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A Surface Effect on a One-Dimensional Competitive System

Free Domain-Wall Structures Induced by a Free-Surface
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Some one-dimensional classical systems with competitive interactions show quite complex
ground-state phase-diagrams, in which infinitely many phases exist. A free-surface effect on
the ground-state structures of one of such systems is discussed. A direct numerical method is
applied to evaluate the ground-state structure of the semi-infinite system. We pay attention
to the area near the phase boundary between a non-uniform modulated phase and a uniform
phase. The free-surface induces domain-wall structures. The domain-wall may be free from the
free surface in some parameter region although it is usually bound near the surface.
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Introduction

§1.

To analyze properties of systems independent of the
boundary conditions, we usually regard the size of the
systems as infinite. However, of course, to obtain prop-
erties near the boundaries, effect of the boundary con-
ditions must be correctly treated. Free surface is one of
the simplest boundary conditions.

Semi-infinite systems with a free surface for classical
spins or particles have been discussed by many authors to
analyze behaviors of the systems near the surface. For
example, LePage and Camley!) have analyzed surface
spin-wave modes of a semi-infinite Fe/Gd superlattice
and showed that a surface mode is softened, indicating a
surface phase transition. The possibility of a first-order
surface transition in a semi-infinite Blume-Capel model
was shown by Buzano and Pelizzola.?)

As for the ordering or disordering phenomena which
are related to the surface of alloys, some works have re-
cently been performed. Extensive Monte-Carlo simula-
tions®) have dealt with the surface-induced ordering or
disordering in fcc Cu-Au type alloys. Seok and Oxtoby?
have studied the order-disorder transition in CusAu us-
ing a density functional approach. They obtained sur-
face transition and segregation phenomena similar to
experimental results. Ritschel and Czerner® have stud-
ied the spatial dependence of the order parameter near
surface, which is related to the experimentally observed
long-range order near the surface of FezAl.

Surface effects on the phase transitions of uniaxial an-
tiferromagnets have been discussed by de Moraes and
Figueiredo.®) In connection with the uniaxial antiferro-
magnets, the ground state of a semi-infinite system with
a field along the easy axis has been formerly discussed
concerning the surface spin-flop state.”>8) Recently, Tral-
lori et al.?) have shown that the so-called surface Spin-
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flop state does not exist in the system in contradiction
to the results of the previous studies.””8) On the other
hand, Chung!® has claimed that the surface spin-flop
state does exist and the transition from the surface spin-
flop to bulk spin-flop is first-order-like. These studies
show that even the ground state cannot so easily be ob-
tained for semi-infinite systems.

The ground state of one-dimensional classical sys-
tems with competitive interactions has long been dis-
cussed by many authors. The reason is that the sys-
tems show very many commensurate phases with short-
period or long-period leading to very complex ground-
state phase-diagrams in spite of the simplicity of the
system. The model proposed by Marchand, Hood and
Caillé (MHC) 1713 is the simplest one of those systems.
The Hamiltonian of the model is given by

oo
Huse = Z [V (un) + W (tnt1 — un)],

n=—oc

(1.1)

where u, is the displacement of the n-th particle from
the reference position where the one-particle potential
V(up) is minimized. The one-particle potential and the
interaction potential W are respectively given by

1

V(z) = §Kx2, (1.2)

W) = —%(az~’y)2 + %(z—v)“, (1.3)

where K is a positive constant and v is a parameter
expressing the competition between the one-particle po-
tential and the interaction-potential. The properties of
the model have been studied in detail and a complete
ground-state phase-diagram has been obtained. Many
(infinitely many) modulated phases exist in the ground-
state phase-diagram and between those phases both the
first-order and the second-order phase transitions are
caused. The non-convexity of the interaction potential
induces this complexity of the phase diagram.
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Most of the studies for the competitive systems includ-
ing that by MHC have been focused mainly on systems of
infinite length, namely systems with translational sym-
metry. The effect of a free surface or any other bound-
ary conditions on the system has not so often been dis-
cussed,® though the free surface or any other boundary
conditions may cause interesting phenomena as shown
now for other semi-infinite systems. The boundaries are
expected to add a new competition to the competitive
systems.

