[Image] Vol Page/Article: ------------------------------------------------------------------------ Article Collection: View Collection Help (Click on the [COLLECT ARTICLE] to add an article.) ------------------------------------------------------------------------ Article Collection functions work best when viewed with a JavaScript-capable and -enabled browser (see the online help for more information). [ Previous / Next Abstract | Issue Table of Contents | Bottom of Page ] Physical Review Letters -- May 1, 2000 -- Volume 84, Issue 18, pp. 4224-4227 [Image] Full Text: [ PDF (520 kB) GZipped PS Order Document ] ------------------------------------------------------------------------ Diluted Antiferromagnets in Exchange Bias: Proof of the Domain State Model P. Miltényi, M. Gierlings, J. Keller, B. Beschoten, and G. Güntherodt 2.Physikalisches Institut, RWTH Aachen, 52056 Aachen, Germany U. Nowak and K. D. Usadel Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität-Duisburg, 47048 Duisburg, Germany (Received 23 December 1999) The exchange bias coupling at ferromagnetic/antiferromagnetic interfaces in epitaxially grown Co/CoO layers can intentionally be increased by a factor of up to 3 if the antiferromagnetic CoO layer is diluted by nonmagnetic defects in its volume part away from the interface. Monte Carlo simulations of a simple model of a ferromagnetic layer on a diluted antiferromagnet show exchange bias and explain qualitatively its dilution and temperature dependence. These investigations reveal that diluting the antiferromagnet leads to the formation of volume domains, which cause and control exchange bias. ©2000 The American Physical Society URL: http://link.aps.org/abstract/PRL/v84/p4224 doi:10.1103/PhysRevLett.84.4224 PACS: 75.70.Cn, 75.40.Mg, 75.50.Lk, 85.70.-w Additional Information ------------------------------------------------------------------------ [Image] Full Text: [ PDF (520 kB) GZipped PS Order Document ] ------------------------------------------------------------------------ References Citation links [e.g., Phys. Rev. D 40, 2172 (1989)] go to online journal abstracts. Other links (see Reference Information) are available with your current login. Navigation of links may be more efficient using a second browser window. 1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956); 105, 904 (1957). 2. J. Nogués and Ivan K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999) (ScienceDirect). [INSPEC] 3. B. Dieny et al., Phys. Rev. B 43, 1297 (1991). 4. C. Tsang, J. Appl. Phys. 55, 2226 (1984). [SPIN] 5. A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987); J. Appl. Phys. 63, 3874 (1988); Phys. Rev. B 37, 7673 (1988). 6. T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 81, 4516 (1998); J. Appl. Phys. 85, 5510 (1999). 7. K. Takano et al., Phys. Rev. Lett. 79, 1130 (1997); J. Appl. Phys. 83, 6888 (1998). 8. D. Mauri et al., J. Appl. Phys. 62, 3047 (1987). 9. M. D. Stiles and R. D. McMichael, Phys. Rev. B 59, 3722 (1999). 10. R. Dieckmann, Z. Phys. Chem. 107, 189 (1977). [INSPEC] 11. M. G. Lagally, D. E. Savage, and M. C. Tringides, in Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces, edited by P. K. Larsen and P. J. Dobson (Plenum Press, New York, 1987), p. 139. 12. M. J. Carey et al., J. Mater. Res. 6, 2680 (1991). [SPIN] 13. For a review, see W. Kleemann, Int. J. Mod. Phys. B 7, 2469 (1993); [INSPEC] D. P. Belanger in Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998). 14. U. Nowak and K. D. Usadel, Phys. Rev. B 46, 8329 (1992); J. Esser, U. Nowak, and K. D. Usadel, Phys. Rev. B 55, 5866 (1997). 15. T. J. Moran, J. M. Gallego, and Ivan K. Schuller, J. Appl. Phys. 78, 1887 (1995). 16. J. Nogués et al., Phys. Rev. B 59, 6984 (1999). 17. R. P. Michel, A. Chaiken, and C. T. Wang, J. Appl. Phys. 81, 5374 (1997). 18. J. Nogués et al., Phys. Rev. Lett. 76, 4624 (1996). 19. T. J. Moran and Ivan K. Schuller, J. Appl. Phys. 79, 5109 (1996). 