~42!

can be derived from Eq.~36!. By using Eq.~37! we have

m1
(d)~Hu↓Hu0!52Fu~HuuC!@12wd~Hu↓H !#21, ~43!

for the descending branch of the first minor loop and
e
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m2
(u)~Hd↑Hu0!52Fu~HuuC!@12wd~Hu↓Hd!#

3@12wu~Hd↑H !#12wu~Hd↑H !21

~44!

for the ascending branch of the same loop. It is to note t
according to the Mayergoyz’s terminology the first min
loop consists of a first-order descending and a second-o
ascending transition curves. Following the reversal points
the magnetizing field this procedure can be continued and
can obtain both the descending and ascending branche
relative magnetization for any minor loop.

One can provea very important limit theorem, namely,
there exist twolimit curves

lim
k→`

m2k21
(d) ~Hu↓Hu0!5md~Hu↓H !, ~45!

and

lim
k→`

m2k
(u)~Hd↑Hu0!5mu~Hu↓H !, ~46!

which are determining a closed minor loop. In other wor
the magnetizing process becomes stationary with increa
number of cycles. It means the system ‘‘forgets’’ gradua
its initial state by repeating the magnetizing cycle. This fo
getting process can be related to the well-knownaccommo-
dation process. The original Preisach model results in a
immediate formationof the minor hysteresis loop after onl
one cycle of back-and-forth variation of the input betwe
any two consecutive extremum values. However, this con
quence of the Preisach model contradicts to well known
perimental finding that the hysteresis loop formation is p
ceded by an accommodation process which can
sometimes appreciable@10,11#. In order to describe this ac
commodation process the traditional Preisach model
modified in the ‘‘moving’’ and the ‘‘product’’ models@12#.
One has to mention that the modification of the movi
model performed by Mayergoyz@1# ~see Sec. II. 5, pp. 108–
114! gives not only a possible variant of the accommodat
but defines a sufficient condition too for the convergence
the process. The stochastic model developed by us con
the phenomenon of accommodation inherently as a co
quence of the limit theorem~45! and ~46!.

The formulas for the limit curves defined by Eqs.~45! and
~46! can be obtained by some elementary calculations as
lows:

md~Hu↓H !52Q~Hd ,Hu!wu~Hd↑Hu!@12wd~Hu↓H !#21

~47!

and

mu~Hd↑H !5122Q~Hd ,Hu!wd~Hu↓Hd!@12wu~Hd↑H !#,

~48!

where

Q~Hd ,Hu!5@wd~Hu↓Hd!1wu~Hd↑Hu!

2wd~Hu↓Hd!wu~Hd↑Hu!#21.
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From these equations two important relations can be deri
namely,

md~Hu↓Hu!5mu~Hd↑Hu! andmd~Hu↓Hd!5mu~Hd↑Hd!,

which show that the return-point memory property is fulfil
for the accommodated minor hysteresis loops. It is also
vious, that the accommodated minor loops due to the s
pair of reversal fieldsHd andHu>Hd are not only congruen
but identical since the field valuesHd and Hu unambigu-
ously determine the the branches of stationary loops. O
has to mention that the accommodated branchesmd(`↓H)
and mu(2`↑H) are exactly identical with the limiting de
scending and ascending branches which indicates the co
tency of the theory.

The explicit form of the expressionsmd(Hu↓H) and
mu(Hd↑H) which describe the descending and the ascend
branches of the stationary minor loop between two reve
fields Hd and Hu>Hd has a great advantage in numeric
calculations in comparision with the well-known Everett i
tegral. It is to be noted that the expressions~47! and~48! are
suitable to describe not only symmetrical butasymmetrical
hysteresis loopstoo and it is easy to show that symmetric
hysteresis loops can be obtained only if the functionh(x,y)
has amirror symmetryexpressed by

h~x,y!5h~2y,2x!. ~49!

In the following the mirror symmetry ofh(x,y) will be as-
sumed.

It is worthwhile to derive the formula forthe virgin curve
of the magnetizationdepending on the parameters of the de
sity functionh(x,yuC). After some simple manipulations w
obtain

m0~H !52
s1~H !

s1~H !1s2~H !2s1~H !s2~H !
21, ~50!

where

s1~H !5

E
2H

1H

dxE
2`

x

h~x,y!dy

E
2H

1`

dxE
2`

x

h~x,y!dy

~51!

and

s2~H !5

E
2H

1H

dyE
y

1`

h~x,y!dx

E
2`

1H

dyE
y

1`

h~x,y!dx

. ~52!

