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Abstract

Within analytical method we calculate the RKKY interaction between localized magnetic moments for a system of
fractional (nonintegral) dimension. We provide the exact derivation of the spatial dependence of the RKKY exchange
integral as an analytical function of dimensionality. Moreover, with the help of fractional analysis, we derive formulae for
interlayer coupling in fractional multilayers. On the basis of the results obtained possibility of controlled interlayer
interaction is shown. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The concept of fractional dimensionality has
proved very successful in advancing our under-
standing, of how geometry a!ects the physical
properties of the system [1]. Many laminar systems
like Ag/Cu(0 0 1) overlayer or GaAs/Al

x
Ga

1~x
As

quantum wells and/or superlattices, as the layer
thickness decreases, show dimensional crossover
from 3D to almost 2D behavior (see Refs. [2}4] and
references therein). Generally, the dimension of
these systems changes with the monolayer cover-
age, wire thickness or temperature. In the case of
rough interfaces, a nonintegral dimension of the
strati"ed system can be interpreted in terms of
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fractal geometry (Haussdor! dimension [5]). How-
ever, some systems not having fractal structure also
exhibit nonintegral dimensionality. Indeed, numer-
ous physical problems involve basic objects, which
are usually described by shrinking or stretching the
shape of some characteristic functions. Invoking
a fractional-dimensional interaction space in de-
scription of such a system o!ers a convenient alter-
native to long computational times [4]. In this case,
a single parameter } the dimensionality } contains
all of the information about the perturbation. This
dimensionality may have several meanings. It may
describe the number of coordinates to be dealt with,
e.g. in problems with several particles. In this work,
we shall be interested in another de"nition of the
nonintegral dimensionality, considering it as a de-
scription of the anisotropy of a given medium
[2}4]. We adopt the approach by He [2,3], who
has shown that the anisotropic interactions in 3D
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space become isotropic ones in lower fractional
dimensional space, where the dimension is the
Hausdor! dimension and is determined by the de-
gree of anisotropy. Thus, in our case we assume
that the fractional dimension arises due to the re-
straint conditions imposed (by interface potentials)
on the motion of mobile particles.

The aim of this paper is to study the indirect
magnetic interactions in magnetic multilayers,
which show nonintegral dimensionality. First of all,
we will calculate the exchange integrals of the in-
direct magnetic coupling (RKKY), between mag-
netic ions in a metallic system of nonintegral
dimension. Having that, we will "nd expressions
for the interlayer coupling between two ferromag-
netic layers across metallic aD, nonmagnetic
spacer. Two cases of fractal (e.g. the famous YBCO
family [6]) and nonfractal interfaces will be con-
sidered.

2. RKKY interaction

At the advent of the RKKY theory the formulae
for the exchange integrals in the case of 3D [7], 1D
[8] and 2D [9] systems have been found. Very
recently, a uni"ed derivation of the RKKY ex-
change integral for any positive, integral dimension
has been found [10]. Moreover, there is derived an
asymptotic expression for the RKKY exchange in-
tegral in a system of fractional dimensionality. The
(2#e)D system is assumed as a 3D solid, in which
the free electron system is described by anisotropic
dispersion of the form

e
k
"(k2

x
#k2

y
)/2#m cos(k

z
z), (1)

which is characteristic for periodic, layered electron
gas systems with weak interlayer tunnelling [11].
Later, within perturbational approach, the RKKY
exchange integral in the limit of large in-plane
distances (qPR, R"q#z) is derived. However,
in any real magnetic system the magnetic order is
governed by the coupling of nearest magnetic mo-
ments, thus the limit qPRcannot give important
information about magnetic system. In the paper
[12], we have found the other asymptotic limit
(qP0) of the RKKY exchange in a system with

free-electron energy spectrum given by Eq. (1). The
expression for the RKKY exchange integral, ob-
tained within perturbational approach reproduces
correctly the &z' dependence (along anisotropy axis),
but shows spurious ln DoD divergence. Fortunately,
this shortcoming can be easily removed, when cor-
rection of the type proposed by Nagaev and
Podel'schikov [13] is performed. However, within
an approach that is based on electron spectrum (1)
analytical formula for the RKKY exchange, valid
for any separation of interacting moments, cannot
be obtained. This means that another approach to
anisotropic free-electron systems is needed.

To calculate the RKKY exchange interaction in
an anisotropic system we will apply a di!erent
approach presented in Refs. [2,3]. The anisotropic
interactions in 3D space become isotropic ones in
lower fractional dimensional space, where the di-
mension is the Hausdor! dimension and is deter-
mined by the degree of anisotropy [2,3]. Since the
perturbational approach to the RKKY interaction
involves integration over dynamical states of the
free electrons, the fact that the space is isotropic
(though aD) o!ers evident calculational advant-
ages.