In the present paper, we discuss the free surface-effect
by means of the semi-infinite version of the MHC model.
The Hamiltonian is given by

H = Z[V(un) + W (unt1 — un))-

n=1

(1.4)

Note that u; stands for the displacement of the “surface
particle”.

We observe some new phenomena unexpected before,
especially near the phase boundary between the two
phases of the infinite system. Since near the phase
boundaries, the energies of the neighboring two phases
are quite close, near the surface the ground-state struc-
tures of the two phases are expected to be blended. So we
concentrate our attention on parameter regions near the
phase boundaries of the infinite system. Near the phase
boundaries, there appear “domain-wall” structures con-
necting the two types of ground state structure. The free
surface makes the translational symmetry of the system
disappear and induces the domain-wall. The domain-
wall is usually bound near the surface. However, it can
be at any position inside the bulk in some parameter
region. Thus, the “free” domain-wall structure appears.

To investigate the ground state, we introduce a nu-
merical method. This “sweep-down method” is simple
and direct, and is applicable to various types of systems.
The method is explained in the next section.

The ground state of the competitive system obtained
by numerical calculation will be given in §3. The free
domain-wall appears if the displacement of the particles
near the surface is not smaller than that of the parti-
cles in the bulk. In the modulated phase region near the
phase boundary, the displacement of the surface parti-
cles is larger than that in the bulk. Away from the phase
boundary, it is smaller than that in the bulk. Then, the
free domain-wall appears near the phase boundary. In
addition to this region, at a special point in the param-
eter space, the free domain-wall appears. At this point,
the displacement of the particles near the surface is just

equal to that of the particles in the bulk though it is

smaller around the point. Therefore, this “free domain-
wall” point is isolated in the parameter space.

The wall structure is induced by the surface. There-
fore, presence of the free domain-wall means that the
surface effect is not limited near the free surface but pen-
etrates deep into the system. '

The last section is devoted to summary and discus-
sions.
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§2. The Numerical Method: The Multi-

Channel Sweep-Down Method

It is not easy to obtain the ground state and the
ground-state energy of competitive systems. How-
ever, the effective potential method by Grifliths
and Chou'®1®) is a very powerful method for one-
dimensional systems and has been used by many au-
thors to discuss the ground state.'” Unfortunately, this
method is not applicable to the semi-infinite system
such as (1.4). Trallori et al.® have introduced a two-
dimensional area preserving mapping method to investi-
gate the existence of the surface spin-flop state in the
semi-infinite and the finite uniaxial-antiferromagnetic
systems. However, this method, also, cannot be used
to the system (1.4).

We propose a direct numerical method to obtain the
ground state of any one-dimensional classical system
with semi-infinite or finite length. The method, we call
as the “sweep-down method”, is as follows.

At first we convert the problem for the semi-infinite
system into that of the finite system. Sufficiently deep
inside the semi-infinite system, the ground state must
be the same as the ground state of the corresponding
infinite system. The state of the semi-infinite system
must be different from the infinite system only near the
free surface. Let the displacement u, for n > Ng be
equal to that in the infinite-length system u} which are
obtained by the effective potential method.'>"13) Thus,
the energy of the system is expressed in terms of the
displacement in the “surface region”;

H({un}n21") = Hs({un}n27 ' uly) + B, (21)
where Hg is the “surface” Hamiltonian given by
Hs({un}n21 ", ul)
Ng—2
= " [V(un) + Wltns1 — un)]
n=1
+ V(ung-1) + W(up, — unp-1),  (22)

and Eg is the energy of the bulk part. Hence, it is suf-
ficient to analyze the finite-length system Hg instead of
the semi-infinite system (1.2) and find the appropriate
number Ng. In the finite-length system, one end (uz) of
the two ends is free and the other (uny = u}y,) is fixed.