If the function h(x,y) satisfies the symmetry relation~49!
then it is easy to prove that

lim
H→0

m0~H !50

and the initial susceptibilitydefined by
d,

b-
e

e

is-
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xa5 lim
H→0

dm0~H !

dH
5

E
0

1`

h~x,0!dx

E
0

1`

dxE
2`

x

h~x,y!dy

~53!

is different from zero in contrary to the classical Preisa
model which gives a nonrealistic zero slope of the virg
curve atH50.

IV. NUMERICAL CALCULATIONS AND DISCUSSION

In order to compute the magnetization vs field curves
have to know the joint density functionh(x,yuC) of the U
and D fields. Since these fields are the sum of many sm
random components it is reasonable to assume that the
tral limit theorem is approximately valid and so the functio
h(x,y) in h(x,yuC) can be chosen in the form

h~x,y!5
1

2ps2A12Cr
2

expH 2
1

2s2~12Cr
2!

@~x2Hc!
2

22Cr~x2Hc!~y1Hc!1~y1Hc!
2#J , ~54!

where the meaning of the constantsHc ,s, and Cr is clear
from the elements of the probability theory. Figure 3 sho
the contour plot ofh(x,yuC) defined by Eq.~6! for the pa-
rametersHc50.2,s50.6, andCr50.5. The contours are be
longing to the following values ofh(x,yuC)50.1, 0.2;
0.3~0.05!0.65 and 0.682. The last one is slightly smaller th
max(x,y)h(x,yuC)50.682923•••. The discontinouity along the
line y2x50 can be clearly seen in the figure. In the seq
this formula will be used in all of our numerical calculation
provided that the correlation coefficientCr is equal to zero,
i.e., h(x,y)5 f (x) f (2y) where f is the density function of
the normal distribution. This case corresponds tothe product
modelintroduced by Biorci and Pescetti@13# and used con-
sequently by Ka´dár @5,6,12#.

The relative magnetization vs field curves are shown
Fig. 4. The parameter values used for the calculation
Hc50.4,s50.6, andCr50. The values of magnetizing field
are given here and in the further figures in a properly cho

FIG. 3. Contour plot ofh(x,yuC) defined by Eq.~6! where
h(x,y) is given by Eq. ~54! with parameter valuesHc50.2,s
50.6, andCr50.5.
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arbitrary unit. The curves LA and LD correspond to the lim
iting ascending and descending branches, while the cu
indexed in the figure by 1, 2, 3, 4 are the first-, secon
third-, and fourth-order transition curves defined by the
versal pointsH151.2,H2520.8,H350.6,H4520.6. It is
worth noting that the all information about the past history
the magnetizing process is transfered by the state of the
tem in the last reversal point. For example, the fourth-or
transition curve 4 which is plotted in the field interv
@20.6,1.5#, is determined by the state in the reversal po
H4520.6.

It is well known that in the traditional Preisach model t
minor loops which describe the cyclic change of the mag
tization with back-and-forth variation of the magnetizin
field between the same two limiting values are congruent
the formation of a closed minor loop is realized in one cyc
i.e., the accommodation processis absent. In contrast to thi
the stochastic model contains inherently the accommoda
process which is clearly demonstrated in Fig. 5. For the s
of orientation the limiting ascending branch LA is also plo
ted in Fig. 5 where it is seen that the descending branc
the first minor loop starts from the point A due to the fir
reversal fieldH150.8 and after reaching the reversal po
H25Hd520.2 it turns to increase to the point B whic
corresponds to the next reversal fieldH35Hu50.8. One can
observe thatthe first minor loopis not closed, the point B
where the decreasing branch ofthe second minor loopstarts

FIG. 4. Limiting branches LA, LD, and magnetization vers
field curves starting from the reversal pointsH151.2, H2520.8,
H350.7, andH4520.6. The magnetization curves are indicated
1, 2, 3, and 4.

FIG. 5. Accommodation process of the minor loop in conse
tive magnetizing cycles between the reversal pointsHd520.2 and
Hu50.8. The loop LC is the accommodated minor loop.
es
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from, occupies a higher position than the point A, and
end point C of the increasing branch of the second mi
loop is found above the point B but the distance between
points C and B is smaller than that between the points B
A. By repeating the magnetizing cycle between the reve
fields Hd520.2 andHu50.8 the difference between th
branches of the same type becomes gradually negligible,
the branches converge tolimit curveswhich form finally a
closed stationary hysteresis loopdenoted by LC. The mag
netizing curves measured by Carter and Richards@11# on
silicon steel~4.3% Si! are surprisingly similar to that plotted
in Fig. 5.

