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We present Monte Carlo simulations of surface-induced disordering in a model of a binary alloy on a bcc
lattice which undergoes a first-order bulk transition from the ordered DO3 phase to the disordered A2 phase.
The data are analyzed in terms of an effective interface Hamiltonian for a system with several order parameters
in the framework of the linear renormalization approach due taiBréalperin, and Leibler. We show that the
model provides a good description of the system in the vicinity of the interface. In particular, we recover the
logarithmic divergence of the thickness of the disordered layer as the bulk transition is approached, we
calculate the critical behavior of the maxima of the layer susceptibilities, and demonstrate that it is in reason-
able agreement with the simulation data. Directly at (h&0 surface, the theory predicts that all order
parameters vanish continuously at the surface with a nonuniversal, but common critical exponklotv-
ever, we find different exponentg8, for the order parameteri(,iy3) of the DO3 phase and the order
parametei), of the B2 phase. Using the effective interface model, we derive the finite size scaling function for
the surface order parameter and show that the theory accounts well for the finite size behayigi/gf,(but
not for that ofi,. The situation is even more complicated in the neighborhood of1id@ surface, due to the
presence of an ordering field which couples/tp

[. INTRODUCTION 3, and with short range forces in Ref. 4
Wetting phenomena are also present in alloys which un-
First-order phase transitions in the bulk of systems cardlergo a discontinuous order-disorder transition in the BAlk.

drive a variety of interesting wetting phenomena at their surin many cases, surfaces are neutral with respect to the sym-
faces and interfaces. They have attracted much attention ovéietry of the ordered phase, but reduce the degree of ordering
many years,and are still very actively investigatéd®Promi-  due to the reduced number of interacting.neighbors. The sur-
nent examples are the wetting of a liquid on a solid substrataces can thus be wetted by a layer of disordered alloy, i.e.,
at liquid-vapor coexistence, or the wetting of one component Surface induced disorder’(SID) occurs.™ The situation is

of a binary fluid below the demixing temperature on thereminiscent of liquid-vapor wetting; however, the underlying

walls of a container. These systems are representatives ofSYMmetry in the system restricts the possible wetting sce-

generic situation, which has been studied in particular detajifarios significantly. _
Three phases coexist, substrate, liquid and vapor. The sub- We shall illustrate this for systems with purely short range

strate acts as inert “spectator” which basically provides thelnteractions: We consider a Landau free energy functional of
“poundary conditions” for the liquid-vapor system. The the form
liquid-vapor transition can be described by a single order

arametere.g., the density which can take two equilibrium _ -(“,]9 2 >
Eulk values gt Coexisten%e liquid density or thg gas den- ]—'{m}—f drfo dz{z(vm) T Tp(m(r,2))
sity). Obviously, the liquid phase will only wet the substrate
if it is preferentially adsorbed by the latter. As one ap- - >
proaches the liquid-vapor coexistence from the vapor side, +J drfs(m(r.z=0)). @
different scenarios are possible, depending on the substrate
interactions and on the temperature: Either the liquid filmHere the vectom subsumes the relevant order parameters,
covering the substrate remains microscopic at coexistendéie z axis is taken to be perpendicular to the surface, @nd
(“partial wetting”), or it grows macroscopically thick integrates over the remaining spatial dimensions. The offset
(“complete wetting”). The transition from partial to com- of the bulk free energy densitf;,(m) is chosen such that
plete wetting can be first order or continuatsritical wet- fp(Mm,)=0 in the bulk. The surface contributioiy(m) ac-
ting” ). Since critical wetting is only expected on certain sub-counts for the influence of the surface on the order param-
strates at a specific temperature, it is rather difficult toeter, i.e., the preferential adsorption of one phase or in the
observe experimentalan experimental observation of criti- case of SID the disordering effect. In mean field approxima-
cal wetting with long range forces has been reported in Reftion, the functionak1) is minimized by the bulk equation
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ally, one has to deal with a number of order parameters and
other coupled fields, which interact in a way that may not
always be transparent. If the surface under consideration
FIG. 1. Cahn constructiofschematit for a second-order wet- does not have the symmetry of the bulk lattice with respect
ting transition:(a) Critical wetting, (b) partial and complete wetting; to the ordered phases, the interplay of order parameters and
(c) off bulk coexistence, approaching critical wetting. Insets showsurface segregation creates effective ordering surface
the corresponding order parameter profiles. See text for more exields!'~** which may affect the critical behavior at the

planation. surfacet*!°In the case of a one component order parameter,
such a field drives the system from critical wetting to partial
d?m; wetting. When several order parameters are involved, this is
gd_22 =d;fp(m), (2)  not necessarily the cas®:® More subtle effects can lead to

surface order even at fully symmetric surfades!
Experimentally, surface induced disorder has been inves-
tigated at the(100 surface of CyAu.?>~2> A number of
studies have provided evidence that the order parameter right
at the surface vanishes continuously as the bulk transition is
dm dm approached? 2% and established the relation with the exis-
—=—g;f(m) with g—‘ —\2gf,(m). (3) tence of a disordered surface layer of growing thickiéss.
dz dz The related case of “interface induced disorder” has been
studied among other in Cu-Pd, where the width of antiphase

_ Ifthe order parameter has just one component, thisc%eq”fb'oundaries was shown to diverge logarithmically as the tem-
tion can be solved graphically by the Cahn construction. yeratyre of the transition to the disordered phase was ap-
This is illustrated in Fig. 1 for the case of a continuous Wet'proached from belok?

ting transition. The corresponding order parameter profiles g first simulation studies of surface induced disorder in
are shown as insets. Complete wetting is encountered {fitferent systems have reproduced the continuous decrease
fs(m) crossesy2gfy, at the outer side of the minimum cor- of the surface order parameter at the bulk first order
responding to the adsorbed phase. Partial wetting is found tansition?”8%and the logarithmic growth of a disordered
the crossing point is located between the two mini&@.  |ayer near the surfad.A detailed study of surface induced
1(b)]. Critical wetting connects the two regimes, i.5(m)  disorder at the(111) surface of CuAu has been published
crossesy2gfy, right at the adsorbed phase minimumfgf  recently by Schweikat al?® The critical behavior of various
[Fig. 1(@]. Figure Ic) shows a case where the system is offquantities has been analyzed, and critical exponents were
bulk coexistence. found which agree well with the theory of critical wetting.
Now, let us consider the case of surface induced disordeMost notably, Schweikat al. observe nonuniversal expo-
Here, several equivalent ordered phases exist, and the afients, as predicted by renormalization group theories of wet-
dered state breaks a symmetry. For neutral surfaces which dimng phenomena’3In contrast, Monte Carlo simulations of
not discriminate between the ordered phasgsindfs have  critical wetting in a simple Ising model have given results
the same symmetry. This implies thitis extremal in the which were more consistent with mean field exponéhts.
disordered phaser(=0), i.e.,|df | is zero atm=0 and thus  This latter finding has intrigued theorists for some time, and
crossesy2gf, at m=0 (Fig. 2). Comparing that with the a number of theories have been put forward to account for
scenario sketched abovig. 1), we find that surface in- the unexpected lack of fluctuation effeéts3* The nonuni-
duced disordering corresponds to either partial or criticalversality of the exponents observed by Schweikal. seems
wettin—the symmetry of the surface interactions excludego indicate that the fluctuations are restored in the case of
the possibility of complete wettinf. The off-coexistence SID. Alternatively, it may also stem from a competition of
situation[Fig. 2(b)] resembles that in Fig.(&). different length scales associated with the local order param-
Alloys which exhibit surface induced disorder thus seemeter and the local compositidf18-®
particularly suited to study critical wetting. Unfortunately, In the present work, we study surfaces of a bcc-based
the simplification due to the symmetry of the system oftenalloy close to the first order transition from the ordered,DO
goes along with severe complications in other respect: Usyshase to the disordered phase. Our work is thus closely re-