We then arrange on the finite system an initial
particle-configuration. We sweep the particles one by one
from the fixed end (n = Ng—1) to the free boundary end
(n =1). At each particle we search the minimum energy
position and put the particle on the position, keeping the
position of the two particles on both sides of that parti-
cle. Then, we sweep from the free boundary end to the
fixed end searching the minimum energy position of the
particle. We repeat the sweep until all particles in the
system attain to its energy minimum position. Let this
type of method to search the minimum-energy be called
the one-particle sweep-down method.

A more valid method is available to reach surely the
true ground state or nearly degenerate states. Instead
of searching the energy minimum position of only one
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particle at once, we may seek the minimum energy po-
-sition of the two neighboring particles at once, keep-
ing the position of the two particles on both sides of
those particles (the two-particle sweep-down method).
For the two-particle, the configuration for the minimum
energy obtained by the one-particle search is chosen as
the initial configuration. Furthermore, we seek the min-
imum energy positions of the three neighboring parti-
cles at once, keeping the position of the two particles
on both sides of the three particles (the three-particle
sweep-down method). In this case, the configuration for
the minimum energy obtained by the two-particle search
is chosen as the initial configuration. In the same way,
we can introduce the larger-number particle sweep-down
method. Note that the minimum energy configuration
obtained by the m-particle sweep down method is cho-
sen as the initial configuration for the (n + 1)-particle
sweep-down method.

To avoid straying into local minimum states, we must
improve the sweep-down method. For the one-particle
sweep-down we provide many initial configurations in-
stead of only one, in which we set randomly the initial
configurations for the particles in the surface region and
sweep the particles at random instead of sweeping suc-
cessively from one end to the other end. We, then, sweep
successively from the fixed end to the free end. We sweep
the particles at random. Then we sweep successively
from the free end to the fixed end. We repeat the pro-
cess until all particles in the system attain to its energy
minimum position. We perform the process for all the
provided initial configurations. We obtain consequently
many candidates for the ground state. We expect that
the lowest energy state is the ground state. Let us call
this type of sweep down method the one-particle “multi-
channel” sweep-down method (the one-particle MCSW
method). Using the minimum energy configurations ob-
tained by the one-particle MCSW method as the initial
configuration, we can perform the two-particle and the
three-particle MCSW methods.

In our experience, rather large portion of the candi-
dates get to the true ground state. Furthermore, the
many candidates, although they are not the true ground

-state, give physically meaningful results. Information
about the system can be extracted from them.

§3. Numerical Analysis of the Free-Surface Ef-
fect

The ground-state phase-diagram of the infinite system
(1.1) was obtained by MHC.'® The complete phase di-
agram is shown in Fig. 7 of their paper.

We consider the semi-infinite system (1.4) in the pa-
rameter region near the phase boundary between the
uniform phase and the modulated phase with period
two (the dimerized phase). At the phase boundary, the
“second-order” phase transition is caused. The phase
diagram near the boundary is shown in Fig. 1.

We pay attention to the free-surface effect along the
broken line in Fig. 1. Fixing the parameter v to be 0.3,
we investigate the particle configurations near the surface
for 2.47 < K < 3.0, where the phase transition of the
infinite system is caused at K = 2.920.
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Fig. 1. The ground state phase diagram near the phase bound-
‘ary between the uniform phase and the dimerized phase. We
investigate the surface effect along the broken line.

For the infinite system with period p, there are p dif-
ferent positions of the particles. Let us image that we
cut the infinite system with period p into two parts to
obtain the semi-infinite system. There are p different
cutting positions; there are p different “original” posi-
tions of the surface particle. Thus, for the system with
period p, there are p different surfaces. For the dimerized
system discussed in the present paper, we have two kinds
of free surface. For one of the two types, the “original
position” of the surface particle takes a positive value u™
and for the other, that takes a negative value u~. Let us
call the two surfaces the uT-surface and the u~-surface
respectively.

Of course, the surface particle remains no longer at the
original position after the cutting; the surface is relaxed.
The particle on the free surface feels only the two-body
interaction potential from the inner particle. The surface
particle will be shifted from the equilibrium position of
the infinite system. The outward move and the inward
move of the surface particle respectively stand for expan-
sion and contraction of the system.

