Subject View: 
HomePublicationsSearchMy AlertsMy ProfileHelp
 Quick Search:  within Quick Search searches abstracts, titles, and keywords. Click for more information.
13 of 22 Result ListPreviousNext

This document
SummaryPlus
Article
Journal Format-PDF (638 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Acta Materialia

Volume 48, Issue 1
1 January 2000
Pages 239-251

PII: S1359-6454(99)00297-9
Copyright © 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd.

Layered magnetic structures in research and application*1

P. Grünberg

Forschungszentrum Jülich-IFF, 52425 Jülich, Germany

Received 1 June 1999; accepted 15 July 1999. Available online 24 January 2000.

Abstract

An overview is given on the status of research and applications in the field of layered magnetic structures and the historical development is indicated. Currently the research on interlayer exchange coupling, giant magnetoresistance and tunnel magnetoresistance is particularly active, therefore the basic understanding of these phenomena, the size of the effects, important issues and applications are discussed in some more detail.

Author Keywords: Layered magnetic structures and superlattices; Magnetoresistive effects; Ferromagnetic hysteresis; Interlayer exchange coupling

Article Outline

1. Historical introduction
2. Interlayer exchange coupling
2.1. Phenomenological description, definition of parameters
2.2. Representative experimental examples
2.3. A physical picture for the origin of the coupling mediated by metal electrons
2.4. Interlayer materials dependence
3. Giant magnetoresistance (GMR)
3.1. First observations
3.2. Microscopic origin
3.3. Bulk vs interface scattering
3.4. Electron reflection at outer surfaces
4. Tunnel magnetoresistance (TMR)
5. Applications
6. Conclusions
Acknowledgements
References


(35K)
Fig. 1. Illustration of two types of interlayer coupling, depending on the nature of the interlayer. Ferromagnetic films are indicated by dark greytone and interlayers by light greytone. (a) Interlayer is assumed to display no static magnetic order. (b) Static order in the interlayer is assumed, here with antiferromagnetic alignment of successive monolayers. The magnetization M1 in both (a) and (b) is assumed to point upwards. Due to the coupling the magnetization M2 can show the basic alignments parallel, antiparallel or perpendicular with respect to M1.

(24K)
Fig. 2. Remagnetization curves from (a), (b) Fe/Al/Fe layered structures and from (c), (d) Fe/Mn/Fe structures, measured by means of the magneto-optic Kerr effect. The curves in (c) and (d) have been evaluated both on the basis of (1) and (2). The corresponding parameters J1, J2, C1, C2 are indicated.

(28K)
Fig. 3. Strength of interlayer exchange coupling in (a) Fe/Au/Fe and in (b) Fe/Mn/Fe. Negative values in (a) correspond to antiferromagnetic- or 90°-type coupling. An enhanced view of the latter is shown in the inset.

(51K)
Fig. 4. (a) A layered magnetic structure with parallel and antiparallel magnetization alignment and the propagation of electron waves with spin up and down. For parallel alignment the wave with spin down is confined and forms a standing wave. (b) The reason for the various reflectivities, taking schematic band structures for magnetic 3d metals and noble metals as interlayers as examples. (c) Two stationary vectors, q(1) and q(2), in the [100] direction are shown, taking the Au Fermi surface as an example.

(12K)
Fig. 5. GMR effect in a multilayer (A) and a double layer (B) of Fe interspaced by Cr. (B) The AMR effect in a single film of Fe with thickness 250 Å is also shown for comparison.

(9K)
Fig. 6. Remagnetization curve (A) and GMR effect (B) in a Co(100 Å)/Au(60 Å)/Co(100) structure with a hard and a soft Co film.

(30K)
Fig. 7. Electron scattering in magnetic double layers with parallel (left) and antiparallel (right) magnetization alignment. Spin-independent scattering is assumed in the bulk and spin-dependent scattering at the interfaces.

(17K)
Fig. 8. TMR effect in a Co/Al/NiFe sample. A cross section of the structure is shown in the inset.

(7K)
Fig. 9. Schematic arrangement for the measurement of the current distribution in a lead, suitable for testing integrated circuits.

(9K)
Fig. 10. Layered magnetic structure, including an "artificial antiferromagnet" (AAF, white arrows), for monitoring the angle of rotation of an object via the GMR effect. The GMR effect occurs between the detection layer (black arrow) and the upper film of the AAF. The response of the sensor to the rotation of the permanent magnet is shown on the right-hand side.