which describes the motion of a classical particle of n@ss
in the external potentidl—f,(m)], subject to the boundary
condition atz=0
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lated to that of Schweikat al. It differs in that the order In the linearized theory, the partition function of the
parameter structure in the bcc case is much more compleidamiltonian(4) is approximated by

than in the fcc alloy: whereas only orithree dimensional

order parameter drives the transition considered by Schweika _ —[dF (V)28 e >

et al, we have to deal with two qualitatively different order ZNI Dilje e [1+f drVO(I)} ®
parameters, which are entangled with each other in a rather . ) - )
intriguing way. In fact, we shall see that one of them behaved! IS convenient to switch from the real spaceo the Fourier
as expected from the theory of critical wetting, whereas thepaceq. The integration over short wavelength fluctuations
other exhibits different critical exponents, which do not fit with wave vector|q|>\"t, where\ is arbitrary, is then
into the current picture. straightforward: One separatemto a short wavelength part

A similar system has been investigated some time ago by(a)zua) 9(q—X"1Y) and a long wavelength paft=|—f
Helbing et alX® The systems studied there were rather small, d loits th latioN (1 x) = AV, t b
and a detailed analysis of the critical behavior was not posf;-’m tiXp orts elrga oW o X.) _dexth;?ﬂ. ]I o1}, to ob-
sible. Helbinget al. report evidence for the presence of a ain the unrescaled coarse grained poteftia
logarithmically growing disordered layer at tkiE00) surface

3712
as phase coexistence was approached. In retrospect, this re-V}\(T):f D{T}exp{ - 4i772f da[ﬂJri% Vo(l)
2

sult seems surprising, since t{#00 surface breaks the sym- 87w
metry with respect to one of the order parameters, and we )

know nowadays that this nucleates an ordering surface field. _ ex;{l—’x(i) }V M @)
In order to elucidate the influence of this ordering field in 2 I MED
more detail, we have thus considered both (thE0)) surface,

which has the full symmetry of the bulk lattice, and tieg Wt
surface. o (1A 1

Our paper is organized as follows: In the next section, we §f == da_zzw In(MA), (8)
provide some theoretical background on the theory of wet- N mlge g?

ting in systems with several order parameters. Section Il is ) ) i -
devoted to some general remarks on order-disorder transivhere A is a microscopic cutoff length. After rescalimg
tions in bec alloys, and to the presentation of the model and-r/X\, V,(N—=V,(N=\9"1V, (1A%, and noting that the
the simulation method. Our results are discussed in Sec. IMoughness exponerit is zero for capillary waves =3

We summarize and conclude in Sec. V. dimensions, this can be rewritten as
2
Il. EFFECTIVE INTERFACE THEORY A h2jog?
V)\(I)=—f dhe "26xv(1 + h). 9
OF SURFACE-INDUCED DISORDER /27753‘}\

A. General considerations Renormalizing the potential,(l) thus amounts to convolut-

We have already sketched one of the popular mean fielthg it with a Gaussian of widtt@“—f'x .29 which is the width of
approaches to wetting problems in the introduction. Since the free interface on the length scalgarallel to the interface.
bulk of the system is not critical, one can expect fluctuationdn the case of a bound interface, a natural choicexf ¢,
to be negligible for the most part. Only the fluctuations of thethe parallel correlation length of the interface. Since the re-

local positionI(F) of the interface between the growing sur- maining fluctuations after the renormalization should be
face layer and the bulk phase remain importdns the ~ small on this length scale, the procedure can be made self
interface moves into the bulk, capillary wave excursions ofconsistent by equating, with its mean field value

larger and larger wavelengths become possible. These intro-
duce long-range correlations parallel to the surface, charac- d?
terized by a correlation lengthy which diverges at wetting. 477“’@“\(')

‘ =(&IN)72=1 at\=¢, (10
In light of these considerations, fluctuation analyses often 1=

replace the Landau free energy functio(®lby an effective  where the average position of the interfdtpis the position
interface Hamiltoniaif-*® of the minimum ofV, (1). Note that the renormalized free
1 energy density per are@2 is of order unity. The singular
H{l}/kBT:f dF[ (VI2+ V(1) . (4) parEzFs of the total interfac_e free energy thus scales kke
8mw x§ ©. From the renormalized Hamiltonigd),

Here all lengths are given in units of the bulk correlation 1 oran 1
length &, in the phase adsorbed at the surface, the parameter VkaT = _f "6 2 D2 (11
w is the dimensionless inverse of the interfacial tension Hf\l{ Hke 2 q877cu (q @l® ay

w=kgTl4moé,?, (50  we can now calculate the distribution probability to find the

. _ . _ interface at a positioh,
and the potentiaVy(l) describes effective interactions be-

tween the interface and the surface. The wetting transition is
thus identified with a depinning transition of the interface P(h)=(a[h—=1(0)])» .=
from the surface. g

e 1

1
V2Té,|
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and the joint probability distribution that the interface is . ) )
found ath andh’ at two points separated hy from each XZZ:f er dhdh Myad 2—h)Mpad 2—h7)
other

X | dr{P@(h,h’",r)—P(h)P(h")}, 20
P(Z)(h’hr,F):<5[h_|(0)]5[h/_I(F)]>H§H f r{ ( r) ( ) ( )} ( )

expand the joint probabilityP®(h,h’,r) in powers of

_ 1 A()=g(r)/ &1 =Ko(r/&)/ In(§ /),
2m\g(0)*~g(r)? hh

(h—h")2 (h+h")? P(Z)(h,h',r)=P(h)P(h’)[1+—2A(r)
xex;{— - , &

4(9(0)—g(r))  4(g(0)+g(r)) s vars

(13 +1 1_h +2h +h2 A(r)2+---},
2 & &
where
(21)

- o (§/A dg iaie and recallfdrrKo(r)=1 and fdrrKo(r)?=1/2. If the in-
g =C1O) (1)), = fo AL (14 trinsic width of the profilem,,{2) is small compared t§, ,
q the intrinsic profile can be approximated by a simple step

is the height-height correlation function of the interface andProfile in the interfacial regionn,sd 2) =m, 6(2), wherem,
is the bulk order parameter. One then obtains

20 [ 20\%(z—(1))?

