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Surface-induced disorder in body-centered-cubic alloys
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We present Monte Carlo simulations of surface-induced disordering in a model of a binary alloy on a bcc
lattice which undergoes a first-order bulk transition from the ordered DO3 phase to the disordered A2 phase.
The data are analyzed in terms of an effective interface Hamiltonian for a system with several order parameters
in the framework of the linear renormalization approach due to Bre´zin, Halperin, and Leibler. We show that the
model provides a good description of the system in the vicinity of the interface. In particular, we recover the
logarithmic divergence of the thickness of the disordered layer as the bulk transition is approached, we
calculate the critical behavior of the maxima of the layer susceptibilities, and demonstrate that it is in reason-
able agreement with the simulation data. Directly at the~110! surface, the theory predicts that all order
parameters vanish continuously at the surface with a nonuniversal, but common critical exponentb1. How-
ever, we find different exponentsb1 for the order parameter (c2 ,c3) of the DO3 phase and the order
parameterc1 of the B2 phase. Using the effective interface model, we derive the finite size scaling function for
the surface order parameter and show that the theory accounts well for the finite size behavior of (c2 ,c3), but
not for that ofc1. The situation is even more complicated in the neighborhood of the~100! surface, due to the
presence of an ordering field which couples toc1.
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I. INTRODUCTION

First-order phase transitions in the bulk of systems
drive a variety of interesting wetting phenomena at their s
faces and interfaces. They have attracted much attention
many years,1 and are still very actively investigated.2 Promi-
nent examples are the wetting of a liquid on a solid subst
at liquid-vapor coexistence, or the wetting of one compon
of a binary fluid below the demixing temperature on t
walls of a container. These systems are representatives
generic situation, which has been studied in particular de
Three phases coexist, substrate, liquid and vapor. The
strate acts as inert ‘‘spectator’’ which basically provides
‘‘boundary conditions’’ for the liquid-vapor system. Th
liquid-vapor transition can be described by a single or
parameter~e.g., the density!, which can take two equilibrium
bulk values at coexistence~the liquid density or the gas den
sity!. Obviously, the liquid phase will only wet the substra
if it is preferentially adsorbed by the latter. As one a
proaches the liquid-vapor coexistence from the vapor s
different scenarios are possible, depending on the subs
interactions and on the temperature: Either the liquid fi
covering the substrate remains microscopic at coexiste
~‘‘partial wetting’’ !, or it grows macroscopically thick
~‘‘complete wetting’’!. The transition from partial to com
plete wetting can be first order or continuous~‘‘critical wet-
ting’’ !. Since critical wetting is only expected on certain su
strates at a specific temperature, it is rather difficult
observe experimentally~an experimental observation of crit
cal wetting with long range forces has been reported in R
PRB 610163-1829/2000/61~22!/15077~15!/$15.00
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3, and with short range forces in Ref. 4!.
Wetting phenomena are also present in alloys which

dergo a discontinuous order-disorder transition in the bulk5,6

In many cases, surfaces are neutral with respect to the s
metry of the ordered phase, but reduce the degree of orde
due to the reduced number of interacting neighbors. The
faces can thus be wetted by a layer of disordered alloy,
‘‘surface induced disorder’’~SID! occurs.7,8 The situation is
reminiscent of liquid-vapor wetting; however, the underlyin
symmetry in the system restricts the possible wetting s
narios significantly.

We shall illustrate this for systems with purely short ran
interactions: We consider a Landau free energy functiona
the form

F$m%5E drWE
0

`

dzH g

2
~¹m!21 f b„m~rW,z!…J

1E drW f s„m~rW,z50!…. ~1!

Here the vectorm subsumes the relevant order paramete
the z axis is taken to be perpendicular to the surface, anddrW
integrates over the remaining spatial dimensions. The of
of the bulk free energy densityf b(m) is chosen such tha
f b(mb)50 in the bulk. The surface contributionf s(m) ac-
counts for the influence of the surface on the order para
eter, i.e., the preferential adsorption of one phase or in
case of SID the disordering effect. In mean field approxim
tion, the functional~1! is minimized by the bulk equation
15 077 ©2000 The American Physical Society



s

u
n
et
le
d
r-
d

of

de

h

ca
e

em
y,
te
s

and
ot
tion
ect
and
ace
e
ter,
ial
s is
o

es-

right
n is
s-
s.
en

ase
m-
ap-

in
ease
er
d
d
d

ere
.
-
et-
f
lts
s.
nd
for

of
of
am-

sed
O

re-

-
;
ow
e

s

15 078 PRB 61F. F. HAAS, F. SCHMID, AND K. BINDER
g
d2mi

dz2
5] i f b~m!, ~2!

which describes the motion of a classical particle of masg
in the external potential@2 f b(m)#, subject to the boundary
condition atz50

g
dmi

dz
52] i f s~m! with Ug dm

dzU5A2g fb~m!. ~3!

If the order parameter has just one component, this eq
tion can be solved graphically by the Cahn constructio9

This is illustrated in Fig. 1 for the case of a continuous w
ting transition. The corresponding order parameter profi
are shown as insets. Complete wetting is encountere
f s8(m) crossesA2g fb at the outer side of the minimum co
responding to the adsorbed phase. Partial wetting is foun
the crossing point is located between the two minima@Fig.
1~b!#. Critical wetting connects the two regimes, i.e.,f s8(m)
crossesA2g fb right at the adsorbed phase minimum off b
@Fig. 1~a!#. Figure 1~c! shows a case where the system is
bulk coexistence.

Now, let us consider the case of surface induced disor
Here, several equivalent ordered phases exist, and the
dered state breaks a symmetry. For neutral surfaces whic
not discriminate between the ordered phases,f b and f s have
the same symmetry. This implies thatf s is extremal in the
disordered phase (m50), i.e.,u] f su is zero atm50 and thus
crossesA2g fb at m50 ~Fig. 2!. Comparing that with the
scenario sketched above~Fig. 1!, we find that surface in-
duced disordering corresponds to either partial or criti
wetting6—the symmetry of the surface interactions exclud
the possibility of complete wetting.10 The off-coexistence
situation@Fig. 2~b!# resembles that in Fig. 1~c!.

Alloys which exhibit surface induced disorder thus se
particularly suited to study critical wetting. Unfortunatel
the simplification due to the symmetry of the system of
goes along with severe complications in other respect: U

FIG. 1. Cahn construction~schematic! for a second-order wet
ting transition:~a! Critical wetting,~b! partial and complete wetting
~c! off bulk coexistence, approaching critical wetting. Insets sh
the corresponding order parameter profiles. See text for more
planation.
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ally, one has to deal with a number of order parameters
other coupled fields, which interact in a way that may n
always be transparent. If the surface under considera
does not have the symmetry of the bulk lattice with resp
to the ordered phases, the interplay of order parameters
surface segregation creates effective ordering surf
fields,11–14 which may affect the critical behavior at th
surface.14,15 In the case of a one component order parame
such a field drives the system from critical wetting to part
wetting. When several order parameters are involved, thi
not necessarily the case.16–18More subtle effects can lead t
surface order even at fully symmetric surfaces.19–21