References

1. M. Faraday. Phil. Trans. 136 (1846), p. 1.

2. A. Kundt. Wied. Ann. 23 (1884), p. 228.

3. H. König. Optik 3 (1948), p. 101.

4. C.P. Bean. In: C. Neugebauer et al.Structure and Properties of Thin Films Wiley, New York (1959), p. 331.

5. L. Neel. J. Phys. Radium 15 (1954), p. 225.

6. U. Gradmann and J. Müller. Physica status solidi 27 (1968), p. 313.

7. K. Takanashi, S. Mitani, K. Himi and H. Fujimori. Appl. Phys. Lett. 72 (1998), p. 737. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

8. M.B. Salamon, S. Sinha, J.J. Rhyne, J.E. Cunningham, R.W. Erwin, J. Borchers and C.P. Flynn. Phys. Rev. Lett. 56 (1986), p. 259. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

9. C.F. Majkrzak, J.W. Cable, J. Kwo, M. Hong, D.B. McWhan, Y. Yafet, J.V. Waszczak and C. Vettier. Phys. Rev. Lett. 56 (1986), p. 2700. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

10. P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky and H. Sowers. Phys. Rev. Lett. 57 (1986), p. 2442. Abstract-INSPEC |  $Order Document

11. W. Thomson. Proc. R. Soc. 8 (1857), p. 546.

12. M. Julliere. Phys. Lett. 54A (1975), p. 225. Abstract-INSPEC |  $Order Document

13. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen-Van-Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas. Phys. Rev. Lett. 61 (1988), p. 2472. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

14. G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn. Phys. Rev. B39 (1989), p. 4828. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

15. A. Fert, P. Grünberg, A. Barthelemy, F. Petroff and W. Zinn. JMMM 140¯144 (1995), p. 1. Abstract | Journal Format-PDF (716 K)

16. T. Miyazaki and N. Tezuka. JMMM 139 (1995), p. L231. Abstract | Journal Format-PDF (231 K)

17. J.S. Moodera, L.R. Kinder, T.M. Wong and R. Meservey. Phys. Rev. Lett. 74 (1995), p. 3273. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

18. J.C. Slonczewski. JMMM 150 (1995), p. 13. Abstract | Journal Format-PDF (858 K)

19. J.J. Krebs, P. Lubitz, A. Chaiken and G.A. Prinz. Phys. Rev. Lett. 63 (1989), p. 1645. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

20. J. Unguris, R.J. Celotta and D.T. Pierce. Phys. Rev. Lett. 69 (1992), p. 1125. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

21. F.U. Hillebrecht, Ch. Roth, R. Jungblut, E. Kisker and A. Bringer. Europhys. Lett. 19 (1992), p. 711. Abstract-INSPEC |  $Order Document

22. C. Turtur and G. Bayreuther. Phys. Rev. Lett. 72 (1994), p. 1557. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

23. P. Bödeker, A. Hucht, J. Borchers, F. Güthoff, A. Schreyer and H. Zabel. Phys. Rev. Lett. 81 (1998), p. 914. Abstract-INSPEC |  $Order Document | APS full text

24. For a recent review see Pierce, D. T., Unguris, J., Celotta, R. J. and Stiles, M. D., J. Magn. Magn. Mat., 1999, 200, 290.

25. Ch. Roth, Th. Kleeman, F.U. Hillebrecht and E. Kisker. Phys. Rev. B52 (1995), p. R15691.

26. P. Grünberg, S. Demokritov, A. Fuss, R. Schreiber, J.A. Wolf and S.T. Purcell. JMMM 104¯107 (1992), p. 1734. Abstract-INSPEC | Abstract-Compendex |  $Order Document

27. P. Grünberg, J.A. Wolf and R. Schäfer. Physica B 221 (1996), p. 357. Abstract | Journal Format-PDF (648 K)

28. S.S. Yan, R. Schreiber, F. Voges, C. Osthöver and P. Grünberg. Phys. Rev. B, Rapid Communications 59 (1999), p. 11641.

29. S.S.P. Parkin and D. Mauri. Phys. Rev. B44 (1991), p. 7131. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

30. J. Unguris, R.J. Celotta and D.T. Pierce. Phys. Rev. Lett. 79 (1997), p. 2734. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

31. D.M. Edwards, J. Mathon, R.B. Muniz and M.S. Phan. Phys. Rev. Lett. 67 (1991), p. 493. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

32. P. Bruno. Phys. Rev. B52 (1995), p. 411. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

33. M.D. Stiles. J. appl. Phys. 79 (1996), p. 5805. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

34. M. Johnson et al.. Phys. Rev. Lett. 68 (1992), p. 2688. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

35. M. Johnson et al.. Phys. Rev. Lett. 69 (1992), p. 969. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

36. P.J.H. Bloemen et al.. Phys. Rev. Lett. 72 (1994), p. 764. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

37. S.N. Okuno and K. Inomata. Phys. Rev. Lett. 72 (1994), p. 1553. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

38. de Vries. Phys. Rev. Lett. 75 (1995), p. 4306. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

39. S.N. Okuno and K. Inomata. J. Phys. Soc. Japan 64 (1995), p. 3631. Abstract-INSPEC |  $Order Document

40. S.S.P. Parkin. Phys. Rev. Lett. 67 (1991), p. 3598. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

41. J. Mathon, M. Villeret, D.M. Edwards and R.B. Muniz. JMMM 121 (1993), p. 242. Abstract-INSPEC |  $Order Document

42. S. Zoll et al.. Europhys. Lett. 39 (1997), p. 323. Abstract-INSPEC |  $Order Document

43. E.E. Fullerton, D. Stoeffler, K. Ounadjella, B. Heinrich, Z. Celinski and J.A.C. Bland. Phys. Rev. B51 (1995), p. 6364. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