An analogous expression has been derived by Bedeaux and(?2 EJF E 4,4 o

Weeks for a free liquid-gas interface in a gravitational (22)

field3® In three dimensions, the height-height correlation

function forr>A and &> A is a Bessel functiof, So far, these results are valid for infinite systems. The
restriction to finite lateral dimensioh affects the interface

g(r)=20Ky(r/§). (16) distribution P(h) (12) in two ways: It introduces a lower

cutoff & /L in the integrals oveq [e.g., Eq.(14)], and the
We assume that the average order parameter profilmean position of the interfadéhe zeroth modeis no longer
(m(2)) is given by the average over mean field order paramfixed at the minimum of the renormalized potential, but dis-
eter profilesmy,{z—1), centered around the local interface tributed according to exp- L2V§H(h)]. The width of the dis-
positionsl, which are distributed according to the distribu- tripution functionP(h) is now given by
tion function P(l)

£=9(0)=2wIn(§/A). (15
- mbzguzef(zfu»zlgi

g/a dg d?V, (h)
_@ 9 2 I

2
<m(Z)>:f dlp(l)mbaréz_l)- (17) o gL q2+1 dh2 h=(1)
The distribution function®(h) and P@(h,h’.r) can then §| &\ &\
; Moo . =2win|-|—wIn|1+|—]| |+47w|—| . (23
be used to calculate various characteristics of the profile. A L L

For example, the effective width of the order parameter

profile, W= 1/(_2'9<m {11192)<|>= is broadened by (h) and di- B. Bare and renormalized effective interface potential
verges according & . .
We shall now apply these general considerations to a spe-

- cific potentialVy(l), designed to describe systems with short
W2~ W2+ Eéz’ (18)  range interactions and several order parameters and nonor-
dering densities. Effective interface potentials for systems
with two order parameters have been derived by Htayed
i . Kroll and Gomppet.! Their approach can readily be gener-
profile, Wo= 1/(2d.mbafe/.dz)|z=°'. .., alized to the case of arbitrary many order parameters and
. Ano'Fher quantity of interest is the layer-layer Sus.cept'b”'nonordering densities. We choose the coordinate system in
ity, which describes the order parameter fluctuations at #he order parameter and density spfé such tham=0 in
given distance from the surface, the phase which wets the surface, and that the coordinate
axesm; point in the directions of the principal curvatures of

= | drtemoImNY.— (my2t. 19 the bulk free energy functiof,(m). Close to this phasd,,
Azz f {m(O)m(r)),=(m)z} 19 can then be approximated by the quadratic form

where W, denotes the “intrinsic width” of the mean field

Since it has the dimension of a square length, one deduces g 1
immediately thaty,, scales Iikegu2 in the interfacial region. fo(m)== 2 —m®+pu, (24)
For a more detailed analysis, we rewrjtg, as 2 i
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where u is the field which drives the system from coexist- C. Free energy scaling

ence, and tha; have the dimension of a length. We number  nq, our task is to determing self-consistently by use of

the coordinate axeis(i=0) such that tha,; are arranged in - gq (10), which will yield the scaling behavior of the singu-

de_scendlng order.. The largest pf these domlnates_ the corrE—r part of the surface free enerdy, gufz_ Before general-

Iat|o_ns at large d|§tances gnd is thus the corrglathn lengt ing to several order parameters, we shall briefly discuss the

&y, 1.e., o= &p=1 in our units. The surface contribution has situation in a system with only one length scalg. The

the form formal alikeness of the more general theory with this often

1 discussed special case can thus be highlighted. Moreover,
f(m)=> h,m+ > > c;mm. (255  many of the results derived for one order parameter carry
' i over directly to the case of several order parameters.

Following Hauge and Kroll/Gompper, we now assume that In a system With_one order parameter, the singular free

the actual profile from the adsorbed phase to the bulk phasg"€rdy has the scaling form

is close to the profile of a free interface between these two o

phases. Close to the surface region, we thus approximate the Ferg) “=8mout(®o), (30)

former by the test function where the scaling functiofh(®,) depends on the dimension-

less parameter
mi(Z):UiquZ_l)/)\i (26)
— (0—1)/2, ; — )
(atz<l), wherel denotes the position of the effective inter- Po=Cop 3 With Co=v(87w)*/20. (3D

face. Inserting this into Eq1) with Egs.(24) and(25), we  Depending on the value @b,, one can distinguish between
obtain the effective interface potential different regimes:

. _ W — 2

Vo= ae i+ S bye N+ 104 41 (27) Dp>1: f(Dg)=1/29:(2°P( )
' N With gy(X)~1+X—(2+ w)X2+ - - -
for I»O, with ai=hiylvi andbij :%(Cij —géij /)\i)vivj . This

expression is of course only valid for largeNotably, it fails (complete  wetting (32)
atl=0, since the true potentialy(l) must diverge there. We

shall suppose that the leading tebgy=Db in the second sum |Dol<1: f(Pg)~1— E¢O+ 24’_“’@@r o

is positive and dominates over the more rapidly decaying 2 8 0

terms, and disregard the latter in the following. (critical wetting, field likg (33)

At =0 (or in mean field approximationthe interface
is flat, and its position is given by the minimum w§(l).

c_1- — (B2 U(1-w) 219\ —1/(1- w)
At nonzero w, the potential has to be renormalized as Po<—1: (Do) =(P5/2) 92((P5/2) )

described in the previous section. Now the renormalization 3x (24 7w)X2
is straightforward if the fluctuations are sufficiently small with go(x)~1+ — 5
that the interface positioql) at wetting is well in the 2(1-w) 8(1-w)

asymptotic tail of the potentialweak fluctuation limix
According to a criterion introduced by Brim, Halperin,

and Leibler’® this is true as long a$§d|e—('—<'>)2/2§fvo(|) The point®,=0 is the critical wetting point. If one ap-

+ - - - (partial wetting. (34)

~[* dle*('*<'>)2/2§fv (), ie proaches this point from the partial wetting sialg—~0~ on

o OV T the coexistence ling=0, the parallel correlation lengt)
2§5_<|><0 and §f/)\i—<|><0 (29 diverges with the well-known nonuniversal exponent

for all N;. For\;>1/2, the first inequality enforces the sec- §=(2mwlb) VA=) (—gq) 17w, (39

ond one. In a system with O”EO%rlder parameter, it leads to thgnd the distance between the average position of the inter-
well-known inequalityw<1/2.°>°* As we shall see shortly,

this condition is also sufficient to ensure the validity of theface and the surface diverges asymptotically like

weak fluctuation limit in a system with several order param- (== (1+2w)/(1+ w)In(—agp). (36)
eters. Sincew in our simulations turns out to be much

smaller than 1/2, we shall not discuss the other regimes in The relevant regime for most cases of surface induced

the present paper. o _ ~ disorder is however the critical wetting regime, where the

In the weak fluctuation limit, the renormalized potential critical wetting point is approached under a finite angle to the
takes the form coexistence line indy,u) space. Here the parallel correla-

i tion length§ scales like
V (|) wl\! 4o
IS i
%:_ > aie'“i(%) +b %) e 2+ ul. 1
i iNj<1/2 &= wu” Yl with vy=1/2 (37
29 I 87w ”

The cutoff parameten is of the order of the correlation as u approaches zero, the width of the interface diverges
length, A~ &,=1, and will be dropped hereafter. with
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T T where the scaling variables are
W2 — f=——w|n(u), (38)
2 2 @, =C, pL- 2V wh)2Nig, (48)
and its average position with
With C,=(8mw)®2\ (2\i=1)(2p) =12\

(Hh~=(0+12)In(w). (39
As in the one-order parameter case, we have to distin-
ish between different regimes depending on the values of
the scaling variables.