Experimentally, surface induced disorder has been inv
tigated at the~100! surface of Cu3Au.22–25 A number of
studies have provided evidence that the order parameter
at the surface vanishes continuously as the bulk transitio
approached,22–24 and established the relation with the exi
tence of a disordered surface layer of growing thicknes25

The related case of ‘‘interface induced disorder’’ has be
studied among other in Cu-Pd, where the width of antiph
boundaries was shown to diverge logarithmically as the te
perature of the transition to the disordered phase was
proached from below.26

The first simulation studies of surface induced disorder
different systems have reproduced the continuous decr
of the surface order parameter at the bulk first ord
transition,27,18,16and the logarithmic growth of a disordere
layer near the surface.16 A detailed study of surface induce
disorder at the~111! surface of CuAu has been publishe
recently by Schweikaet al.28 The critical behavior of various
quantities has been analyzed, and critical exponents w
found which agree well with the theory of critical wetting
Most notably, Schweikaet al. observe nonuniversal expo
nents, as predicted by renormalization group theories of w
ting phenomena.30,31 In contrast, Monte Carlo simulations o
critical wetting in a simple Ising model have given resu
which were more consistent with mean field exponent29

This latter finding has intrigued theorists for some time, a
a number of theories have been put forward to account
the unexpected lack of fluctuation effects.32–34 The nonuni-
versality of the exponents observed by Schweikaet al.seems
to indicate that the fluctuations are restored in the case
SID. Alternatively, it may also stem from a competition
different length scales associated with the local order par
eter and the local composition.17,18,35

In the present work, we study surfaces of a bcc-ba
alloy close to the first order transition from the ordered D3
phase to the disordered phase. Our work is thus closely

x-

FIG. 2. Cahn construction~schematic! for surface-induced dis-
order in a system with a one component order parameterm ~a! at
bulk coexistence and~b! off bulk coexistence. Dashed line show
surface termf s8(m) for critical wetting; dotted line for partial wet-
ting.
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lated to that of Schweikaet al. It differs in that the order
parameter structure in the bcc case is much more com
than in the fcc alloy: whereas only one~three dimensional!
order parameter drives the transition considered by Schw
et al., we have to deal with two qualitatively different orde
parameters, which are entangled with each other in a ra
intriguing way. In fact, we shall see that one of them beha
as expected from the theory of critical wetting, whereas
other exhibits different critical exponents, which do not
into the current picture.

A similar system has been investigated some time ago
Helbinget al.16 The systems studied there were rather sm
and a detailed analysis of the critical behavior was not p
sible. Helbinget al. report evidence for the presence of
logarithmically growing disordered layer at the~100! surface
as phase coexistence was approached. In retrospect, th
sult seems surprising, since the~100! surface breaks the sym
metry with respect to one of the order parameters, and
know nowadays that this nucleates an ordering surface fi
In order to elucidate the influence of this ordering field
more detail, we have thus considered both the~110! surface,
which has the full symmetry of the bulk lattice, and the~100!
surface.

Our paper is organized as follows: In the next section,
provide some theoretical background on the theory of w
ting in systems with several order parameters. Section II
devoted to some general remarks on order-disorder tra
tions in bcc alloys, and to the presentation of the model
the simulation method. Our results are discussed in Sec
We summarize and conclude in Sec. V.

II. EFFECTIVE INTERFACE THEORY
OF SURFACE-INDUCED DISORDER

A. General considerations

We have already sketched one of the popular mean fi
approaches to wetting problems in the introduction. Since
bulk of the system is not critical, one can expect fluctuatio
to be negligible for the most part. Only the fluctuations of t
local positionl (rW) of the interface between the growing su
face layer and the bulk phase remain important.36 As the
interface moves into the bulk, capillary wave excursions
larger and larger wavelengths become possible. These in
duce long-range correlations parallel to the surface, cha
terized by a correlation lengthj i which diverges at wetting

In light of these considerations, fluctuation analyses of
replace the Landau free energy functional~1! by an effective
interface Hamiltonian30,36,37

H$ l %/kBT5E drWH 1

8pv
~¹ l !21V0~ l !J . ~4!

Here all lengths are given in units of the bulk correlati
lengthjb in the phase adsorbed at the surface, the param
v is the dimensionless inverse of the interfacial tensions

v5kBT/4psjb
2, ~5!

and the potentialV0( l ) describes effective interactions b
tween the interface and the surface. The wetting transitio
thus identified with a depinning transition of the interfa
from the surface.
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In the linearized theory, the partition function of th
Hamiltonian~4! is approximated by

Z'E D$ l %e2*drW(¹ l )2/8pvF11E drWV0~ l !G . ~6!

It is convenient to switch from the real spacerW to the Fourier
spaceqW . The integration over short wavelength fluctuatio
with wave vectoruqW u.l21, where l is arbitrary, is then
straightforward: One separatesl into a short wavelength par
l̂ (qW )5 l (qW )u(q2l21) and a long wavelength partl̄ 5 l 2 l̂ ,
and exploits the relationV0( l̄ 1x)5 exp@xd/dl#V0( l̄ ), to ob-
tain the unrescaled coarse grained potential38

V̄l~ l̄ !5E D$ l̂ %expF2
1

4p2E dqW H uqW l̂ u2

8pv
1 l̂

d

dlJ GV0~ l̄ !

5 expFj',l
2

2 S d

dl D
2GVl~ l̄ !, ~7!

with

j',l
2 5

v

pEq.1/l

1/L

dqW
1

q2
52v ln~l/L!, ~8!

where L is a microscopic cutoff length. After rescalingrW

→rW/l, V̄l( l )→Vl( l )5ld21V̄l( l̄ lz), and noting that the
roughness exponentz is zero for capillary waves ind53
dimensions, this can be rewritten as

Vl~ l !5
l2

A2pj',l
2 E dhe2h2/2j',l

2
V0~ l 1h!. ~9!

Renormalizing the potentialV0( l ) thus amounts to convolut
ing it with a Gaussian of widthj',l

2 ,30 which is the width of
a free interface on the length scalel parallel to the interface.
In the case of a bound interface, a natural choice forl is j i ,
the parallel correlation length of the interface. Since the
maining fluctuations after the renormalization should
small on this length scale, the procedure can be made
consistent by equatingj i with its mean field value

4pv
d2

dl2
Vl~ l !U

l 5^ l &

5~j i /l!2251 at l5j i , ~10!

where the average position of the interface^ l & is the position
of the minimum ofVl( l ). Note that the renormalized fre
energy density per areaj i

2 is of order unity. The singular
part Fs of the total interface free energy thus scales likeFs

}j i
22 . From the renormalized Hamiltonian~4!,

Hj i
$ l %/kBT5

1

4p2E0

j i /L

dqW
1

8pv
~q211!u l ~qW !u2, ~11!

we can now calculate the distribution probability to find t
interface at a positionh,

P~h!5^d@h2 l ~0!#&Hj i
25

1

A2pj'

e2h2/2j'
2
, ~12!
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and the joint probability distribution that the interface
found ath and h8 at two points separated byrW from each
other

P(2)~h,h8,rW !5^d@h2 l ~0!#d@h82 l ~rW !#&Hj i

5
1

2pAg~0!22g~r !2

3expF2
~h2h8!2

4„g~0!2g~r !…
2

~h1h8!2

4„g~0!1g~r !…G ,
~13!

where

g~r !5^ l ~0!l ~rW !&Hj i
5

v

pE0

j i /L dqW

q211
eiqW rW/j i ~14!

is the height-height correlation function of the interface a

j'
2 5g~0!'2v ln~j i /L!. ~15!