The “size” Ng in the sweep-down method was chosen
as Vg = 100 or Ng = 200 depending on the parameter
K. The range of the variable u, was adequately cho-
sen, usually from —0.2 to 0.2. The range was divided at
10,000 or 20,000 intervals.

We take up, at first, the u~-surface in the dimerized
phase. There is no inconsistency between the particle
configurations near the surface and in the bulk. The
particle configuration near the surface connects smoothly
with that in the bulk. The results of numerical calcula-
tion are shown in Fig. 2. The change in the configuration
is smooth and reasonable, as we cross the phase bound-
ary.

However, two characteristic phenomena must be indi-
cated. At K = 2.560, the configuration near the surface
is the same as that in the bulk. The surface is not re-
laxed at all. At this point, the semi-infinite system is not
conscious of the free surface. Contrastively to the above,
the free-surface effect penetrates, though exponentially
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Particle configurations near the u™-surface. (a) K = 2.50. (b) K = 2.56. (¢) K = 2.70. (d) K = 2.80. (e) K = 2.92. (f)

K = 3.00. The surface particle moves outward for K < 2.56 and moves inward for K > 2.56. The surface particle does not move at
all at K = 2.56. The effect of a free surface penetrates deep into the bulk at K = 2.92.

decaying, deep into the bulk at K = 2.920; i.e. at the
phase boundary. This phenomenon is due to the second
order phase transition at the boundary.

Next, we take up the ut-surface. As we vary the pa-
rameter K, the particle configuration does change con-
siderably. This is because that near the ut-surface, the
particle configuration does not connect smoothly with
that in the bulk configuration. There must appear a
“domain-wall” between the two configurations. The re-
sults of numerical calculation at some values of K less
than 2.560 are shown in Fig. 3. If the parameter K is
less than 2.502, the surface effect is limited near the sur-
face. In the range 2.503 < K < 2.560, we can see a
“twist” in the configuration, which expresses relaxation

of the inconsistency between the particle configuration
near the surface and that in the bulk. The area in which
the twist particle-configuration appears is regarded as
the domain-wall connecting the two types of configura-
tion. This domain-wall stays near the surface in this
parameter region. The center of the twist (or the center

_of the domain-wall), which is defined by the value of n

with u, ~ 0.0, is at n = 6.

However, when the value of the parameter K is 2.560,
the configuration changes drastically. The result of nu-
merical calculation at K = 2.560 is shown in Fig. 4. The
center of the domain-wall may situate at any even site
n, where n is any even integer larger than or equal to
8. This means that the domain-wall can hop freely with-
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Fig. 3. Particle configurations near the ut-surface. (a) K =
2.50. (b) K = 2.53. The center of the domain wall, which means
up ~0,isat n=21if K =2.50 and is at n = 6 if K = 2.53.

out energy ‘oss; the “free” domain-wall appears at this
value of the parameter. This phenomenon could not be
expected before the calculation.

In the range 2.560 < K < 2.623, the domain-wall can
not hop freely again. The results of numerical calculation
at some values of K in that range are shown in Fig. 5.
In the range 2.560 < K < 2.5613, the domain-wall is at
n = 8. But, in the range 2.5614 < K < 2.576, it is at
n = 4. The domain-wall comes closer to the surface. In
the range 2.577 < K < 2.621, it is at n = 6. In the
range 2.622 < K < 2.623, it is again at n = 8. The
domain-wall goes away from the surface. In this param-
eter region, the relation between the value of the param-
eter K and the position of the wall is not monotonous
but rather complex.