In the following generalizing approach by
Aristov [10], we will give an exact formula for
the RKKY range function for any system, which
exhibits nonintegral dimension a, with 2D(

aD(3D.
The starting point for any description of metallic

magnetic systems is the case of dilute alloys, when
a few TM or RE ions are immersed in the sea of
host conduction electrons. The e!ective interaction
between RE or TM localized moments is mediated
via the free electrons. Within perturbative aproach,
the RKKY interaction between magnetic moments
of the magnetic ions (k

i
and k

j
) can be written as

[7]

H(R
ij
)"1

2
A2s(R

ij
)l

i
l
j
, (2)

where s(r
ij
) is the nonuniform static susceptibility.

The explicit form of the s(r
ij
) is given by [10]

s(R)"!¹+
l

G(iu
l
, R)2, (3)
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where u
l
"p¹(2l#1) are the Matsubara frequen-

cies and the electronic Green's function is

G(iu, R)"P
dak
(2p)a

)
e*k >R

iu!e
k

. (4)

3. Electron gas of nonintegral dimensionality

Extension of Eq. (4) on aD-space requires calcu-
lation of the integrals :dak2 over the aD-space
(with 2(a(3) of dynamical states of the free
electrons. In this case, there arises a question,
whether the k-space description is valid in the aD
system. Since in laminar systems the translational
symmetry is broken, one would expect that the
proper answer is no, on the other hand, the exist-
ence of band structure in liquid metals and random
alloys suggests that a positive answer is possible.
This is given by Tsallis and Maynard [14], who
have shown, that the k-space formalism can be
applied to the description of dynamical states in the
fractal system, when only statistical invariance un-
der translation is observed. The metallic superlatti-
ces possess crystalline in-plane symmetry and the
fractional dimensionality arises not from intrinsic
disorder, but due to the restraints imposed onto
motion of free particles. The magnetic interlayer
coupling in superlatices can be well described in
terms of k-vectors spanning the Fermi surface of
the spacer layer. This gives experimental evidence
of the applicability of k-space formalism in these
systems and indicates that the arguments of Tsallis
and Maynard [14] still hold. The direct observa-
tion of band structure in a Ag/Cu(0 0 1) overlayer
[15] con"rms the applicability of k-space formal-
ism in layered systems. Moreover, the observed
gradual change of the valence-band spectra, from
2D into bulk 3D at higher coverages justi"es frac-
tional interpolation between 2D and 3D dimen-
sionalities.

Concerning the problem of mobile particle con-
"ned within a layer the question arises, what is the
spatial dimension a, which measures the anisotropy
of the system. A possible answer in the case of
superlattice is given in Ref. [16], where the FD is
de"ned as a"2#c"2#k

0
/k

z
where k

0
and

k
z

are the on-axis reduced e!ective masses in the

3D crystal and in the superlattice, respectively. An-
other possible choice is to express a in terms of the
e!ective quantum well width ¸H

8
in the case of

excitons having the extension m is given by the
expresion a"3!e~L

H
8 @m [4].

Below we will give an illustrative example, that
shows in which way the FD can arise in laminar
systems. Movement of mobile electrons/holes is
con"ned within a layer of thickness 2a by (generally
not rectangular) potential barrier. Let us assume,
that the potential <(r), (r"q#z) which is the
source of anisotropy has the following form

<(r)"G
0 z3 (!a, a),

<(DzD), z N (!a, a).
(5)

It is natural to expect, that the eigenstates of the
mobile electrons con"ned within the quantum-well
de"ned by potential (5) are given by

t
n
(r)"G

A ) e*kn > r, z3 (!a, a)

B e*knxx`*knyy/
n
(z) e~i > @z@ z N (!a, a),

(6)

where n
1

are integers that label the electron eigen-
states within the quantum well. The eigenstates are
the Bloch waves within the z3(!a, a) region and
the envelope functions of the nth electron (hole)
quantum level shows exponential decay outside.
Provided that the Hamiltonian of the system has
the form HK "¹K #<(r), where ¹K -is the kinetic en-
ergy and <(r) the con"nement potential the energy
spectrum of the free particles within the quantum
well is given by e

k
"+2k2/(2m), where k is a wave

vector.
If the potential <(r) is known, accounting for the

boundary conditions, we can "nd the con"ned
levels E

n
in the quantum well. However, let us

consider the inverse problem. Suppose that the
allowed energy levels behave as

E
n
"A ) n2m, (7)

where n is an integer and m'1. Evidently, with the
eigenvalues E

n
and eigenfunctions t

n
(see Eq. (6))

known, the potential <(r) is fully determined. In-
deed, we can write

<(r)"+
m,n

[E
n
) d

m,n
!St

n
D¹K Dt

m
T] )t

n
(r). (8)
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According to Eq. (6) the dynamical states within
the layer can be labeled by the wave vectors k.
However, contrary to the situation observed
in the conventional 3D (translationally invariant)
system the density of states within the k-space
is not uniform. Indeed, let us denote by N(<