44. R.J. Hicken et al.. Phys. Rev. B50 (1994), p. 6143. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

45. S. Yan et al.. Phys. Rev. B52 (1995), p. 1107. Full-text via CrossRef

46. M. Vohl, J. Barnas and P. Grünberg. Phys Rev B 39 (1989), p. 12003. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

47. S. Mirbt, A.M.N. Niklasson, B. Johansson and H.L. Skriver. Phys. Rev. B54 (1996), p. 6382. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

48. E.E. Fullerton, J.E. Mattson, S.R. Lee, C.H. Sowers, Y.Y. Huang, G. Felcher and S.D. Bader. J. appl. Phys. 73 (1993), p. 6335. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

49. B. Briner and M. Landoldt. Phys. Rev. Lett. 73 (1994), p. 340. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

50. A. Chaiken, R.P. Michel and M.A. Wall. Phys. Rev. B53 (1996), p. 5518. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

51. J.J. de Vries et al.. Phys. Rev. Lett. 78 (1997), p. 3023. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

52. J. Barnas, A. Fuss, R.E. Camley, P. Grünberg and W. Zinn. Phys. Rev. B42 (1990), p. 8110. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

53. T. Shinjo and H. Yamamoto. J. Phys. Soc. Japan 59 (1990), p. 3061. Abstract-INSPEC |  $Order Document

54. W.P. Pratt et al.. Phys. Rev. Lett. 66 (1991), p. 3060. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

55. M.A.M. Gijs et al.. Phys. Rev. Lett. 70 (1993), p. 3343. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

56. N. Mott. Proc. R. Soc. 156 (1963), p. 368.

57. W.F. Egelhoff et al.. J. appl. Phys. 82 (1997), p. 6142. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

58. W.H. Butler et al.. Phys. Rev. Lett. 17 (1996), p. 3216. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

59. P. Zahn et al.. Phys. Rev. Lett. 80 (1998), p. 4309. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

60. P.M. Levy. Solid St. Phys. 47 (1994), p. 367.

61. S.S.P. Parkin. Phys. Rev. Lett. 71 (1993), p. 1641. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

62. G. Reiss et al.. JMMM 184 (1998), p. 281. Abstract | Journal Format-PDF (528 K)

63. R. Schad et al.. Phys. Rev. B59 (1999), p. 1242. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

64. Hütten et al., Acta mater., 1999, 47, 4245.

65. S.S.P. Parkin, Z.G. Li and D.J. Smith. Appl. Phys. Lett. 58 (1991), p. 2710. Abstract-INSPEC |  $Order Document | Full-text via CrossRef

66. W.J. Gallagher et al.. J. appl. Phys. 81 (1997), p. 3741. Abstract-INSPEC |  $Order Document | OJPS full text | Full-text via CrossRef

67. Parkin, S. S. P., Private communication..

68. Rottländer, P. et al., submitted..

69. Girgis, M. et al., submitted..

70. F. Klose, Ch. Rehm, D. Nagengast, H. Maletta and A. Weidinger. Phys. Rev. Lett. 78 (1997), p. 1150. Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

71. B. Hjörvarsson, J.A. Dura, P. Isberg, T. Watanabe, T.J. Udovic, G. Andersson and C.F. Majkrzak. Phys. Rev. Lett. 79 (1997), p. 901. Abstract-INSPEC |  $Order Document | APS full text

72. Shinjo, T., Private communication..

73. http://www.research.ibm.com/research/gmr.html.

74. S. Bae, A. Schlensog, W. Mertin, E. Kubalek and M. Maywald. Microelectronics Reliability 38 (1998), p. 969. Abstract | Journal Format-PDF (394 K)

75. http://www.infineon.com/products/38/pdf/gmr.pdf.

76. J. Camarero, T. Graf, J.J. de Miguel, R. Miranda, W. Kuch, M. Zharnikov, A. Dittschar, C.M. Schneider and J. Kirschner. Phys. Rev. Lett. 76 (1996), p. 4428. Abstract-Compendex | Abstract-INSPEC |  $Order Document | Full-text via CrossRef | APS full text

77. Okuno, S., Private communication..

78. Bürgler, D. et al., Phys. Rev., 1999, B60, R3732.

*1 The Millennium Special Issue ¯¯ A Selection of Major Topics in Materials Science and Engineering: Current status and future directions, edited by S. Suresh.
This document
SummaryPlus
Article
Journal Format-PDF (638 K)

Actions
Cited By
Save as Citation Alert
Export Citation
Acta Materialia
Volume 48, Issue 1
1 January 2000
Pages 239-251


13 of 22 Result ListPreviousNext
HomePublicationsSearchMy AlertsMy ProfileHelp

Send feedback to ScienceDirect
Software and compilation © 2002 ScienceDirect. All rights reserved.
ScienceDirect® is an Elsevier Science B.V. registered trademark.


Your use of this service is governed by Terms and Conditions. Please review our Privacy Policy for details on how we protect information that you supply.