These results can be used to derive the layer-bulk susceBU
tibility of the order parameter in the interfacial region

_d(mp) amo)| (1) 1
X ™51 T iz | o ain(e)

U U MNTIRA Let us first assume that the effect of nonordering densities
In the step approximatiomy n.{z)=my6(z), the layer- can be disregarde@.g., because the associated length scales
bulk susceptibility in the interfacial region can be calculatedare small,\;<1/2), and consider the case of a symmetry

in more detail: preserving surface. No ordering surface fields are then

present, i.e.g;ch;=0 for all contributionsi. The system is

(40 D. Symmetry preserving and symmetry breaking surfaces

Mob (o qiy)2r2e,? 1 z—(l) thus in a “multicritical wetting regime,” wherg¢®;|<1 for
XO'Z:—\/ﬂgiMe Lot 2 2Inu) (4D alli, and the scaling function can be expanded as

It has a slightly asymmetric peak of wid¢ atz=(l), the 2\ -1
height of which scales like 4. W f({q’i})zl—zi q’i?* e (49)
The layer-layer susceptibility could already be derived in i
the previous section. It also has a peak at the interface, whichhe effective interface positiofl), and the correlation
is however a factor of/2 narrower. Its height scales like length & are given by Eqs(39) and (37) as in the case of
0. 2 normal critical wetting. Hence all the results related to inter-

Xy ™ 17 €7 — U In(u)). (42 facial properties, such as the interfacial width, the interfacial
. - . layer susceptibilities, etc., remain unchanged. In particular,
Next we determine the critical behavior of the order pa'thé criterionpfor the validity of the weak flu%:tuationplimit is

rameter at the surfaceq,s, still w<1/2 [from Egs. (28), (38) and (39)]. The surface

oF ag\l_z . 14w 4s order parameters obey the power law
o — oL — — , =
Mo, hos dag M Bor=—%—- (43 55 LW
P 16— Bia i1==—+—(2\—1).
It will prove useful to rederive the exponef , in an alter- LT T T Pia 2\ 2)\i2(2)\' Y
native way: The surface order parameter in mean field theory (50)
is given bymy,d0)=m,exp(—1/\y). Averaging the profile
acgording){o tl’fg{(l%) yietids PEI ane P Following the lines of Eq(44), one also obtains the finite
size scaling function
Mo,1=Mg(e ™M) py= mbe—<l>/ko+€f/2%§_ (44) w222
~ [ 2
After inserting\o=1 and using Eqs(39) and(38), one re- M) =\ 37 e?mA (52)

covers the power law of Eq43) with the same exponent

Bo,. The approach has the advantage that it allows for @ A whole sequence of surface exponents is thus predicted,
straightforward calculation of finite size effects on surfacegne for each order parameter. In practice, however, one

critical behavior: We simply replace the expressi88) for hardly ever measures only one “pure” order parameer

¢, in the infinite system by Eq(23) to obtain Instead, one expects to observe some combination of contri-
o 1 butions with different exponentg; ;, which will be domi-
Mo, Mpu 0 M (8w ul =), (49 nated by the leading exponensy,=(w+1)/2 in the
with the scaling function asymptotic limitx—0.
The situation changes when at least one ofgdhieecomes
. x \R2 nonzero at coexistence. This is the case, e.g., at a symmetry
Mo(¥)=|3771 e, (46)  breaking surface, where one or several surface fields become

nonzero, or even at a symmetry preserving surface if the

We are now ready to generalize these results to the cad@ngth scale associated with a nonordering density exceeds
of several order parameters and nonordering densities. FoRalf the bulk correlation lengthy;>1/2.
mally, the theory turns out to remain very similar. The self-  Leta,e”"*s be the leading nonvanishing term in the po-
consistent determination &f leads to a generalized version tential(27). As one approaches coexistenges-0, the scal-

of the scaling form for the singular part of the surface freeing variable®; increases and one eventually enters a regime
energy(30), |®4|>1. For negativen;, (P;<—1), the wetting becomes

partial, i.e., no surface induced disordering takes place. For
Fsocg‘[2=87-rwﬂf({<bi}), (47 positive a;, (®;>1), different scenarios are possible, de-
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pending on the sign and the amplitude of the higher order  (a) A2
termsa;, (i>J) in Eqg. (29). If they are positive or suffi-
ciently small, such that

|aiaj_x~‘”‘i|<1, (52)
the disordered phase wets the surface. The effective interface
position(l) diverges asymptotically like

o 2 FIG. 3. bcc lattice witha) disordered A2 structuréb) B2 struc-
<I> Ay(1+wi2n5)In(w), (53 ture, and(c) DO; structure. Also shown is the assignment of sub-
the parallel correlation length scales like latticesa, b, c,d.
g=\fArou, (54)  here™® However, (l) in this work is taken from Eq(36)

rather than determined self consistently, hence the resulting

and the scaling function in E¢47) takes the form critical exponents differ somewhat from those calculated

1 here. As in the case of the symmetry preserving surface, a
f({q)i})zx (1+2 d)iCI)J_)‘J”“KJ()\i) whole sgt qf _exponents is predicted by H&S6). In t_he
J [ asymptotic limitu— 0, however, the surface behavior is ex-
1 1 pected to be governed by the leading exponent
T 2N -
2% KJ(Z)) 59 b ok
Boa=y-+ 5|5 "1 (57)
with J J
N We have reinserted the bulk correlation lengt=1 here.
NN 2 . Finally, we discuss the critical behavior of the surface
Kj(Aj)=———| ——1[(2N )@ A=A P : o
WA VRSN J : susceptibilities. The corresponding critical exponents can be

shown to obey simple scaling laws. In the case of the
According to Eq..(28), the weak fluctuation regime here is surface-bulk susceptibility, the relation follows trivially:
bounded byw<2)\§, thus encompassing the regime
<1/2. om 4
The criterion(52) is motivated as follows: If one of the Xia” e

higher ordera; is negative and large, the interface potentialIn the case of the surface-surface suscentibilitv. it depends on
V¢ (1) may exhibit a second minimum closer to the surface ; urtace-sur u E’" iy, it dep

I ) o the regime under consideration. In the “critical wetting re-
which competes with the minimum at larg@nd may pre-  gimes” discussed here, the free energy scaling fundican

vent the formation of an asymptotically diverging wetting e expressed as a Taylor series in powers of the scaling
layer. The inspection of the free energy scaling functiaf)

reveals that the transition to such a partial wetting regime i
appropriately described in terms of the combined scaling
variable

oYLy =1- 6. (59)

yariables®; or &)u, respectively, and one obtains

o7mi,1 (92f o
Xinn® S p o My =1-2B,. (59
5 —\3/\ NN (g I — 1) w0l (2N 3)) .
=0, I q. M JIN T —ol{2AjAy
i = Pi®, raigy # ' The dominating exponents in the asymptotic limit arg;
This quantity has to be large at the pojag where the one andyoii.
minimum ofvgn(l) splits up in two. The conditioit52) en-

~. I1l. MODELING ORDER-DISORDER TRANSITION
sures thatb; ; is small for all w. IN BCC ALLOYS