1
)

the number of allowed k
n

states that "ll the volume
of parallelopiped <

1
. Suppose that any length

scale within the k-space is changed as kPj ) k,
evidently <

1
P<j

1
. Then, in view of Eq. (7) the

number of states N(<
1
) scales as N(<j

1
)"

j2`g )N(<
1
), where g"1/m. This relation is

characteristic of a system which shows fractional
(spectral) dimensionality a"2#g [14]. This
means that the layered dynamical system described
by relations (5)}(8) becomes uniformly dense (iso-
tropic) when treated within FD space with (spec-
tral) dimension a"2#g. The example presented
above shows the meaning of the FD we shall be
using further on. However, we do not assume that
the arguments presented above are the main
justi"cation to apply the idea of FD in the layered
systems. For that, the experimental evidence of FD
behavior of mobile charge carriers within laminar
systems is cruicial. Systems like Ag/Cu(0 0 1)
overlayer [15] or GaAs/Al

x
Ga

1~x
As quantum

wells and/or superlattices, as the layer thickness
decreases, show dimensional crossover from 3D to
almost 2D behavior (see Refs. [2,3] references
therein).

4. RKKY interaction in a system of fractional
dimensionality

Another question that arises with the application
of Eq. (4) is the problem of integration over the aD
space. The mathematical basis for such a calcu-
lation was derived by Stillinger [17] and we will
apply this formalism further on.

In the case of integral dimension a"n, the integ-
ration over k reduces to subsequent (iterative) in-
tegration over Cartesian components of this vector
(see Ref. [10]). However, in arbitrary dimension
such a procedure cannot be performed. To circum-
vent this problem, we will apply the method
by Stillinger [17], who devised an equivalent
formula, that reduces integration in aD to integra-

tion in 2D system

PaDdar"
1

C((a!1)/2)
) 2p(a~1)@2Pra~1 dr

]P
p

0

sina~2 h dh, (9)

where C(x) is the Euler gamma function. It is im-
portant to note, that in the aD an equivalent of the
Laplace operator has the form [17]

+2W"C
R2
Rr2#

a!1

r

R
Rr

#

1

r2 sina~2 h
R
Rh sina~2 h

R
RhDW, (10)

thus the wave function of the free electrons still has
the exp(ikr)"exp(ikr cos h) form. Moreover, the
free-electron spectrum is again e

k
"k2/(2m)!k.

Contrary to the approach by Aristov [10] the
integral in Eq. (4) is carried out with the use of
formula (9), which allows us to integrate over a
space of arbitrary dimension. We will focus our
attention on the low-temperature limit and then
make use of the relation ¹+

l
P:=

~=
du/2p. Mak-

ing use of Eq. (9), we can rewrite Eq. (4) as.

G(iu, R)"AP
ka~1 dk

(2p)a P
p

0

dh sina~2 h

]
e*kR #04 h

(z!(+2k2/2m))
, (11)

where z"iu#k. The integration over h can be
performed, if we recall the de"nition of the Bessel
functions Jl (z) ([18, p. 54]. Inserting this into Eq.
(11) we can write

G(iu, R)"
A@
RlP

=

0

kl`1Jl (kR)

k2#b2
dk (12)

with b2"!2mz and l"(a!2)/2. By virtue of
the identity [18, p. 110, formula 58], valid for
a'0, Re b'0 and !1(Re l(3

2
), we "nd that

integration in Eq. (11) over k gives us G(iu, R) in the
following form

G(iu, R)"D )A
J!2zo

o B
l
)Kl(J!2zo), (13)
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where Kl(x) is the McDonald function of order
l, o"mR2 and D is a constant. In the integration,

the root of J!2zo should be chosen from the
condition of its positive real part. Contour integra-
tion over u in Eq. (11), accounting for the discon-
tinuity of G(iu, R) at u"0 [10] leads to an
expression for the RKKY exchange integral in an
aD system (compare Ref. [10])

s(r)+
s
0

ra
r2[Ja@2~1

(x)>a@2~1
(x)#Ja@2 (x)>a@2(x)].