An analogous expression has been derived by Bedeaux
Weeks for a free liquid-gas interface in a gravitation
field.39 In three dimensions, the height-height correlati
function for r @L andj i@L is a Bessel functionK,

g~r !52vK0~r /j i!. ~16!

We assume that the average order parameter pr
^m(z)& is given by the average over mean field order para
eter profilesmbare(z2 l ), centered around the local interfac
positionsl, which are distributed according to the distrib
tion functionP( l )

^m~z!&5E dlP~ l !mbare~z2 l !. ~17!

The distribution functionsP(h) and P(2)(h,h8,r ) can then
be used to calculate various characteristics of the profile

For example, the effective width of the order parame
profile, W51/(2]^m&/]z) ^ l & , is broadened byP(h) and di-
verges according to40,41

W2'W0
21

p

2
j'

2, ~18!

whereW0 denotes the ‘‘intrinsic width’’ of the mean field
profile, W051/(2dmbare/dz)uz50.

Another quantity of interest is the layer-layer susceptib
ity, which describes the order parameter fluctuations a
given distance from the surface,

xzz5E drW$^m~0!m~rW !&z2^m&z
2%. ~19!

Since it has the dimension of a square length, one ded
immediately thatxzz scales likej i

2 in the interfacial region.
For a more detailed analysis, we rewritexzz as
d

nd
l

le
-

r

-
a

es

xzz5E drWE dhdh8mbare~z2h!mbare~z2h8!

3E drW$P(2)~h,h8,r !2P~h!P~h8!%, ~20!

expand the joint probabilityP(2)(h,h8,r ) in powers of
D(r )5g(r )/j'

2 5K0(r /j i)/ ln(ji /L),

P(2)~h,h8,r !5P~h!P~h8!H 11
hh8

j'
2

D~r !

1
1

2 F12
h21h82

j'
2

1
h2h82

j'
4 GD~r !21•••J ,

~21!

and recall*drrK 0(r )51 and *drrK 0(r )251/2. If the in-
trinsic width of the profilembare(z) is small compared toj' ,
the intrinsic profile can be approximated by a simple s
profile in the interfacial region,mbare(z)5mbu(z), wheremb
is the bulk order parameter. One then obtains

xzz5mb
2j i

2e2(z2^ l &)2/j'
2 F 2v

j'
2

1S 2v

j'
2D 2

~z2^ l &!2

4j'
4

1•••G .

~22!

So far, these results are valid for infinite systems. T
restriction to finite lateral dimensionL affects the interface
distribution P(h) ~12! in two ways: It introduces a lowe
cutoff j i /L in the integrals overqW @e.g., Eq.~14!#, and the
mean position of the interface~the zeroth mode! is no longer
fixed at the minimum of the renormalized potential, but d
tributed according to exp@2L2Vji

(h)#. The width of the dis-

tribution functionP(h) is now given by

j'
2 5

v

pEj i /L

j i /L dqW

q211
1L2

d2Vj i
~h!

dh2 U
h5^ l &

52v lnS j i

L D2v lnF11S j i

L D 2G14pvS j i

L D 2

. ~23!

B. Bare and renormalized effective interface potential

We shall now apply these general considerations to a s
cific potentialV0( l ), designed to describe systems with sh
range interactions and several order parameters and no
dering densities. Effective interface potentials for syste
with two order parameters have been derived by Hauge35 and
Kroll and Gompper.17 Their approach can readily be gene
alized to the case of arbitrary many order parameters
nonordering densities. We choose the coordinate system
the order parameter and density space$m‰ such thatm50 in
the phase which wets the surface, and that the coordi
axesmi point in the directions of the principal curvatures
the bulk free energy functionf b(m). Close to this phase,f b
can then be approximated by the quadratic form

f b~m!5
g

2 (
i

1

l i
2

mi
21m, ~24!
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wherem is the field which drives the system from coexis
ence, and thel i have the dimension of a length. We numb
the coordinate axesi ( i>0) such that thel i are arranged in
descending order. The largest of these dominates the c
lations at large distances and is thus the correlation len
jb , i.e.,l05jb[1 in our units. The surface contribution ha
the form

f s~m!5(
i

hi ,1mi1
1

2 (
i j

ci j mimj . ~25!

Following Hauge and Kroll/Gompper, we now assume t
the actual profile from the adsorbed phase to the bulk ph
is close to the profile of a free interface between these
phases. Close to the surface region, we thus approximat
former by the test function

mi~z!5v i exp~z2 l !/l i ~26!

~at z! l ), wherel denotes the position of the effective inte
face. Inserting this into Eq.~1! with Eqs. ~24! and ~25!, we
obtain the effective interface potential

V0~ l !5(
i

aie
2 l /l i1(

i j
bi j e

2 l (1/l i11/l j )1m l ~27!

for l @0, with ai5hi ,1v i andbi j 5
1
2 (ci j 2gd i j /l i)v iv j . This

expression is of course only valid for largel. Notably, it fails
at l 50, since the true potentialV0( l ) must diverge there. We
shall suppose that the leading termb00[b in the second sum
is positive and dominates over the more rapidly decay
terms, and disregard the latter in the following.

At v50 ~or in mean field approximation!, the interface
is flat, and its position is given by the minimum ofV0( l ).
At nonzero v, the potential has to be renormalized
described in the previous section. Now the renormalizat
is straightforward if the fluctuations are sufficiently sm
that the interface position̂ l & at wetting is well in the
asymptotic tail of the potential~weak fluctuation limit!.
According to a criterion introduced by Bre´zin, Halperin,

and Leibler,30 this is true as long as*0
`dle2( l 2^ l &)2/2j'

2
V0( l )

'*2`
` dle2( l 2^ l &)2/2j'

2
V0( l ), i.e.,

2j'
2 2^ l &,0 and j'

2 /l i2^ l &,0 ~28!

for all l i . For l i.1/2, the first inequality enforces the se
ond one. In a system with one order parameter, it leads to
well-known inequalityv,1/2.30,31 As we shall see shortly
this condition is also sufficient to ensure the validity of t
weak fluctuation limit in a system with several order para
eters. Sincev in our simulations turns out to be muc
smaller than 1/2, we shall not discuss the other regime
the present paper.

In the weak fluctuation limit, the renormalized potent
takes the form

Vj i
~ l !

j i
2

5 (
i :l i,1/2

aie
2 l /l iS j i

L D v/l i
2

1bS j i

L D 4v

e22l1m l .

~29!

The cutoff parameterL is of the order of the correlation
length,L'jb51, and will be dropped hereafter.
r

re-
th

t
se
o

the

g

n

he

-

in

l

C. Free energy scaling

Now our task is to determinej i self-consistently by use o
Eq. ~10!, which will yield the scaling behavior of the singu
lar part of the surface free energy,Fs}j i

22 . Before general-
izing to several order parameters, we shall briefly discuss
situation in a system with only one length scalel0. The
formal alikeness of the more general theory with this oft
discussed special case can thus be highlighted. Moreo
many of the results derived for one order parameter ca
over directly to the case of several order parameters.