The wetting is critical with respect to all order parameters
m; with length scales\; larger than\;. As coexistence is Figure 3 shows some typical structures of binédAB)
approached, they vanish at the surface according to thlecc alloys[e.g., FeAl(Ref. 42]. It is useful to divide the bcc
power law lattice into four fcc sublatticea—d as indicated in the figure.
The phase transitions are then conveniently described in
& terms of a set of order paramel”é’rs

a

J ‘72 B B )\J w
m; ¢ — o i,1, = ——
i1 Jd i h )\i 2)\|2

A

)\——1 . (56)
’ 1= (CatCp—Cc—Cy),
The finite size scaling functioM;(x) is again given by Eq.
(51), with the scaling variablex=47woulL?/\;. Note that
t_he_ exponenthi,; are nonuniversal even ir_1 the mean field Ya=(Ca— Cp—Cot Cq),
limit (w=0). This remarkable effect has first been discov-

ered by Haug® and later studied by Kroll/Gompper in an wherec, denotes the composition on the sublattiegi.e.,

fcc  Ising antiferromagnet using a mean field the average concentration of one compongrhere. In the
approximatior’ Monte Carlo simulations, and a linear disordered phase, all sublattice compositions are equal and
renormalization group study similar to the one presentedhese order parameters vanish. B phase is characterized

= (Ca—Cp+Cc—Cy), (60)
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by nonzeroy,, and the DQ phase in addition by nonzero 4
o= * 3. By symmetry, physical quantities have to be in- Tt
variant under sublattice exchangea«<{b), (c<d), and

(a,b)«—(c,d). The leading terms in a Landau expansion of

the free energy thus read ke TV 2
B2
F=Fot+Aypi+Ax(y+ y3) + Biuihohat+ Crify i
+Co Y3+ ¥3) + Cayys+ Cadfi(d3+ y3). (61 0
0 2 4 6 8 10

We point out in particular the cubic terBy; g, . It can be H/V
read in tvyo ways. On the one hand, it describes how the FIG. 4. Phase diagram of our model in tlieH plane. Solid
B2-order influences the D{order: The order paramete, lines mark first-order phase transitions; dashed lines second-order

breaks the symmetry with respect to individual sign reversabpase transitions. Arrows indicate the positions of a critical end
of ¢, or 3 and orients {,,i3) such that ¢,  point(cep and a tricritical pointtcp).

= —sgn@B) 3. Conversely, one can interpret the product

Y243 as an effective ordering field acting afy. We shall The surface simulations were performed & LxD
come back to this point later. geometry with periodic boundary conditions in thedirec-

At the presence of surfaces, the situation is even mor@on and free boundary conditions in tBedirection, varying
complicated. First, we can always expect that one componemm from 100 to 200 and. from 20 to 100. In order to handle
enriches at the surface, since there are no symmetry argdystems of that size efficiently, we have develdfiedmul-
ments to prevent that. Even if no explicit surface field cou-tispin code’® which allowed to store the configurations bit-
pling to the total concentration is applied, the component wise instead of bytewis& Our Monte Carlo runs had total
which is in excess with respect to the ideal stoichiometry ofiengths of up to % 10° Monte Carlo sweeps.
the bulk phas¢(3:1) in the DO; phasé will segregate to the
surface. Second, we have already mentioned that the Landau IV. SIMULATION RESULTS
expansion of the surface free enerfgydepends on the ori-
entation of the surfacE:** The (110 surface has the same  We have studied110 and (100 oriented surfaces ak
symmetry with respect to sublattice exchanges as the bulks 1V/kg close to the first order bulk transition between the
hence the Landau expansion of the surface free energy mustdered DQ phase and the disorderé® phase. The exact
have the form(61). In case the order is sufficiently sup- bulk transition point was determined previously from bulk
pressed at the surface, one can thus hope to find classicgimulations by thermodynamic integratidh, Ho/V
surface induced disordering here. In the case of (4G9 =10.007711).** In the presence of such a high bulk field,
surface, the symmetry with respect to the exchangéhe very top layer of a fre¢110) or (100 surface is com-
(a,b)«(c,d) is broken. The surface enrichment of one pletely filled with A particles, i.e., Ising spinS=1. Conse-
component then induces an effective ordering surface fieldquently, the order parameteys, and the layer susceptibili-
which couples to the order parametgr.'? Other ordering ties vanish there. In the following, we shall generally
fields coupling tay, and s are still forbidden by symmetry. disregard this top layer and analyze the profiles starting from
The full spectrum of possible ordering surface fields is al-the second layer.
lowed in the case of thél11) surface.

In order to model these phase transitions, we consider an A. (110 surfaces: DO, order
Ising model of spinsS;=*+1 on the bcc lattice with antifer-
romagnetic interactions between up to next nearest neigrb-i
bors,

We begin with a detailed discussion of surface induced
sordering at110 surfaces, i.e., surfaces with the full sym-
metry of the bulk. Figure 5 shows profiles of the order pa-
rameter of DQ ordering per site

HoVR SS+aV 2 SS-HE S, (62 Yag= 2T U2, (64

One clearly sees how a disordered layer forms and grows in
thickness as the bulk transition is approached. In order to
extract an interface positiofl) and an effective interfacial
width W, we have fitted the profiles to a shifted tanh function

Pod(n) = Y 1+ ex —2(z—(IN)/W]) "L (65

The results are shown in Figs. 6 and 7. Sufficiently close to
and the fieldH represents a chemical potential. The param-+the bulk transition, atkl;—H)/V<0.005, the data are con-
eter «=0.457 is chosen such that the highest temperatursistent with the logarithmic divergence predicted by Egs.
which can still support 82 phase is about twice as high as (39) and(18). Intuitively, one would expect that an effective
the highest temperature of the BPhase, like in the experi- interface theory is only applicable lit=W, i.e., the width of
mental phase diagram of FeAl. The phase diagram of outhe interface is smaller than the distance of the interface from
model is shown in Fig. 4. the surface. Indeed, Fig. 7 shows that the logarithmic behav-

where the sum(ij) runs over nearest neighbor afdj))
over next nearest neighbor pairs. Sp#s +1 represent A
atoms ands= —1 B atoms, hence the concentratioof A is
related to the average sp{) via

c=((S)+1)/2, (63)



PRB 61 SURFACE-INDUCED DISORDER IN BODY-CENTERED . . 15085

0.8 ' ' \\ R
07 L .I.":.'."I-II'.III.l...“m.....!: 150 L \\\<]> i:‘g(xsg‘g:1fao
sl ¢4 .#AW«N«;W \ s
' P ) ¥¥¥ L \ A 80x80x200
AN A‘A 4.“‘::1’" »y”' €90x90x148
o5t i, o4& & a7 »> i » 100 | ¥ 100x100x100
Y & ,," ,»"’ W » 100x100x148
Vi oste/ ¢A &y > ]
!y ‘ /11 1' y’ ®---9 H=99
0.3 —.",‘A' &7 ) =---mH-995 | 50 |
A v » *---¢H=9.98
0.2 oy A ”' ’y> &---AH=9.99 - Amplitude: 45[7]
0.1 oy 4 b :18'004 T
A ---v H=10.004 . S
v e H= 0
0.0 NG »---» H=10.007 0.001 0.01 0.1
"o 10 20 30 40 (Hy~HWV
Layer