When the parameter K becomes larger, the free
domain-wall structure again appears. The results of nu-
merical calculation at some values of K larger than or
equal to 2.624 are shown in Fig. 6. For larger K, the
domain-wall hops freely in the region more away from
the surface. For an example, at K = 2.624, the domain-
wall may situate at any even n larger than or equal to
8, whereas, at K = 2.700, it may situate at any even n
larger than or equal to 18. Furthermore, at K = 2.800,
domain-wall may situate at any even n larger than or
equal to 28. The width of the domain-wall in the larger
K region is wider than that in the smaller K. However,
it does not diverge and remains a few lattice spaces.
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Fig. 4. Particle configurations near the ut-surface. The parame-
ter K is chosen as K = 2.56. The center of the domain wall may
situate at any even site n, where n is any even integer greater
than or equal to 8. In the figure, only the first two configurations,
in which the domain wall is at n = 8 or n = 10, are shown. The
configuration nearest to the surface (n = 8) is shown by circles
connected by solid lines, and configuration next nearest to the
surface (n = 10) is shown by crosses connected by dotted lines.

For K > 2.624, there appears effectively “a repulsive
force” between the domain-wall and the surface. As K
becomes large, the displacement of the particles becomes
small. The cause of “the repulsive force” is that the
displacement of the particles near the surface becomes
large compared to that in the bulk, whereas the displace-
ment of particles near the domain-wall remains small.
If the domain-wall with small particle-displacement ap-
proaches the surface, the interaction potential energy W
increases. The increase of the interaction potential in-
duces the repulsive force. The range of the repulsive
force is short. The domain-wall hops freely outside the
range. This is the cause of the appearance of the free
domain-wall in the region K > 2.624.

In general, the displacement of the particles in the
bulk decreases with increasing K, since the strong one-
particle potential V (u,) = (1/2)Ku2 suppresses the dis-
placement. At the free surface, the lack of the outer-side
interaction-potential induces the particle displacement.
Therefore, in the large K region (K > 2.560), the dis-
placement of the particle at the surface is larger than
that in the bulk. This suggests that the free domain-
wall appears in regions near the phase boundary of the
dimerized phase.

The position of the domain-wall is summarized in
Fig. 7, where the region K > 2.84 is omitted. If the
parameter K is larger than 2.84 and gets close to 2.920,
the range of the repulsive force from the surface becomes
large and the domain-wall is pushed away deep into the
bulk. The domain-wall hops freely in the area far from
the surface. Near the phase boundary, the displacement
of the dimerized particles in the bulk part gets small and
fades out at the phase boundary. But, even quite near
the phase boundary, the width of the free domain-wall
remains finite.

We may say that there is effectively “an attractive
force” between the domain-wall and the surface in the
region K < 2.623. In this region, the displacement of
the second particle (n = 2) is smaller than that in the
bulk, though the displacement of the first particle on the
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Fig. 5. Particle configurations near the ut-surface. (a) K = 2.561. (b) K = 2.57. (c) K = 2.60. (d) K = 2.622. The center of the
domain wall comes closer to the surface and goes away from the surface with increasing K.

Displacement u

S
=

Displacement u

I
o

o
=

(=]

S
o

0.2

0.1

(a)

Particle Number n

e e T ——
i ?Né;z ORPORRRPPRPPPIPPRP G deJb
I 3
1
!
l:l
- [c H
@R X X TLXYLY-X-X: ﬁNNNNNMNNH}_
FRE TN WS S TS NS T ST SN (ST S WA AT ST SN S I W SN N
0 10 20 30 40 50
Particle Number n
(c)
I e T o o e
1 '
R ® e cece .
® X of ®
- III e, i
J,
. Yl
4t
- @ " i
O
T A x 2O
PRI N ST WN TN S N T SN SR S NS S WON SV UNS S S ST
0 10 20 30 40 50

(b)