(14)

with >l(x) being the Neumann function [18].
Formula (14) has the same structure as the result
obtained by Aristov [10] in the case of a system
of integral dimensionality. The calculated static
susceptibility that determines exchange integral
J(r)"J

0
) s(r) of the RKKY interaction (2) in aD,

shows conventional, sign-reversal oscillatory be-
havior with the period governed by the wave vector
2k

F
. It is interesting, that the result obtained (14) is

an analytical function of the dimension a. One
should note, that result (14) is valid also in the case
of fractal overlayers, both spontaneously grown or
fabricated by ionic beam bombardment [19].

5. Interlayer coupling

Conventional heteroepitaxial magnetic superla-
ttice consists of alternating layers of elemental con-
stituents. One of them is nonmagnetic metal, while
the other is a ferromagnet with in-layer ordering.
The most unusual e!ect in magnetic superlattices is
the observation, that the RKKY-like, magnetic
coupling across the nonmagnetic spacer layer is an
oscillatory function of the spacer thickness, with
a surprisingly long oscillation period. The proper-
ties of the interlayer coupling are due to the quan-
tum con"nement of the free electrons within spacer
well [20]. In the case when the magnetic layers are
nonmetallic, one would expect that the density of
electron gas has a layered structure and is extreme-
ly anisotropic. In princriple, the energy spectrum of
the free electrons can be descibed by Eq. (1). As we
have discussed above the anisotropy of the free
electron spectrum can be taken into account by the

assumption, that the electron gas is described by
a lower (Haussdor!) dimension [2,3]. Below, we
will assume that in a layered free-electron system
the restraints imposed (by the interface potentials)
on the motion of free particles may result in the aD
behavior (nonintegral spectral dimension). Basing
on this assumption we will study the problem of
interlayer magnetic coupling in superlattices or
multilayers, which is mediated via free particles
within aD spacer. In the following, we will derive an
expression for the interlayer coupling constant in
the case of aD system. Result (14) opens the possi-
bility to study magnetic interlayer coupling in such
systems.

Having calculated the coupling of two magnetic
moments in the aD metallic system, we can obtain
the e!ective interplane coupling in the magnetic
superlattice. We will follow the approach presented
by Yafet [21] or Bruno and Chappert [22]. Let us
consider a system of two magnetic planes F1 and
F2, separated by a metallic aD spacer of thickness
d. We assume that planes (e.g. z"0 and a planes in
a simple cubic lattice) are populated with ferromag-
netically ordered magnetic moments.

The magnetic interlayer coupling is obtained
from Eq. (14) by summing H(R

ij
) over all pairs ij, i

and j running, respectively, on F1 and F2. The
coupling per unit area can be written [22] as

E
1,2

"I
1,2

cos h
1,2

, (15)

where h
1,2

is the angle between the magnetizations
of F1 and F2. The interlayer coupling constant
I
1,2

is given by [22]

I
1,2

"J
0

d

<
0

S2 +
jeF2

s(R
Oj

)"I
0

+
jeF2

s(R
Oj

), (16)

where O labels one site of F1 taken as the origin. In
the continuum limit of the moment distribution, the
range function I

1,2
of the interplane coupling be-

comes independent of the variables x and y and we
perform in Eq. (16) the substitution

+
F2

P

d

<
0
P
F2

d2R
@@
"

d

<
0
P
F2

o do"
d

<
0
P
F2

r dr.

(17)

where r dr"o do with o2"x2#y2. If the z-axis is
chosen to go through observation point r, then the
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range function I
1,2

is given by the following inte-
gral over the source points of the aD range function
(14)

I
1,2

"I
0P

=

d

r3~a[Ja@2~1
(k

F
r)>a@2~1

(k
F
r)

#Ja@2(k
F
r)>a@2 (k

F
r)] dr. (18)

If we make use of the Bessel function identities
[18, p. 111, Eq. (65) and p. 20, Eq. (56)] we arrive at

I
1,2

"I
0P

=

0

dtP
=

kFd

x2~aJa~1
(2x ch t) dx, (19)

where x"k
F
r. With the use of relation [18, p. 55,

Eq. (2)], the integration over x can be easily per-
formed giving us

I
1,2

"I
0P

=

0

dt(2k
F
d ch t)~2Ja~2

(2k
F
d ch t). (20)

Using relations [18, p. 111, Eq. (65) and p. 20,
Eq. (56)] backwards, we can perform integration in
Eq. (18) and obtain the spatial dependence of the
interplane coupling

I
1,2

(d)"I
0

d2

da~2
[Ja@2~2

(k
F
d)>a@2~2

(k
F
d)

#2Ja@2~1
(k

F
d)>a@2~1

(k
F
d)

#Ja@2 (k
F
d)>a@2 (k

F
d)]. (21)

The e!ective interlayer coupling (21), between mag-
netic layers across aD metallic spacer is represented
by the RKKY } reminiscent exchange integral in
the (a!1)D space. Result (21) can explain experi-
mental data in the Eu/Se superlattice, in which the
interlayer coupling falls o! as I

1,2
(d)+d~1.1 [23].