FIG. 7. Squared interfacial width as estimated from th&6f)
FIG. 5. Profiles ofi,; near a(110 surface at temperaturé in units of (110 layers vs H—Hg)/V. Long dashed line shows
=1kgT/V for different fieldsH in units ofV as indicated. The bulk  squared interface positiqm2 for comparison.
transition is atH,/V=10.007711). Zeroth (top) layer is not
shown[ ¢25(0)=0; see text seems rather large for a system which is not critical in the
bulk. On the other hand, Fig. 5 shows that the bulk order
ior sets in approximately at the value ldfwherel begins to  parametenr/,; decreases considerably as one approaches the
exceedW. The prefactors of the logarithms in Figs. 6 and 7 phase transition point. This observations suggests that a criti-
are predicted to ber(2+ w/r)\2&,/a, in the case of(I) cal point is at least nearby, although preempted by the first
(Fig. 6), andrwé&2/a3 in the case ofV? (Fig. 7), whereé, is ~ order transition from the DOphase to the disordered phase.
the bulk correlation lengtha, the lattice constant, a factor Next we consider the profiles of the layer §usceptlbll|t|es
J2 or 2 accounts for the distance @f10) layers from each ©f the order parametef,;. They can be determined from the
other in units ofa,, and the parametar=max(1,2 /&) simulation data by use of the fluctuation relatiths
depends on the length scalg of composition fluctuations N
(see the discussion in Sec. I) DNe shall see below that the _ " total _
surface data suggeg; =r/2+ o(1/r —1/2)=0.618. Insert- Xe7 LT (D) ¥ o = (PN Y tora), (66)
ing this result, one derives 4.B]<¢,/a,<5.4 8] from Fig.
6, andé,/ay>7.94 8] from Fig. 7. These values do not agree N jayer 5 5
with each other within the statistical error; the interfacial Xzz=kB—T(<¢(Z) )—(¥(2))9), (67)
width seems to decrease too fast as one moves away from
coexistence. Yet the difference seems still acceptable, espghere  is the order parameter under consideratiipy e,
cially considering how small the region of apparent logarith-denotes the number of sites in a layer, avg,, the total
mic behavior is. It has been observed in other systétisat  number of sites. Figure 8 shows that both the layer-bulk
the vicinity of surfaces also affects the intrinsic widthy of  susceptibilityy, and the layer-layer susceptibilify,, exhibit
an interface. Moreover, many nondiverging terms have beethe expected peak in the vicinity of the interfddegs. (41)
neglected in Egs(39) and (18) which lead to systematic and(22)]. The centers of the peaks can be fitted nicely by
errors if one is not close enough té,. We note thatf,  Gaussians of widtl§, and&, /12, respectively, wherég, is
calculated from the widtiW of the order parameter profile
usingé&, =/2/mW. The wings of the peaks are not Gaussian
any more, but asymmetric—the layer susceptibilities are en-

* 20x20x100 ]

© 54x64x148 hanced at the bulk side of the interface, and suppressed at the
141 m 70x70x100 ] surface side. Such an asymmetry has been predicted qualita-
ot ¢ 2x7zare ] tively for x, in Eq. (41), but not forx,, [cf. Eq.(22)]. Even
«490x90x148 in the case oj,, the observed asymmetry is so strong that it
s OF ¥100x100x100 1 cannot be brought into quantitative agreement with the

> 100x100c148 theory. We recall that the linear theory approximates the cap-

illary waves of the interface by those of a free interface with
some suitable long-wavelength cutoff, i.e., they are taken to

4r n 1 be distributed symmetrically about the mean interface posi-
2 [ Amplitude: 4.7[7] L. ] tion. The failure of the theory to describe the details of the
"k b profiles of x, and x,, presumably reflects the fact that the
0.001 0.01 0.1 cap_illary waves are in fgct asymmetric. Nevertheless, the
(H—H)V main features of the profiles are captured by the theory.

The centers of the peaks are slightly more distant from the

FIG. 6. Position of the interface as estimated from thés in ~ surface tharl) in Fig. 6, but the difference is not significant
units of (110 layers vs H—Hg)/V. [up to three layers atHy,—H)/V=0.0007]. According to
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FIG. 8. Profiles of the layer-bulk susceptibilify, (a) and the
layer-layer susceptibility,, (b) per site of the order paramete,
in units of kgT, for different fieldsH in units of V as indicated.
Solid line shows the fit of a Gaussian of width &, = (2/7)YW
and (b) £,/2%2 to the profile corresponding td=10.004. Zeroth
(top) layer is not showrj y(0)=0; see text

the theoretical predictionid0) and (42), the heights of the
peaks should diverge with Hy—H) with different loga-

rithmic corrections. Our data are shown in Figs. 9 and 10
The maxima of the layer-bulk susceptibility are best fitted by,
the simple 1/H—Hg) behavior, which the theory predicts as

1000

100 |

max

N
? ®64x64x148 Tn
= W 72x72x172
 80x80x100
A 90x80x148
O 100x100x100
10 F 0 100x100x128 4
<©100x100x148 4
0.001 0.01 0.1
(H,-H)/V

FIG. 9. Maximum of the layer-bulk susceptibiliy, per site of
the order parametep,s in units ofkgT vs (Hq—H)/V for different
system sizes as indicated. Solid line shows a fit tdHg—H) *
behavior, and dashed line the same with logarithmic corre¢tea
text).
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FIG. 10. Maxima of the layer-layer susceptibility, per site of
the order parametef,s in units ofkg T vs (Ho—H)/V, for different
system sizes as indicated. Inset shows bare data, with a fit to a
power law behavior with unknown expone(totted ling. In the
main plot, the bulk contribution tg,, has been subtracted. Solid
line indicates the slope ofH,—H) %, and dashed line the whole
theoretical prediction including the logarithmic correction.

long as the interfacial width is dominated by the intrinsic
width W,,. In the regime Hy—H)/V<0.005, where the cap-
illary wave broadening of the interface becomes significant,
the data are also consistent with the logarithmically corrected
version y7'®«1/(Hy,—H) /| In(Hy—H)| (see Fig. 9.

The analysis of the layer-layer susceptibility is more
subtle. From a double logarithmic plot of the raw data, one is
tempted to conclude that the predictedH4H) behavior
is not valid; the data rather suggest a divergence with a criti-
cal exponent 0.68ig. 10, inset. However, since we are not
aware of any theoretical explanation which could motivate
such an exponent, we believe that the apparent power law
behavior over roughly two decades of{—H) is most
likely accidental. Looking at the values gf,, close to the
tenter of the slalpFig. 8b)], one recognizes that the contri-
bution of bulk fluctuations tg,, is significant even close to
Ho. The situation is complicated by the fact that the bulk
fluctuations increase considerably in the vicinity lb§, al-
though their amplitude does not diverge. Within the crude
approximation that the capillary waves of the interface and
the bulk fluctuations are uncorrelated, one can subtract the
latter as “background.” The thereby corrected data agree
reasonably well with the theory, especially when taking into
account the logarithmic correctiog)y < 1/(Hy—H)|In(Hg
—H)| (Fig. 10.

