Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window.
I. D. Mayergoyz, Mathematical Models of Hysteresis (Springer-Verlag, Berlin, 1991).
A. Visintin, Differential Models of Hysteresis (Springer-Verlag, Berlin, 1994).
A. Iványi, Hysteresis Models in Electromagnetic Computation (Akadémiai Kiadó, Budapest, 1997).
G. Bertotti, Hysteresis in Magnetism (Academic, San Diego, 1998).
M.A. Krasnoselskii and A.V. Pokrovskii, Sov. Math. Dokl. 12, 1388 (1971).
L. Pál, Foundation of the Probability Calculus and Statistics (Akadémiai Kiadó, Budapest, 1995) (in Hungarian), Vol. 1, p. 122.
W.S. Melville, J. Inst. Electron Eng. 97, 165 (1950).
R.O. Carter and D.L. Richards, J. Am. Ceram. Soc. 97, 199 (1950).
E. Della Torre and G. Kádár, IEEE Trans. Magn. 23, 2823 (1987). [ISI]
G. Biorci and D. Pescetti, Nuovo Cimento 7, 829 (1958). [ISI]
R. Becker and W. Döring, Ferromagnetismus (Springer, Berlin, 1939) (in German), p. 222.
G. Kádár and E. Della Torre, IEEE Trans. Magn. 23, 2820 (1987).
After the first submission of this manuscript a very interesting paper was published: [G. Bertotti, I.D. Mayergoyz, V. Basso, and A. Magni, Phys. Rev. E 60, 1428 (1999)] about the functional integration approach to hysteresis over an abstract probability space of Kolmogorov. This approach is different from that which is described in present paper and has certainly a much wider field of possible applications. [ISI]