In a system with one order parameter, the singular f
energy has the scaling form

Fs}j i
2258pvm f ~F0!, ~30!

where the scaling functionf (F0) depends on the dimension
less parameter

F05C0m (v21)/2a0 with C05A~8pv!v/2b. ~31!

Depending on the value ofF0, one can distinguish betwee
different regimes:

F0@1: f ~F0!51/2g1~2vF0
22!

with g1~x!'11x2~21v!x21•••

~complete wetting!, ~32!

uF0u!1: f ~F0!'12
1

2
F01

21v

8
F0

21•••

~critical wetting, field like!, ~33!

F0!21: f ~F0!5~F0
2/2!1/(12v)g2„~F0

2/2!21/(12v)
…

with g2~x!'11
3x

2~12v!
2

~217v!x2

8~12v!2

1•••~partial wetting!. ~34!

The point F050 is the critical wetting point. If one ap
proaches this point from the partial wetting sidea0→02 on
the coexistence linem50, the parallel correlation lengthj i
diverges with the well-known nonuniversal exponent

j i5~2pv/b!21/2(12v)~2a0!21/(12v), ~35!

and the distance between the average position of the in
face and the surface diverges asymptotically like

^ l &→2~112v!/~11v!ln~2a0!. ~36!

The relevant regime for most cases of surface indu
disorder is however the critical wetting regime, where t
critical wetting point is approached under a finite angle to
coexistence line in (a0 ,m) space. Here the parallel correla
tion lengthj i scales like

j i5
1

A8pv
m2n i with n i51/2 ~37!

as m approaches zero, the width of the interface diverg
with
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W2→ p

2
j'

2 52
p

2
v ln~m!, ~38!

and its average position with

^ l &'2~v11/2!ln~m!. ~39!

These results can be used to derive the layer-bulk sus
tibility of the order parameter in the interfacial region

x0,̂ l &5
]^m0&

]m U
^ l &

}2
]^m0&

]z U
^ l &

]^ l &
]m

}
1

mAln~m!
. ~40!

In the step approximationm0,bare(z)5m0,bu(z), the layer-
bulk susceptibility in the interfacial region can be calculat
in more detail:

x0,z5
m0,b

A2pj'm
e2(z2^ l &)2/2j'

2S v1
1

2
2

z2^ l &
2 lnm D . ~41!

It has a slightly asymmetric peak of widthj' at z5^ l &, the
height of which scales like 1/m.

The layer-layer susceptibility could already be derived
the previous section. It also has a peak at the interface, w
is however a factor ofA2 narrower. Its height scales like

x^ l &^ l &}j i
2/j'

2}21/„m ln~m!…. ~42!

Next we determine the critical behavior of the order p
rameter at the surface,m0,1,

m0,1}2
]Fs

]h0,1
}2

]j i
22

]a0
}mb0,1, b0,15

11v

2
. ~43!

It will prove useful to rederive the exponentb0,1 in an alter-
native way: The surface order parameter in mean field the
is given bymbare(0)5mb exp(2l/l0). Averaging the profile
according to Eq.~17! yields

m0,15mb^e
2 l /l0&P( l )5mbe2^ l &/l01j'

2 /2l0
2
. ~44!

After insertingl051 and using Eqs.~39! and ~38!, one re-
covers the power law of Eq.~43! with the same exponen
b0,1. The approach has the advantage that it allows fo
straightforward calculation of finite size effects on surfa
critical behavior: We simply replace the expression~38! for
j' in the infinite system by Eq.~23! to obtain

m0,1}mbmb0,1M̂0~8pvmL1/n i!, ~45!

with the scaling function

M̂0~x!5S x

x11D v/2

e2pv/x. ~46!

We are now ready to generalize these results to the
of several order parameters and nonordering densities.
mally, the theory turns out to remain very similar. The se
consistent determination ofj i leads to a generalized versio
of the scaling form for the singular part of the surface fr
energy~30!,

Fs}j i
2258pvm f ~$F i%!, ~47!
p-

ch

-

ry

a

se
or-
-

where the scaling variables are

F i5Cim
(122l i )(12v/l i )/2l iai ~48!

with Ci5~8pv!v/2l i
2
•(2l i21)~2b!21/2l i.

As in the one-order parameter case, we have to dis
guish between different regimes depending on the value
the scaling variables.

D. Symmetry preserving and symmetry breaking surfaces

Let us first assume that the effect of nonordering densi
can be disregarded~e.g., because the associated length sca
are small,l i,1/2), and consider the case of a symme
preserving surface. No ordering surface fields are th
present, i.e.,ai}hi50 for all contributionsi. The system is
thus in a ‘‘multicritical wetting regime,’’ whereuF i u!1 for
all i, and the scaling function can be expanded as

f ~$F i%!512(
i

F i

2l i21

2l i
2

1•••. ~49!

The effective interface position̂ l &, and the correlation
length j i are given by Eqs.~39! and ~37! as in the case of
normal critical wetting. Hence all the results related to int
facial properties, such as the interfacial width, the interfac
layer susceptibilities, etc., remain unchanged. In particu
the criterion for the validity of the weak fluctuation limit i
still v,1/2 @from Eqs. ~28!, ~38! and ~39!#. The surface
order parameters obey the power law

mi ,1}2
]j i

22

]ai
}mb i ,1, b i ,15

1

2l i
1

v

2l i
2 ~2l i21!.

~50!

Following the lines of Eq.~44!, one also obtains the finite
size scaling function

M̂ i~x!5S x

x11D v/2l i
2

e2pv/xl i
2
. ~51!

A whole sequence of surface exponents is thus predic
one for each order parameter. In practice, however,
hardly ever measures only one ‘‘pure’’ order parametermi .
Instead, one expects to observe some combination of co
butions with different exponentsb i ,1 , which will be domi-
nated by the leading exponentb0,15(v11)/2 in the
asymptotic limitm→0.

The situation changes when at least one of theai becomes
nonzero at coexistence. This is the case, e.g., at a symm
breaking surface, where one or several surface fields bec
nonzero, or even at a symmetry preserving surface if
length scale associated with a nonordering density exce
half the bulk correlation length,l i.1/2.

Let aJe
2 l /lJ be the leading nonvanishing term in the p

tential ~27!. As one approaches coexistence,m→0, the scal-
ing variableFJ increases and one eventually enters a reg
uFJu@1. For negativeaJ , (FJ!21), the wetting becomes
partial, i.e., no surface induced disordering takes place.
positive aJ , (FJ@1), different scenarios are possible, d
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pending on the sign and the amplitude of the higher or
terms ai , (i .J) in Eq. ~29!. If they are positive or suffi-
ciently small, such that

uaiaJ
2lJ /l iu!1, ~52!

the disordered phase wets the surface. The effective inter
position ^ l & diverges asymptotically like

^ l &'2lJ~11v/2lJ
2!ln~m!, ~53!

the parallel correlation length scales like

j i5AlJ/4pvm, ~54!

and the scaling function in Eq.~47! takes the form

f ~$F i%!5
1

2lJ
X„11(

i
F iFJ

2lJ /l iKJ~l i !