We proceed to study the properties of the system directly
at the surface. Figure 11 shows the order paramgigy in
the first layer[recalling that the topzeroth layer is dis-
carded as a function of Hy—H) for various system sizes.
One notices finite size effects if the dimensiorparallel to
the interface is small. As long asis large enough, the data
exhibit a power law behavior with the exponemg;
=0.6184]. We emphasize thgs, clearly differs from 1/2
here. It is close to the valug,;=0.64 found by Schweika
et al. in their simulations of surface induced disorder in fcc
alloys?® As discussed in Sec. Il D, several factors may lead
to such a nonuniversal exponent—capillary wave fluctua-
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] FIG. 13. Surface layer-bulk susceptibility per site of the order
FIG. 11. Order parametey,s; at the surface(first laye) vs  parametery,; vs (Ho—H)/V for different system sizes as indi-

(Ho—H)/V for different system sizes XL XD as indicated. Solid  cated. Solid line marks a power law with the exponept0.37.
line indicates power law with the exponefi{=0.618.

Figure 13 shows the layer-bulk susceptibility at the sur-
face for the order parameter,;. According to Eq.(58), it
§hou|d diverge with the exponeni;=1-83,=0.382. In-

tions, and/or the presence of a length segle £,/2, which-
competes with the correlation lengéfy and would have to
beassociated with the nonordering composition fluctuation i ; .
in the case of the symmetry prese?viﬁlgl(g surface. Using deed, the fit to our data in the regiomi¢—H)/vV<0.02
Eq. (57), we can derive upper bounds for the capillary pa-Y!€!ds 71=0.315]. In the case of the layer-layer suscepti-
rameter,o<0.236, and fom,, \,/&,<0.618. bility, the theor_y(59) predlct5y11=1—2,8;_= —0.236, ie.,
After applying finite size scaling with the exponengg ~ X11 does not d|yerge at the phase transition. In fact, it first
and v =1/2 [cf. Eq. (45)], the data collapse onto a single 'NCreases aslo is approached, but then decreases fdp (

master curve. The form of the latter can be calculated from_ H)/V<0.02(not shown. The layer-layer susceptibility at
Eq. (45), the surface here behaves in a similar way as observed by

Schweikaet al.in their studies of surface induced disorder at
the (111) surface of an fcc-based allg.

r12+ wlr

Prog L PVl ———— 2T, (68)

(x+1)°? B. (110 surfaces: B2 order

From the results discussed so far, we conclude that the
with xoc(Ho—H)LYI and r=max(1,2\;/&,), where the behavior of the order parametgs; can be understood nicely
two unknown proportionality constants are fit parameters anavithin the effective interface theory of critical wetting. How-
»=0.236 was usefthe result is only very barely sensitive to ever, we shall see that this holds only in part for the second
the choice ofw). Figure 12 shows that the data agree nicelyorder parameteny; .
with the theoretical prediction. Figure 14 shows profiles af, for different fieldsH. They
resemble those of,5, in particular the inflection point of
the profiles is located approximately at the same distance
°° from the surface. The upper part of Fig. 14 displays profiles
of the total concentratioc of A particles[Eq. (63)]. They
exhibit some characteristitl-independent oscillations in the
first four layers, and thé concentration is slightly enhanced
in the disordered region. However, the overall variation is
B,=0.618 rather small.

V=05 The layer susceptibility profiles of the order paramefer

are qualitatively similar to those af,; and not shown here.

Figure 15 demonstrates that the maximum of the layer-bulk

susceptibility evolves with the fielth as theoretically pre-

dicted, x7'®x1/(Ho—H)|In(Ho—H)|. In the case of the

s s layer-layer susceptibility, the agreement with the theoreti-

(HO—H)}\O/O L") 1000 10000 cally expected behavior x_@”zax— X2y o 1/(Ho— H)|!n(HO .
—H)| is not quite as convincing, but the data are still consis-

FIG. 12. Finite-size scaled plot of the surface order parameteFent with the theory formlﬂaX—HO)/V<O.01 (Fig. 16. Note

W31 VS (Ho—H)/V for system sizes XL XD as indicated. Data that the bare values of;; OWg)U'd. again _rather suggest a
were scaled with exponentg=1/2 and,=0.618. Dashed line power law, x75oc(Ho—H) ~ 3 (Fig. 16, inseX, which is
shows the finite size scaling function predicted by E{). however most likely accidental.

+40x40x100
® 64'64*148
® 70x70x100
100 | *72'72"172
4 80x80x100
< 80x80x200
¥ 90x90x148
0 100x100x100
o 100x100x128
© 100x100x148

Wos. 1 L™

10

1 10



15088

0.86

0.82

F. F. HAAS, F. SCHMID, AND K. BINDER

FIG. 14. Profiles of the total compositian= ({S)+1)/2 (top)
and of the order parameteF; (bottom) for different fieldsH in
units of V as indicated. Top(zeroth layer is not showr c(0)
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FIG. 16. Maxima of the layer-layer susceptibility, per site of
the order parametgf; minus bulk contribution in units okgT vs
(Ho—H)/V, for different system sizes as indicated. Solid line indi-
cates the slope ofH{,—H) %, and dashed line the whole theoreti-
cal prediction including the logarithmic correction. Inset shows bare
data, with a fit to a power law behavi@dotted ling.

different system sizes do not collapse if one performs finite
size scaling with the exponemj=1/2[Fig. 18a)]. The col-
lapse is significantly better if one assumes that the parallel

=1,4,(0)=(0)]. Thin dashed lines with squares show for com- correlation length diverges with the exponeft=0.7+0.05
parison the profiles ofy,5 from Fig. 5.

Hence the behavior of the order paramegrin the vi-

[Fig. 18b)].
We have no explanation for these unexpected findings.
The discussion in Sec. Il has shown that several surface ex-

cinity of the interface is similar to that of the order parameterponentsg; ; may be present in a system with several order
o3 and consistent with the theory of critical wetting. The parameters. Even though we have argued that only the small-
agreement however does not persist when looking right a@st exponent should survive in the asymptotic limit-0,

the surface. Figures 17 and 18 show how the valugoin
the first surface layer depends ad{—H)/V. A power law
behavior is found over one and a half decades Idf, (
—H)/V, yet the exponenB;(¢,)=0.801 differs from that
of 31, B1(¥23)=0.618(Fig. 17). Moreover, the data for

1000
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X1 .z
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B 70x70x100
& 72x72x172
A 80x80x100
480x80x200
¥ 90x90x148

©100x100x100
0 100x100x128
©100x100x148
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(H,-H)V

the other power law contributions may conceivably still
dominate the behavior of certain quantities over a wide range
of . However, the critical exponent; should in all cases
remain invariablyy =1/2. Our results seem to indicate that
the behavior of the order parametgy at the surface is gov-
erned by a length scale, which differs from that given of the

1 T T

Slope: 0.801[4]
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FIG. 15. Maximum of the layer-bulk susceptibiligy per site of
the order parametep, in units ofkgT vs (Ho—H)/V for different

system sizes as indicated. Solid line shows a fit taHgH) *

0.01

0.1
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FIG. 17. Order parametef, at the surface vsHy—H)/V for

behavior, and dashed line the same with the appropriate logarithmidifferent system sized XL XD as indicated. Solid line shows
power law with the exponeng,=0.801.

correction.
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FIG. 19. Surface layer-bulk susceptibility per site of the order
100 | parametei/; vs (Ho—H)/V for different system sizes as indicated.
- B,=0.801 This is demonstrated in Fig. 20. The order parameters and
o v.20.7 ool the compositiorc are defined based on the sublattice occu-
- ! . 7272172 pancies on two subsequent layers of distaagl2, starting
e 3 S0 from the first layer underneath the surface. The top layer is
©100°100"100 again disregarded, since it is entirely filled withor S=1.
2}83138]32 The profiles ofys, clearly display the signature of an addi-
oo ¥ tional ordering tendency at the surface, which in fact reverses
: pros - the sign ofi in the top layers. However, the effect is rather