20. P. A. A. van der Heijden et al., Appl. Phys. Lett. 72, 492 (1998); J. Appl. Phys. 83, 7207 (1998). 21. S-J. Han et al., Phys. Rev. B 45, 9728 (1992). 22. U. Nowak, J. Esser, and K. D. Usadel, Physica (Amsterdam) 323A, 40 (1996); M. Staats, U. Nowak, and K. D. Usadel, Phase Transit. 65, 159 (1998). [Image] The American Physical Society is a member of CrossRef. ------------------------------------------------------------------------ [Image] Full Text: [ PDF (520 kB) GZipped PS Order Document ] ------------------------------------------------------------------------ Citing Articles This list contains links to other online articles that cite the article currently being viewed. 1. Exchange bias in FexZn1-xF2/Co bilayers Hongtao Shi et al., J. Appl. Phys. 91, 7763 (2002) 2. Magnetic interface coupling in single-crystalline Co/FeMn bilayers W. Kuch et al., Phys. Rev. B 65, 140408 (2002) 3. Influence of in-plane crystalline quality of an antiferromagnet on perpendicular exchange coupling and exchange bias M. R. Fitzsimmons et al., Phys. Rev. B 65, 134436 (2002) 4. Microscopic model for exchange anisotropy J. R. L. de Almeida et al., Phys. Rev. B 65, 092412 (2002) 5. Induced anisotropy and positive exchange bias: A temperature, angular, and cooling field study by ferromagnetic resonance Michael J. Pechan et al., Phys. Rev. B 65, 064410 (2002) 6. Thickness-dependent coercive mechanisms in exchange-biased bilayers C. Leighton et al., Phys. Rev. B 65, 064403 (2002) 7. Magnetic structures at the ferromagnetic NiFe and antiferromagnetic NiMn interface in exchange-biased films: Role of noncollinear magnetism and roughness Kohji Nakamura et al., Phys. Rev. B 65, 012402 (2002) 8. Spectroscopic Identification and Direct Imaging of Interfacial Magnetic Spins H. Ohldag et al., Phys. Rev. Lett. 87, 247201 (2001) 9. Angular dependence of the exchange bias obtained from magnetization and ferromagnetic resonance measurements in exchange-coupled bilayers J. Geshev et al., Phys. Rev. B 64, 184411 (2001) 10. Defect-modified exchange bias Joo-Von Kim et al., Appl. Phys. Lett. 79, 2785 (2001) 11. Influence of interfacial disorder and temperature on magnetization reversal in exchange-coupled bilayers M. R. Fitzsimmons et al., Phys. Rev. B 64, 104415 (2001) 12. Field Cooling Induced Changes in the Antiferromagnetic Structure of NiO Films W. Zhu et al., Phys. Rev. Lett. 86, 5389 (2001) 13. Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations Òscar Iglesias et al., Phys. Rev. B 63, 184416 (2001) 14. Magnetic Moments at the Surface of Antiferromagnetic NiO(100) F. U. Hillebrecht et al., Phys. Rev. Lett. 86, 3419 (2001) 15. Thermally assisted oscillatory interlayer exchange bias coupling Minn-Tsong Lin et al., Phys. Rev. B 63, 100404 (2001) 16. Local manipulation and reversal of the exchange bias field by ion irradiation in FeNi/FeMn double layers A. Mougin et al., Phys. Rev. B 63, 060409 (2001) 17. Detection of field-dependent antiferromagnetic domains in exchange-biased Fe3O4/NiO superlattices J. A. Borchers et al., Appl. Phys. Lett. 77, 4187 (2000) 18. Size dependence of the exchange bias field in NiO/Ni nanostructures M. Fraune et al., Appl. Phys. Lett. 77, 3815 (2000) 19. Experimental Observation of Disorder-Driven Hysteresis-Loop Criticality A. Berger et al., Phys. Rev. Lett. 85, 4176 (2000) ------------------------------------------------------------------------ [Image] Full Text: [ PDF (520 kB) GZipped PS Order Document ] [ Previous / Next Abstract | Issue Table of Contents | Top of Page ] ------------------------------------------------------------------------ Article Collection: View Collection Help (Click on the [COLLECT ARTICLE] to add an article.) ------------------------------------------------------------------------ [ Homepage | Browse Available Volumes | Search | Subscriptions | Contact Information | Online Help | Exit ]