1
1

2
FJ

22lJKJS 1

2D C, ~55!

with

KJ~l i !5
lJ

lJ /l i

l i
S lJ

l i
21D ~2lJ!

v/2l i
2
•(12l i /lJ).

According to Eq..~28!, the weak fluctuation regime here
bounded byv,2lJ

2 , thus encompassing the regimev
,1/2.

The criterion~52! is motivated as follows: If one of the
higher orderai is negative and large, the interface potent
Vj i

( l ) may exhibit a second minimum closer to the surfa
which competes with the minimum at largel and may pre-
vent the formation of an asymptotically diverging wettin
layer. The inspection of the free energy scaling function~55!
reveals that the transition to such a partial wetting regim
appropriately described in terms of the combined sca
variable

F̃ i ,J5F iFJ
2lJ /l i}aiaJ

2lJ /l im (lJ /l i21)„12v/(2l ilJ)….

This quantity has to be large at the pointm0 where the one
minimum of Vj i

( l ) splits up in two. The condition~52! en-

sures thatF̃ i ,J is small for allm.
The wetting is critical with respect to all order paramete

mi with length scalesl i larger thanlJ . As coexistence is
approached, they vanish at the surface according to
power law

mi ,1}2
]j i

22

]ai
}mb i ,1, b i ,15

lJ

l i
1

v

2l i
2 S l i

lJ
21D . ~56!

The finite size scaling functionM̂ i(x) is again given by Eq.
~51!, with the scaling variablex54pvmL2/lJ . Note that
the exponentsb i ,1 are nonuniversal even in the mean fie
limit ( v50). This remarkable effect has first been disco
ered by Hauge35 and later studied by Kroll/Gompper in a
fcc Ising antiferromagnet using a mean fie
approximation,17 Monte Carlo simulations, and a linea
renormalization group study similar to the one presen
r

ce

l
,

is
g

s

he

-

d

here.18 However, ^ l & in this work is taken from Eq.~36!
rather than determined self consistently, hence the resu
critical exponents differ somewhat from those calcula
here. As in the case of the symmetry preserving surfac
whole set of exponents is predicted by Eq.~56!. In the
asymptotic limitm→0, however, the surface behavior is e
pected to be governed by the leading exponent

b0,15
jb

lJ
1

v

2 S jb

lJ
21D . ~57!

We have reinserted the bulk correlation lengthjb[1 here.
Finally, we discuss the critical behavior of the surfa

susceptibilities. The corresponding critical exponents can
shown to obey simple scaling laws. In the case of
surface-bulk susceptibility, the relation follows trivially:

x i ,1}
]mi ,1

]m
}m2g i ,1, g i ,1512b i ,1 . ~58!

In the case of the surface-surface susceptibility, it depend
the regime under consideration. In the ‘‘critical wetting r
gimes’’ discussed here, the free energy scaling functionf can
be expressed as a Taylor series in powers of the sca

variablesF i or F̃ i ,J , respectively, and one obtains

x i ,11}
]mi ,1

]hi ,1
}m

]2f

]ai
2
}m2g i ,11, g i ,115122b i ,1 . ~59!

The dominating exponents in the asymptotic limit areg0,1
andg0,11.

III. MODELING ORDER-DISORDER TRANSITION
IN BCC ALLOYS

Figure 3 shows some typical structures of binary~AB!
bcc alloys@e.g., FeAl~Ref. 42!#. It is useful to divide the bcc
lattice into four fcc sublatticesa–d as indicated in the figure
The phase transitions are then conveniently described
terms of a set of order parameters43

c15~ca1cb2cc2cd!,

c25~ca2cb1cc2cd!, ~60!

c35~ca2cb2cc1cd!,

whereca denotes the composition on the sublatticea, i.e.,
the average concentration of one componentA there. In the
disordered phase, all sublattice compositions are equal
these order parameters vanish. TheB2 phase is characterize

FIG. 3. bcc lattice with~a! disordered A2 structure,~b! B2 struc-
ture, and~c! DO3 structure. Also shown is the assignment of su
latticesa,b,c,d.
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by nonzeroc1, and the DO3 phase in addition by nonzer
c256c3. By symmetry, physical quantities have to be i
variant under sublattice exchanges (a↔b), (c↔d), and
(a,b)↔(c,d). The leading terms in a Landau expansion
the free energyF thus read

F5F01A1c1
21A2~c2

21c3
2!1Bc1c2c31C1c1

4

1C2~c2
41c3

4!1C3c2
2c3

21C4c1
2~c2

21c3
2!. ~61!

We point out in particular the cubic termBc1c2c3. It can be
read in two ways. On the one hand, it describes how
B2-order influences the DO3 order: The order parameterc1
breaks the symmetry with respect to individual sign rever
of c2 or c3 and orients (c2 ,c3) such that c2
52sgn(Bc1)c3. Conversely, one can interpret the produ
c2c3 as an effective ordering field acting onc1. We shall
come back to this point later.

At the presence of surfaces, the situation is even m
complicated. First, we can always expect that one compo
enriches at the surface, since there are no symmetry a
ments to prevent that. Even if no explicit surface field co
pling to the total concentrationc is applied, the componen
which is in excess with respect to the ideal stoichiometry
the bulk phase@~3:1! in the DO3 phase# will segregate to the
surface. Second, we have already mentioned that the La
expansion of the surface free energyf s depends on the ori
entation of the surface.11,14 The ~110! surface has the sam
symmetry with respect to sublattice exchanges as the b
hence the Landau expansion of the surface free energy
have the form~61!. In case the order is sufficiently sup
pressed at the surface, one can thus hope to find clas
surface induced disordering here. In the case of the~100!
surface, the symmetry with respect to the exchan
(a,b)↔(c,d) is broken. The surface enrichment of on
component then induces an effective ordering surface fi
which couples to the order parameterc1.12 Other ordering
fields coupling toc2 andc3 are still forbidden by symmetry
The full spectrum of possible ordering surface fields is
lowed in the case of the~111! surface.

In order to model these phase transitions, we conside
Ising model of spinsSi561 on the bcc lattice with antifer
romagnetic interactions between up to next nearest ne
bors,

H5V(̂
i j &

SiSj1aV (
^^ i j &&

SiSj2H(
i

Si , ~62!

where the sum̂ i j & runs over nearest neighbor and^^ i j &&
over next nearest neighbor pairs. SpinsS511 represent A
atoms andS521 B atoms, hence the concentrationc of A is
related to the average spin^S& via

c5~^S&11!/2, ~63!

and the fieldH represents a chemical potential. The para
eter a50.457 is chosen such that the highest tempera
which can still support aB2 phase is about twice as high a
the highest temperature of the DO3 phase, like in the experi
mental phase diagram of FeAl. The phase diagram of
model is shown in Fig. 4.
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The surface simulations were performed in aL3L3D
geometry with periodic boundary conditions in theL direc-
tion and free boundary conditions in theD direction, varying
D from 100 to 200 andL from 20 to 100. In order to handle
systems of that size efficiently, we have developed44 a mul-
tispin code,45 which allowed to store the configurations bi
wise instead of bytewise.46 Our Monte Carlo runs had tota
lengths of up to 23106 Monte Carlo sweeps.