FIG. 18. Finite-size scaled plots of the order paramegteat the
surface vs Hy—H)/V for system size& XL XD as indicated. Ex-

10 1,
(H=H)yv L™

ponents arg8; =0.801, »=0.5 in(a), and»|=0.7 in (b).

weak and does not influence the system significantly deeper
in the bulk. The profiles can be analyzed like those at the
(110 surface, and mean interface positions and mean inter-

0.86

o—0 H=10.007
o—e H=10.003

interfacial fluctuations, but which nonetheless divergeld as
is approached. Note tha~0.7 is close to the exponemt
=0.63 with which the bulk correlation length diverges at an
Ising type transition in three dimensions. Likewise, the ex-
ponentB;=0.801 found here resembles the surface critical
exponent of the ordinary transitiog; ~0.8.4%°° One might
thus suspect that; in the disordered surface layer becomes
critical at Hy. However, such a coincidence would seem
rather surprising. Furthermore, we have noted earlier that the
combinationi, 5 acts as an ordering field afy, hencey;
cannot become critical as long ds5 is not strictly zero.
Figure 19 shows the layer-bulk susceptibility at the sur-
face as a function ofH,—H)/V. It decreases aldg is ap-
proached, hence the scaling relati@p+ y,=1 is obviously
not met for the order paramete ;.

C. (100 surfaces

Finally, we turn to the discussion @00 surfaces. As
already mentioned earligfd 00 surfaces break the symmetry
with respect to the order parametgy, an ordering surface
field coupling to this order parameter is allowed and thus
usually present’!* This field is often closely related to sur-
face segregatiott:*°In our case, the excess componérf

equivalent toys; ordering.

0.85
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0.83 |
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0.1

0.0

o ? Yo

4'0
Layer
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_ ) FIG. 20. Profiles of the total concentrationAf{top, diamonds
the DQ; segregates in the surface layer and induces a stagf the order parametergs; (bottom, circles and i3 (bottom,
gered concentration field in the layers underneath, which isquares at H/V=10.003 (filled symbol$ and at H/V=10.007

(open symbols Zeroth(top) layer is not shown.
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1 ‘ ‘ - Due to the complicated order parameter structure in our
m 80x80x100 system, however, our data could not fully be explained
® 80x80x200 within a theory which traces everything back to the proper-

A 100x100x148

ties of a single interface between a disordered and an ordered
¥ 100x100x100

phase. The theory provides a satisfactory picture for the be-
havior of the order parameter describing the oéddering,
— 3, and in general for the structure in the interfacial region.
However, it fails to predict the behavior of the order param-
eter ofB2 ordering,i4, directly at the surface. Our data thus
indicate that the fluctuations af;, at the surface require
special treatment. Parry and co-workérs have recently
suggested an approach to a theory of wetting based on an
001 . . 1 effective interface Hamiltonian with two “interfaces,” the
0.001 0.01 0.1 usual one separating the phase adsorbed at the surface and
(H=H)/V the bulk phase, and a second one which accounts in an ef-
fective way for the fluctuations directly at the surface. Our
_ FIG. 21. Order paramete,; at the surface vsHo—H)/V for  hroplem seems to call for such an approach. Unfortunately,
different system sized XL XD as indicated. Solid line shows o are far from understanding even the constituting ele-
power law with the exponeng, =0.61. ments, the fluctuations af, at the wall. We seem to observe

facial widths can be extracted to yield figures very similar toa coupling between critical wetting and some kind of surface
y 9 y critical behavior ofi, the origin of which is unclear.

Figs. 6 "’_‘”d 7. The amplit_udes of the Iogarithmic_: divergences Hence already our simple, highly idealized model exhibits
can again be used to estimate the bulk correlation legigth a complex and rather intriguing wetting behavior. In real

From the mean interface position, one calculate 7.9 ;v "nmerous additional complications are present which
<&p/a,<5.48], and from the interfacial width£y/ay  \iiflead to an even richer and more interesting phenomenol-
>7.99], in agreement with the values obtained for.th.eogy. For example, long range interactions are known to in-
(110 surface. Likewise, the study of the layer susceptibili- once wetting transitions significantly. The effect of van

ties _at thfehmtlerfacz ﬁ(oes not .t())lml‘_fgr r;ewb surpn(sjes. Th%er Waals forces on wetting has been investigated in detail.
maxima o td_e ayer-bu suTceptl :_:UesHor_ 101_')r1han| Y23 yvan der Waals forces are important in liquid-vapor systems
grow according to a power law,=(Ho—H) ™" The layer- or binary fluids, but presumably irrelevant in alloys. Instead,

Iayer su_sceptibility in the intenfacigl region seems 10 groWgagtic interactions caused by lattice distortions presumably
with a different exponerjt~0.6 like in the case of thel10 play an important role.

surfacd, yet after subtracting the “background” the data are ™ g, ithermore, real surfaces are never ideally smooth, but

also consistent with the theoretically expected behaviory,ye steps and islands. We have seen that the orientation of
Last, we study how the surface value of the order parametgps g rface affects the surface ordering. In our study, we did
Y23 €volves as the transitioHl, is approached. Figure 21 o ghserve dramatic differences between (h0) surface
shows that it vanishes according to a power law with the; g the(100) surface. Nevertheless, we expect that the influ-

exponent; =0.612], which is within the error the same gnce of the surface orientation on the wetting behavior can
exponent as in the case of thel0 surface. As far as the o qite substantial, e.g., in situations with strong surface

surface behavior ofi3is concerned, thel00 and the(110  gegreqgation, or if surface orientations are involved which

surface are thus basically equivalent. The weak ordering tenisq preak the symmetry with respect to the Didder[e.g.
dency ofi; has an at most slightly perturbing effect on the {0 (111 surfacd. Likewise, we can expect that steps and

Slope: 0.61[2]

profiles of ¢53. islands will affect the ordering and the wetting properties of
the alloy. It is well known in general that the wetting behav-
V. SUMMARY AND OUTLOOK ior on corrugated or rough surfaces differs from that on

mooth surface®>*In addition, even a few steps or islands

We have presented an extensive Monte Carlo study of therw th but v breaki ‘ ¢
surface induced disorder in a simple spin lattice model foP"1 @n otherwise smooth, but Symmelry bréaing surtace o
n alloy can have a dramatic effect on the ordering behavior,

bcec-based binary alloys. Our work complements earlie ) >
Monte Carlo simulations of Schweikat al,2® who have SINC€ €very step changes the sign of the ordering surface
studied surface induced disorder in fcc-based alloys within ;geld.
similar model. Like these authors, we observe critical wet-
ting behavior with nonuniversal exponents. We have dis-
cussed our results in terms of an effective interface model We wish to thank M. Miller and A. Werner for helpful
designed to describe a system with several order parametediscussions. F.F.H. acknowledges financial support by the
In such a complex material, nonuniversal exponents may resraduiertenfaderung of the Land Rheinland Pfalz, and F.S.
sult both from fluctuation effects and from a competition of has been supported from the Deutsche Forschungsgemein-
length scales. schaft through the Heisenberg program.
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