In order to demonstrate the speed of the convergence
nonaccommodated relative magnetizations have been ca
lated in the reversal pointHu50.8 for the subsequent cycle
Figure 6 shows that the stationary~i.e., the limit! value of the
magnetization can be very well approached by repeating
cycle 8–9 times in the case of parameter valuesHc50.4,s
50.6, andHu50.3.

The nonaccommodated minor loops due to the same
of reversal fields are evidently not congruent and gener
are not closed. However, this noncongruency has nothin
common with that introduced and discussed in details
Kádár @5,15#. The noncongruency of the nonaccommoda
minor loops bounded by the same field limits has a qu
different origin in the stochastic model, namely, the noneq
librium response of the system for the cyclic back-and-fo
variation of the external magnetic field between two co
secutive reversal points. It is obvious consequence of
non-stationarity of minor loops that the return-point memo
property is absent in these loops.

In order to study the properties of noncongruency of t
type the first minor loops belonging to different start fiel
are calculated. Denote byDH5Hu2Hd the difference be-
tween the consecutive reversal fields. For the character
tion of the nonaccommodated first minor loops due to diff
ent start fieldsH1 let us introduce two parameters defined

W5W~H1 ,DH !5 max
H12DH<H<H1

@m1~H1↓H !

2m2~H12DH↑H !]

and

-

FIG. 6. Convergence of the relative magnetization in the rev
sal pointHu50.8 with increasing number of cycles to the limit~i.e.,
the stationary! value.
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O5O~H1 ,DH !5m2~H12DH↑H1!2m1~H1↓H1!.

The dependence of these parameters on the start fieldH1 is
shown in Fig. 7 for the parameter valuesHd520.2,DH
51. The author of the present paper is far not convinc
whether the experimental data contradict or support the n
congruency of this type because of the lack of careful m
surements.

It seems to be useful to investigate the remanence p
erties of systems described by the stochastic model. In F
the first-order descending curves which start from differ
points of the ascending limiting branch LA can be seen. T
curves starting from the points due to the field valuesH1
51.6,H251.4,H351.2,H451 are plotted to the points o
remanences R1, R2, R3, R4 which are obviously differ
from the stationary~i.e., the accommodated! values. The
nonaccommodated NR and stationary remanences SR v
start field are shown in Fig. 9. As it is seen the nonacco
modated remanences can be negative below a critical
field CR since the initial negative saturation has a signific
effect on the first-order transition curves. The stationary
manence curve SR calculated from Eqs.~47! and ~48! is
non-negative in all points of the start field interval.

The influence of the parameters on the shape of the
major hysteresis loop can be seen in Fig. 10. As it is
pected the larger is the parameters the wider is the hyster-
esis loop, i.e., the larger nonhomogeneity in a system~e.g., in
a magnetic sample! results in a higher ‘‘coercive force.’’

FIG. 7. Width W of the first-order minor loops and the diffe
ence O between the values of the descending and ascen
branches in the reversal pointHu50.8 versus start field.

FIG. 8. The limiting ascending branchLA and four first-order
descending curves ending in nonaccommodated remanence
noted byR1, R2, R3, andR4.
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It seems to be useful to calculate theaccommodated (sta
tionary) hysteresis loopsfor different pairs of reversal points
Hd and Hu>Hd . The hysteresis loops plotted in Fig. 1
correspond to the reversal pointsHd521.5,Hu51.5 ~loop
ML1!, Hd521,Hu51 ~loop ML2!, Hd520.5,Hu50.5
~loop ML3!. For the calculation we used the parameter v
uesHc50.4 ands50.6. For the sake of completenessthe
virgin curve VC calculated by Eq.~50! and the major loop
LL bounded by the limiting ascending and descend
curves are also shown in the figure. The stochastic mo
clearly shows that all accommodated minor loops cor
sponding to cyclic inputs between the same two consecu
extremum values are not only congruent but simply identic

In Fig. 12 three accommodated first-order minor loo
denoted by 1, 2, 3 can be seen. The descending branch
the loops are started from the field valuesH50.5, 0.3, 0, and
each of the ascending branches returns exactly to the s
point that the corresponding descending branch left. The
turning curves have an apparent slope discontinuity with
gard to the major loop ALA.