IV. SIMULATION RESULTS

We have studied~110! and ~100! oriented surfaces atT
51V/kB close to the first order bulk transition between t
ordered DO3 phase and the disorderedA2 phase. The exac
bulk transition point was determined previously from bu
simulations by thermodynamic integration,47 H0 /V
510.00771(1).44 In the presence of such a high bulk fiel
the very top layer of a free~110! or ~100! surface is com-
pletely filled with A particles, i.e., Ising spinsS51. Conse-
quently, the order parametersca and the layer susceptibili
ties vanish there. In the following, we shall genera
disregard this top layer and analyze the profiles starting fr
the second layer.

A. „110… surfaces: DO3 order

We begin with a detailed discussion of surface induc
disordering at~110! surfaces, i.e., surfaces with the full sym
metry of the bulk. Figure 5 shows profiles of the order p
rameter of DO3 ordering per site

c235A~c2
21c3

2!/2. ~64!

One clearly sees how a disordered layer forms and grow
thickness as the bulk transition is approached. In orde
extract an interface position̂l & and an effective interfacia
width W, we have fitted the profiles to a shifted tanh functi

c23~n!5c23
bulk

„11 exp@22~z2^ l &!/W#…21. ~65!

The results are shown in Figs. 6 and 7. Sufficiently close
the bulk transition, at (H02H)/V,0.005, the data are con
sistent with the logarithmic divergence predicted by E
~39! and~18!. Intuitively, one would expect that an effectiv
interface theory is only applicable ifl .W, i.e., the width of
the interface is smaller than the distance of the interface fr
the surface. Indeed, Fig. 7 shows that the logarithmic beh

FIG. 4. Phase diagram of our model in theT-H plane. Solid
lines mark first-order phase transitions; dashed lines second-o
phase transitions. Arrows indicate the positions of a critical e
point ~cep! and a tricritical point~tcp!.
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ior sets in approximately at the value ofH wherel begins to
exceedW. The prefactors of the logarithms in Figs. 6 and
are predicted to be (r /21v/r )A2jb /a0 in the case of̂ l &
~Fig. 6!, andpvjb

2/a0
2 in the case ofW2 ~Fig. 7!, wherejb is

the bulk correlation length,a0 the lattice constant, a facto
A2 or 2 accounts for the distance of~110! layers from each
other in units ofa0, and the parameterr 5max(1,2lJ /jb)
depends on the length scalelJ of composition fluctuations
~see the discussion in Sec. II D!. We shall see below that th
surface data suggestb15r /21v(1/r 21/2)50.618. Insert-
ing this result, one derives 4.5@7#,jb /a0,5.4@8# from Fig.
6, andjb /a0.7.8@8# from Fig. 7. These values do not agre
with each other within the statistical error; the interfac
width seems to decrease too fast as one moves away
coexistence. Yet the difference seems still acceptable, e
cially considering how small the region of apparent logari
mic behavior is. It has been observed in other systems,48 that
the vicinity of surfaces also affects the intrinsic widthW0 of
an interface. Moreover, many nondiverging terms have b
neglected in Eqs.~39! and ~18! which lead to systematic
errors if one is not close enough toH0. We note thatjb

FIG. 5. Profiles ofc23 near a~110! surface at temperatureT
51kBT/V for different fieldsH in units ofV as indicated. The bulk
transition is at H0 /V510.00771(1). Zeroth ~top! layer is not
shown@c23(0)[0; see text#.

FIG. 6. Position of the interface as estimated from the fit~65! in
units of ~110! layers vs (H2H0)/V.
l
m
e-

-

n

seems rather large for a system which is not critical in
bulk. On the other hand, Fig. 5 shows that the bulk ord
parameterc23 decreases considerably as one approaches
phase transition point. This observations suggests that a c
cal point is at least nearby, although preempted by the
order transition from the DO3 phase to the disordered phas

Next we consider the profiles of the layer susceptibilit
of the order parameterc23. They can be determined from th
simulation data by use of the fluctuation relations28

xz5
N total

kBT
„^c~z!c total&2^c~z!&^c total&…, ~66!

xzz5
N layer

kBT
„^c~z!2&2^c~z!&2

…, ~67!

where c is the order parameter under consideration,Nlayer
denotes the number of sites in a layer, andNtotal the total
number of sites. Figure 8 shows that both the layer-b
susceptibilityxz and the layer-layer susceptibilityxzz exhibit
the expected peak in the vicinity of the interface@Eqs. ~41!
and ~22!#. The centers of the peaks can be fitted nicely
Gaussians of widthj' andj' /A2, respectively, wherej' is
calculated from the widthW of the order parameter profile
usingj'5A2/pW. The wings of the peaks are not Gaussi
any more, but asymmetric—the layer susceptibilities are
hanced at the bulk side of the interface, and suppressed a
surface side. Such an asymmetry has been predicted qu
tively for xz in Eq. ~41!, but not forxzz @cf. Eq. ~22!#. Even
in the case ofxz , the observed asymmetry is so strong tha
cannot be brought into quantitative agreement with
theory. We recall that the linear theory approximates the c
illary waves of the interface by those of a free interface w
some suitable long-wavelength cutoff, i.e., they are taken
be distributed symmetrically about the mean interface po
tion. The failure of the theory to describe the details of t
profiles of xz and xzz presumably reflects the fact that th
capillary waves are in fact asymmetric. Nevertheless,
main features of the profiles are captured by the theory.

The centers of the peaks are slightly more distant from
surface than̂ l & in Fig. 6, but the difference is not significan
@up to three layers at (H02H)/V50.0007]. According to

FIG. 7. Squared interfacial width as estimated from the fit~65!
in units of ~110! layers vs (H2H0)/V. Long dashed line shows
squared interface position̂l &2 for comparison.
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the theoretical prediction~40! and ~42!, the heights of the
peaks should diverge with 1/(H02H) with different loga-
rithmic corrections. Our data are shown in Figs. 9 and
The maxima of the layer-bulk susceptibility are best fitted
the simple 1/(H2H0) behavior, which the theory predicts a

FIG. 8. Profiles of the layer-bulk susceptibilityxz ~a! and the
layer-layer susceptibilityxzz ~b! per site of the order parameterc23

in units of kBT, for different fieldsH in units of V as indicated.
Solid line shows the fit of a Gaussian of width~a! j'5(2/p)1/2W
and ~b! j'/21/2 to the profile corresponding toH510.004. Zeroth
~top! layer is not shown@x(0)[0; see text#.