1 —

]
ﬁ‘lbcb“ﬂﬂb@ 0R9POPPIPIPPPRRD

0.1 1‘

Displacement u

XX XX X4 i OOQNHDQNHN DO R

(g J ) MUSFISS EERFI N U BN SRR e
0 10 20 30 40 50

Particle Number n

Fig. 6. Particle configurations near the uT-surface. (a) K =
2.624. The center of the domain wall may situate at any even
site n, where n is any even integer greater than or equal to 8. In
the figure, only the first two configurations, in which the domain
wall is at n = 8 or n = 10, are shown. (b) K = 2.70. The center
of the domain wall may situate at any even site n, where n is any
even integer greater than or equal to 18. In the figure, only the
first two configurations, in which the domain wall is at n = 18
or n = 20, are shown. (¢) K = 2.80. The center of the domain
wall may situate at any even site n, where n is any even integer
greater than or equal to 28. In the figure, only the first two con-
figurations, in which the domain wall is at n = 28 or n = 30, are
shown. In all figures, the configuration nearest to the surface is
shown by circles connected by solid lines, and configuration next
nearest to the surface is shown by crosses connected by dotted
lines.
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" region K > 2.84 is omitted. If the parameter K is greater than
2.84 and gets closer to 2.920, the domain wall moves deeper
into the bulk and penetrates infinitely deep into the system at
K =2.92.

surface (n = 1) is larger (2.560 < K < 2.623) or smaller
(2.470 < K < 2.560) compared to that in the bulk. In
this connection, the displacement of the second particle
(n = 2) is just equal to that in the bulk at K = 2.560
and K = 2.624. The particles in the domain-wall do not
interact directly with the first particle on the surface, but
interact with the second particle or the particles near the
surface. Therefore, in the region K < 2.623, the interac-
tion potential energy between the particles near the sur-
face and the particles in the domain-wall is smaller than
that between the particles in the bulk and the particles
in the domain-wall. This induces the attractive force.
However, the domain-wall cannot locate quite near the
surface because the domain-wall too close to the surface
breaks the surface structure. This induces quite-short-
range repulsive force. The domain-wall locates at the
position where the attractive and the repulsive forces
balance.

As mentioned in the previous paragraph, at K =
2.560, the free domain-wall happens to appear. At
K = 2.560, the displacement of particles near the surface
is just equal to that in the bulk, as we mentioned in the
statement about the u~-surface. The displacement of
the first particle or the second particle on the surface is
the same as that in the bulk. Then, the attractive force
disappears and the domain-wall becomes free.

Now, we can understand the non-monotonous change
of the position of the domain-wall for the region K <
2.623, which is shown in Fig. 7. It is caused by the po-
sition of the second particle, which is, needless to say,
influenced by the first particle on the surface. The dis-
placement of the second particle is small compared to
that in the bulk in the region K < 2.623 but is just the
same as that in the bulk when K = 2.560 or K = 2.624.
It becomes larger than that in the bulk for K > 2.624.

If the parameter K is slightly less than 2.560, the dis-
placement of the second particle is small but near that
in the bulk. As the parameter K becomes smaller, the
displacement of the second particle becomes smaller com-
pared to that in the bulk, which means that the attrac-
tive force between the surface and the domain-wall be-
comes stronger. The position of the domain-wall comes
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closer to the surface.

If the parameter K is slightly larger than 2.560, the
displacement of the second particle is small but near that
in the bulk. As the parameter K becomes larger, the dis-
placement of the second particle becomes smaller com-
pared to that in the bulk, which means that the attrac-
tive force between the surface and the domain-wall be-
comes stronger. The position of the domain-wall comes
closer to the surface. However, as K becomes large still
more and approaches to 2.624, the displacement of the
second particle becomes large and approaches to that in
the bulk, which means that the attractive force between
the surface and the domain-wall becomes weaker. The
position of the domain-wall goes away from the surface.

§4. Summary and Discussions

We paid attention to the surface effect on the ground
state of one-dimensional competitive systems. To inves-
tigate the surface effect, we must analyze the system with
“semi-infinite” length. The ground-state structure of the
system with infinite length can be obtained by the effec-
tive potential method. However, the method is not ap-
plicable to the semi-infinite system. Therefore, we intro-
duced a numerical calculation method called the multi-
channel sweep-down method. This method is applicable
not only to semi-infinite systems but also to finite sys-
tems.

We chose the competitive model introduced by Marc-
hand, Hood and Caillé (MHC).!® The model is com-
posed of particles in the one-particle potential connected
by the two-particle potential. The competition of the
two potentials induces various modulated structures in
the ground state. By means of the multi-channel sweep-
down method, we investigated the free surface effect near
the phase boundary between the uniform phase and the
dimerized phase in the ground-state phase-diagram of
the infinite system.