At this point it is worth to make a remark of somewh
historical nature. As it is well-known Preisach’s idea for h
model was originated from thequadratic Rayleigh relation
which can be easily obtained@14# assuming a uniform dis-
tribution of theU andD fields over the ‘‘Preisach triangle.’
It is interesting to note that in the stochastic model the c
culated hysteresis loops almost perfectly coincide with t
calculated by the Rayleigh formula when the reversal fie
Hd andHu>Hd and so the magnetizing fieldHP@Hd ,Hu#

ing

de-

FIG. 9. The nonaccommodated NR and the stationary SR r
tive remanences versus start field due to different points of
ascending limiting branch.

FIG. 10. Influence of the parameters on the shape of the majo
hysteresis loop in the case ofHc50.4.
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are sufficiently small. The hysteresis loop R defined by
versal pointsHu50.5 andHd520.5 in Fig. 13 can be very
well approximated by the equations

ma
d~0.5↓H !5C0

(d)1C1
(d)H1C2

(d)H2,

ma
u~0.5↑H !5C0

(u)1C1
(u)H1C2

(u)H2,

where

C0
(d)52C0

(u)50.13035•••,

C1
(d)5C1

(u)50.79301•••,

C2
(d)52C2

(u)520.54251•••

in the case of parameter valuesHc50.2 ands50.6. In Fig.
13 the squares correspond to the values calculated by
quadratic equations. The excellent aggreement with
curves of the stochastic model indicates that the Rayle
law can be reproduced in a straightforward way in the s
chastic model.

This model differs from the original Preisach model in
very essential point in relation to thereversal point suscep
tibility. Namely, the nonzero initial susceptibility at the tur
ing points is an inherent property of the stochastic mod
while the traditional Preisach model can produce posit
initial slope only if the Preisach function is supposed to ha

FIG. 11. The virgin curve VC, the major loop LL and thre
accommodated hysteresis loops ML1, ML2, ML3 calculated
different pairs of reversal points in the case of parameter va
Hc50.4 ands50.6.

FIG. 12. Three accommodated first-order minor loops deno
by 1, 2, 3 and the shifted ascending branch ALA.
-

he
e
h
-
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e
e

a Dirac-delta-like singularity along the boundery of the Pr
sach triangle, as it was shown by Mayergoyz@1#. The sus-
ceptibility vs magnetizing field is seen in Fig. 14 for th
parameter valuesHc50.2 ands50.6. The shape of the cal
culated curve can be expected on the basis of physical
siderations and corresponds to those found experimenta

The estimation of the joint density functionh(x,yuC)
from measured hysteresis curves was beyond the scop
our present theoretical consideration. Of course, one m
attempt in simple cases to estimate the parameters of a p
sible density function@e.g., Eq.~54!# by an appropriate data
evaluation procedure.

V. CONCLUSIONS

It has been shown that the Preisach model can be
proved by describing the hysteresis as astochastic process
defined on a set of all possible values of the control para
eter the reversal~turning! points of which are Markov points
of the process. The one dimensional distribution function
the stochastic process has been exactly determined an
magnetizations versus up and down magnetic fields h
been calculated as expectation values of the stochastic
cess. It has been proven that the magnetizing process
comes stationary with increasing number of magnetiz
cycles. It means that for the description of the accommo
tion process there is no need of any artificial auxiliary a
sumption since the stochastic model contains the phen
enon of accommodation inherently. In general case
model is able to describe the symmetric as well as the as
metric hysteresis. In relatively small magnetizing fields t

r
s

d

FIG. 13. The hysteresis loop between ’’small’’ reversal poin
and the quadratic Rayleigh curves denoted by squares.

FIG. 14. The irreversible susceptibility versus magnetizi
field H.
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quadratic Rayleigh law can be easily obtained from the eq
tions of the stochastic model. It is important to note that
turning point susceptibilities have nonzero finite values
contrary to the traditional Preisach model which does
take consequently into account the random nature of the
ementary switching process. Finally, the stochastic mo
shows that all stationary loops corresponding to the sa
two limiting values of the magnetizing field are equivale
s

on

,

s

a-
e

t
l-

el
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t

but the nonstationary loops are noncongruent and in gen
not closed.
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