FIG. 9. Maximum of the layer-bulk susceptibilityxz per site of
the order parameterc23 in units ofkBT vs (H02H)/V for different
system sizes as indicated. Solid line shows a fit to a (H02H)21

behavior, and dashed line the same with logarithmic correction~see
text!.
.
y

long as the interfacial width is dominated by the intrins
width W0. In the regime (H02H)/V,0.005, where the cap
illary wave broadening of the interface becomes significa
the data are also consistent with the logarithmically correc
versionxz

max}1/(H02H)Au ln(H02H)u ~see Fig. 9!.
The analysis of the layer-layer susceptibility is mo

subtle. From a double logarithmic plot of the raw data, one
tempted to conclude that the predicted 1/(H02H) behavior
is not valid; the data rather suggest a divergence with a c
cal exponent 0.63~Fig. 10, inset!. However, since we are no
aware of any theoretical explanation which could motiva
such an exponent, we believe that the apparent power
behavior over roughly two decades of (H02H) is most
likely accidental. Looking at the values ofxzz close to the
center of the slab@Fig. 8~b!#, one recognizes that the contr
bution of bulk fluctuations toxzz is significant even close to
H0. The situation is complicated by the fact that the bu
fluctuations increase considerably in the vicinity ofH0, al-
though their amplitude does not diverge. Within the cru
approximation that the capillary waves of the interface a
the bulk fluctuations are uncorrelated, one can subtract
latter as ‘‘background.’’ The thereby corrected data ag
reasonably well with the theory, especially when taking in
account the logarithmic correctionxzz

max}1/(H02H)u ln(H0

2H)u ~Fig. 10!.
We proceed to study the properties of the system dire

at the surface. Figure 11 shows the order parameterc23,1 in
the first layer@recalling that the top~zeroth! layer is dis-
carded# as a function of (H02H) for various system sizes
One notices finite size effects if the dimensionL parallel to
the interface is small. As long asL is large enough, the dat
exhibit a power law behavior with the exponentb1
50.618@4#. We emphasize thatb1 clearly differs from 1/2
here. It is close to the valueb150.64 found by Schweika
et al. in their simulations of surface induced disorder in f
alloys.28 As discussed in Sec. II D, several factors may le
to such a nonuniversal exponent—capillary wave fluct

FIG. 10. Maxima of the layer-layer susceptibilityxzz per site of
the order parameterc23 in units ofkBT vs (H02H)/V, for different
system sizes as indicated. Inset shows bare data, with a fit
power law behavior with unknown exponent~dotted line!. In the
main plot, the bulk contribution toxzz has been subtracted. Soli
line indicates the slope of (H02H)21, and dashed line the whole
theoretical prediction including the logarithmic correction.
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tions, and/or the presence of a length scalelJ.jb/2, which-
competes with the correlation lengthjb and would have to
beassociated with the nonordering composition fluctuati
in the case of the symmetry preserving~110! surface. Using
Eq. ~57!, we can derive upper bounds for the capillary p
rameter,v,0.236, and forlJ , lJ /jb,0.618.

After applying finite size scaling with the exponentsb1
and n i51/2 @cf. Eq. ~45!#, the data collapse onto a sing
master curve. The form of the latter can be calculated fr
Eq. ~45!,

c23,1L
b1 /n i}

xr /21v/r

~x11!v/2
e2pv/x, ~68!

with x}(H02H)L1/n i and r 5max(1,2lJ /jb), where the
two unknown proportionality constants are fit parameters
v50.236 was used~the result is only very barely sensitive t
the choice ofv). Figure 12 shows that the data agree nic
with the theoretical prediction.

FIG. 11. Order parameterc23,1 at the surface~first layer! vs
(H02H)/V for different system sizesL3L3D as indicated. Solid
line indicates power law with the exponentb150.618.

FIG. 12. Finite-size scaled plot of the surface order param
c23,1 vs (H02H)/V for system sizesL3L3D as indicated. Data
were scaled with exponentsn i51/2 andb150.618. Dashed line
shows the finite size scaling function predicted by Eq.~51!.
s

-

d

y

Figure 13 shows the layer-bulk susceptibility at the s
face for the order parameterc23. According to Eq.~58!, it
should diverge with the exponentg1512b150.382. In-
deed, the fit to our data in the region (H02H)/V,0.02
yields g150.37@5#. In the case of the layer-layer suscep
bility, the theory~59! predictsg115122b1520.236, i.e.,
x11 does not diverge at the phase transition. In fact, it fi
increases asH0 is approached, but then decreases for (H0
2H)/V,0.02 ~not shown!. The layer-layer susceptibility a
the surface here behaves in a similar way as observed
Schweikaet al. in their studies of surface induced disorder
the ~111! surface of an fcc-based alloy.28

B. „110… surfaces: B2 order

From the results discussed so far, we conclude that
behavior of the order parameterc23 can be understood nicel
within the effective interface theory of critical wetting. How
ever, we shall see that this holds only in part for the seco
order parameter,c1.

Figure 14 shows profiles ofc1 for different fieldsH. They
resemble those ofc23, in particular the inflection point of
the profiles is located approximately at the same dista
from the surface. The upper part of Fig. 14 displays profi
of the total concentrationc of A particles@Eq. ~63!#. They
exhibit some characteristic,H-independent oscillations in th
first four layers, and theA concentration is slightly enhance
in the disordered region. However, the overall variation
rather small.

The layer susceptibility profiles of the order parameterc1
are qualitatively similar to those ofc23 and not shown here
Figure 15 demonstrates that the maximum of the layer-b
susceptibility evolves with the fieldH as theoretically pre-
dicted, xz

max}1/(H02H)Au ln(H02H)u. In the case of the
layer-layer susceptibility, the agreement with the theore
cally expected behavior (xzz

max2xzz
bulk)}1/(H02H)u ln(H0

2H)u is not quite as convincing, but the data are still cons
tent with the theory for (H2H0)/V,0.01 ~Fig. 16!. Note
that the bare values ofxzz

max would again rather suggest
power law, xzz

max}(H02H)20.53 ~Fig. 16, inset!, which is
however most likely accidental.

er

FIG. 13. Surface layer-bulk susceptibility per site of the ord
parameterc23 vs (H02H)/V for different system sizes as indi
cated. Solid line marks a power law with the exponentg150.37.
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Hence the behavior of the order parameterc1 in the vi-
cinity of the interface is similar to that of the order parame
c23 and consistent with the theory of critical wetting. Th
agreement however does not persist when looking righ
the surface. Figures 17 and 18 show how the value ofc1 in
the first surface layer depends on (H02H)/V. A power law
behavior is found over one and a half decades of (H0
2H)/V, yet the exponentb1(c1)50.801 differs from that
of c23,1, b1(c23)50.618 ~Fig. 17!. Moreover, the data for

FIG. 14. Profiles of the total compositionc5(^S&11)/2 ~top!
and of the order parameterc1 ~bottom! for different fieldsH in
units of V as indicated. Top~zeroth! layer is not shown@c(0)
[1,c1(0)[(0)#. Thin dashed lines with squares show for com
parison the profiles ofc23 from Fig. 5.

FIG. 15. Maximum of the layer-bulk susceptibilityxz per site of
the order parameterc1 in units of kBT vs (H02H)/V for different
system sizes as indicated. Solid line shows a fit to a (H02H)21

behavior, and dashed line the same with the appropriate logarith
correction.
r

at

different system sizes do not collapse if one performs fin
size scaling with the exponentn i51/2 @Fig. 18~a!#. The col-
lapse is significantly better if one assumes that the para
correlation length diverges with the exponentn i50.760.05
@Fig. 18~b!#.

We have no explanation for these unexpected findin
The discussion in Sec. II has shown that several surface
ponentsb i ,1 may be present in a system with several ord
parameters. Even though we have argued that only the sm
est exponent should survive in the asymptotic limitm→0,
the other power law contributions may conceivably s
dominate the behavior of certain quantities over a wide ra
of m. However, the critical exponentn i should in all cases
remain invariablyn i51/2. Our results seem to indicate th
the behavior of the order parameterc1 at the surface is gov-
erned by a length scale, which differs from that given of t

ic

FIG. 16. Maxima of the layer-layer susceptibilityxzz per site of
the order parameterc1 minus bulk contribution in units ofkBT vs
(H02H)/V, for different system sizes as indicated. Solid line ind
cates the slope of (H02H)21, and dashed line the whole theoret
cal prediction including the logarithmic correction. Inset shows b
data, with a fit to a power law behavior~dotted line!.