In general, for the ground-state structure with period
p, there are p types of surface. Then, in the dimerized
phase, there are two types of surface. One of them (called
the u™ surface in the previous section) induces no attrac-
tive surface phenomena.

There is no inconsistency between the surface configu-
ration and the bulk configuration. The surface configura-
tion connects smoothly with the bulk configuration. At
the phase boundary, however, we obtain the penetration
behavior of the surface effect.

For the other type of surface (the u* surface), the sur-
face effect induces an unexpected characteristic behavior.
In the dimerized phase, the direction of the particle dis-
placement from the reference place changes alternately.
In a parameter region, the “phases” of the alternation
near the surface and in the bulk become different. Thus,
the system is composed from two domains with different-
type particle-configurations. In the area where the two
types of configuration connect, the particle nearly re-
mains at the reference place. This type of the particle
configuration is called as “twist” and this area in the sys-
tem is called as domain-wall. Near the phase boundary,
the ground state energy is independent of the position
of the domain-wall. This means that the domain-wall
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hops freely. In addition to the parameter region, the free
domain-wall appears at an isolated point in the param-
eter space. In other regions, the domain-wall is bound
near the surface.

The cause of the different “types” of domain-wall
is understood as follows. Near the phase boundary
(K > 2.624), the displacement of the surface particles
is larger than that of the particles in the bulk. The dis-
placement of the particles in the domain-wall is small.
If the domain-wall of particles with small displacement
approaches to the surface, the interaction potential en-
ergy between the surface particles and the particles in
‘the domain-wall increases. This means existence of an
“effective repulsive force” between the surface and the
domain-wall. The range of the repulsive force is short.
The domain-wall hops freely in the bulk region, outside
- of the range.

In the parameter region far from the phase boundary,
the displacement of the surface particles (especially the
second particle) is smaller than that of the bulk. There-
fore, an “attractive force” exists effectively between the
surface and the domain-wall. The attractive force binds
the domain-wall to the surface. But at an isolated pa-
rameter point (K = 2.560), the displacement of the
surface particles is just equal to that of the bulk: The
domain-wall hops freely in the bulk region. Around
the parameter point, however, the displacement of the
second particle is smaller than that in the bulk. The
domain-wall is attracted to the surface and cannot hop
freely in the bulk region.

In this scenario for the behaviors of the domain-wall,
the competition between the one-particle potential V
and the the inter-particle potential W of the MHC model
plays an important role. The competition changes the
relative magnitude of the displacements of the surface
particle and the bulk particle.

We have also performed the numerical calculation near
the phase boundary between the uniform phase and the
phase of period four. The phase transition is of first
order. In the region, new surface effects different from
those presented in the present paper are expected. The
results will be published in other paper.

Systems of finite-length have recently been investi-
gated by many authors,'®%2) because the competition
between walls on both sides shows interesting phenom-
ena. Thin film of Ising ferromagnets with competing sur-
face fields, which are directed in opposite direction on the
surfaces, are discussed by Binder et al.2®) They observe
the interface localization-delocalization transition using
Monte Carlo method. On the other hand, thin film of
Heisenberg ferromagnets with competing surface fields
are discussed by Jang and Grimson?!) using Monte Carlo
method. No spontaneous magnetization is observed in
the Heisenberg system.

We can add a prediction to finite-length systems with
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free surface on both sides. A finite-length system of the
same type discussed in this paper will have two very
different ground states as the number of the particles
in the system is even or odd. For a system with even
particles, we may not expect an interesting phenomenon
except at the phase boundary. But for a system with
odd particles, there must be a domain-wall in the system.
The domain-wall, depending on the parameter, may stay
near one of the two surfaces or may wander about inside
the system.

The phenomena shown in this paper seem to be univer-
sal for other semi-infinite system with competitive inter-
actions. We have a plan to investigate other semi-infinite
systems. Those results will be published in near future.
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