FIG. 17. Order parameterc1 at the surface vs (H02H)/V for
different system sizesL3L3D as indicated. Solid line shows
power law with the exponentb150.801.
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interfacial fluctuations, but which nonetheless diverges asH0
is approached. Note thatn i'0.7 is close to the exponentn
50.63 with which the bulk correlation length diverges at
Ising type transition in three dimensions. Likewise, the e
ponentb150.801 found here resembles the surface criti
exponent of the ordinary transition,b1;0.8.49,50 One might
thus suspect thatc1 in the disordered surface layer becom
critical at H0. However, such a coincidence would see
rather surprising. Furthermore, we have noted earlier that
combinationc2c3 acts as an ordering field onc1, hencec1
cannot become critical as long asc23 is not strictly zero.

Figure 19 shows the layer-bulk susceptibility at the s
face as a function of (H02H)/V. It decreases asH0 is ap-
proached, hence the scaling relationb11g151 is obviously
not met for the order parameterc1,1.

C. „100… surfaces

Finally, we turn to the discussion of~100! surfaces. As
already mentioned earlier,~100! surfaces break the symmetr
with respect to the order parameterc1, an ordering surface
field coupling to this order parameter is allowed and th
usually present.11,14 This field is often closely related to su
face segregation.11,40 In our case, the excess componentA of
the DO3 segregates in the surface layer and induces a s
gered concentration field in the layers underneath, whic
equivalent toc1 ordering.

FIG. 18. Finite-size scaled plots of the order parameterc1 at the
surface vs (H02H)/V for system sizesL3L3D as indicated. Ex-
ponents areb150.801,n i50.5 in ~a!, andn i50.7 in ~b!.
-
l

e

-

s

g-
is

This is demonstrated in Fig. 20. The order parameters
the compositionc are defined based on the sublattice occ
pancies on two subsequent layers of distancea0/2, starting
from the first layer underneath the surface. The top laye
again disregarded, since it is entirely filled withA or S[1.
The profiles ofc1 clearly display the signature of an add
tional ordering tendency at the surface, which in fact rever
the sign ofc1 in the top layers. However, the effect is rath
weak and does not influence the system significantly dee
in the bulk. The profiles can be analyzed like those at
~110! surface, and mean interface positions and mean in

FIG. 19. Surface layer-bulk susceptibility per site of the ord
parameterc1 vs (H02H)/V for different system sizes as indicate

FIG. 20. Profiles of the total concentration ofA ~top, diamonds!,
of the order parametersc1 ~bottom, circles! and c23 ~bottom,
squares! at H/V510.003 ~filled symbols! and at H/V510.007
~open symbols!. Zeroth~top! layer is not shown.
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facial widths can be extracted to yield figures very similar
Figs. 6 and 7. The amplitudes of the logarithmic divergen
can again be used to estimate the bulk correlation lengthjb .
From the mean interface position, one calculates 4.9@7#
,jb /a0,5.8@8#, and from the interfacial width,jb /a0
.7.5@9#, in agreement with the values obtained for t
~110! surface. Likewise, the study of the layer susceptib
ties at the interface does not offer new surprises. T
maxima of the layer-bulk susceptibilities for bothc1 andc23
grow according to a power lawxz}(H02H)21. The layer-
layer susceptibility in the interfacial region seems to gr
with a different exponent@;0.6 like in the case of the~110!
surface#, yet after subtracting the ‘‘background’’ the data a
also consistent with the theoretically expected behav
Last, we study how the surface value of the order param
c23 evolves as the transitionH0 is approached. Figure 2
shows that it vanishes according to a power law with
exponentb150.61@2#, which is within the error the sam
exponent as in the case of the~110! surface. As far as the
surface behavior ofc23 is concerned, the~100! and the~110!
surface are thus basically equivalent. The weak ordering
dency ofc1 has an at most slightly perturbing effect on t
profiles ofc23.

V. SUMMARY AND OUTLOOK

We have presented an extensive Monte Carlo study
surface induced disorder in a simple spin lattice model
bcc-based binary alloys. Our work complements ear
Monte Carlo simulations of Schweikaet al.,28 who have
studied surface induced disorder in fcc-based alloys with
similar model. Like these authors, we observe critical w
ting behavior with nonuniversal exponents. We have d
cussed our results in terms of an effective interface mo
designed to describe a system with several order parame
In such a complex material, nonuniversal exponents may
sult both from fluctuation effects and from a competition
length scales.

FIG. 21. Order parameterc23 at the surface vs (H02H)/V for
different system sizesL3L3D as indicated. Solid line show
power law with the exponentb150.61.
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Due to the complicated order parameter structure in
system, however, our data could not fully be explain
within a theory which traces everything back to the prop
ties of a single interface between a disordered and an ord
phase. The theory provides a satisfactory picture for the
havior of the order parameter describing the DO3 ordering,
c23, and in general for the structure in the interfacial regio
However, it fails to predict the behavior of the order para
eter ofB2 ordering,c1, directly at the surface. Our data thu
indicate that the fluctuations ofc1 at the surface require
special treatment. Parry and co-workers34,51 have recently
suggested an approach to a theory of wetting based on
effective interface Hamiltonian with two ‘‘interfaces,’’ the
usual one separating the phase adsorbed at the surface
the bulk phase, and a second one which accounts in an
fective way for the fluctuations directly at the surface. O
problem seems to call for such an approach. Unfortunat
we are far from understanding even the constituting e
ments, the fluctuations ofc1 at the wall. We seem to observ
a coupling between critical wetting and some kind of surfa
critical behavior ofc1, the origin of which is unclear.

Hence already our simple, highly idealized model exhib
a complex and rather intriguing wetting behavior. In re
alloys, numerous additional complications are present wh
will lead to an even richer and more interesting phenomen
ogy. For example, long range interactions are known to
fluence wetting transitions significantly. The effect of va
der Waals forces on wetting has been investigated in det1

van der Waals forces are important in liquid-vapor syste
or binary fluids, but presumably irrelevant in alloys. Instea
elastic interactions caused by lattice distortions presuma
play an important role.

Furthermore, real surfaces are never ideally smooth,
have steps and islands. We have seen that the orientatio
the surface affects the surface ordering. In our study, we
not observe dramatic differences between the~110! surface
and the~100! surface. Nevertheless, we expect that the infl
ence of the surface orientation on the wetting behavior
be quite substantial, e.g., in situations with strong surf
segregation, or if surface orientations are involved wh
also break the symmetry with respect to the DO3 order@e.g.,
the ~111! surface#. Likewise, we can expect that steps a
islands will affect the ordering and the wetting properties
the alloy. It is well known in general that the wetting beha
ior on corrugated or rough surfaces differs from that
smooth surfaces.52–54In addition, even a few steps or island
on an otherwise smooth, but symmetry breaking surface
an alloy can have a dramatic effect on the ordering behav
since every step changes the sign of the ordering sur
field.
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