This is clear evidence of the fractional dimensional-
ity of the spacer, since in the case of 3D systems
there should be I

1,2
+d~2 [22]. Similarly to ex-

pression (14), interplane coupling (21) shows oscil-
latory behavior governed by the 2k

F
wave vector.

The characteristic features of the interplane coup-
ling, such as occurrence of long periods as well as
multiperiodic oscillations can be explained when
discrete structure of the superlattice is considered
[22]. In our calculations we have assumed that the
in-layer magnetization is constant. However, the
in-layer magnetic ordering is not neccesarily uni-

form, neither in superlattices [24] in the case of
overlayers [25]. In this case result (21) does not
hold.

6. Roughness of the interfaces

Result (21) was obtained under the assumption
that the interfaces are ideally #at. However, the
interfaces can exhibit roughness, which can modify
the interlayer coupling. Till now, only the special
case of correlated steps on a surface has been con-
sidered [26]. In the following, we will present an
alternative approach based on the concept of frac-
tals. The surface/interface roughness often exhibits
a self-a$ne structure [1,27] and di!erent scaling
behavior can be found as a function of thickness
and lateral length scale ¸. In this case, the interface
is characterized by the mean-square average rough-
ness (height-correlation function) m(¸).

m(¸)"C
1

¸

+
j

(z
j
!. )2D

1@2
, (22)

and the scaling of the roughness parameter is given
by m(¸)+¸b, with b being a fraction.

In our approach, we will consider a trilayer in
which the outer ferromagnetic layers are separated
by a nonmagnetic of average thickness . . We will
assume that at least one of the interfaces (Fb

1
or Fb

2
)

is self-similar and its dimension equals 2#b (with
0(b(1). As usualy, we assume that the interlayer
coupling between layers is mediated by the free
charge carriers of the central layer. The restraint
conditions imposed (by the interface potentials) on
the motion of free particles cause the k-space of
their eigenstates to show fractional (spectral) di-
mensionality. This means that the magnetic
interaction between two ionic moments, that
belong to di!erent magnetic layers is described by
formula (14).

Similarly, as in the case of ideally #at interfaces,
the magnetic interlayer coupling can be obtained
by summing contributions from all pairs of mo-
ments m

i
and m

j
with i and j running over Fb

1
and

Fb
2
. The interlayer coupling energy E

1,2
per unit

measure of the interface can be expressed by the
formula E

1,2
"Ia,b

1,2
cos H

1,2
(compare formula
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(17)). The interlayer exchange coupling integral
Ia,b
1,2

is thus given by

Ia,b
1,2

"J
0

+
jeFb

2

sa (R0j
). (23)

In the continuum limit we make use of Eq. (9),
which alows us to integrate over p3Fb

2
. In view of

Eq. (22) we "nd, that volume element of Fb
2

behaves
as d<b

2
"Dr!.D1`b dDr!.D. Thus, Eq. (23) can be

rewritten as

+
jeFb

2

sa (R0j
)PCP

F
b
2

Dr!.D1`bs(k
F
r) dDr!.D. (24)

The term Dr!.D1`b can be expanded in power
series of DrD and D. D. Since b is a fraction we should
make use of the fractional version of the Taylor
formula [28]

f (x)"
n~1
+
j/0

(Da`jf )(a)

C(a#j#1)
(x!a)a`j#R

n
(x). (25)

The symbol (Da`jf )(x) denotes the derivative of
fractional order j#a of the real function f (x). The
fractional calculus is a powerful tool in theoretical
studies of systems which show fractional dimen-
sionality [2}4,29,30]. The Riemann}Louville di$-
ntegral DIa is de"ned as follows [28,31,32]

(DIaf )(x)"
1

C(a!1)P
=

0

(x!t)a~1f (t) dt, (26)

and is a fractional counterpart of derivative of
fractional order Da"da/dxa (for a(0) or frac-
tional integral Ia (for a'0).

For the case of large separations the leading term
of the interplane coupling Eqs. (23) and (24), can be
calculated if we limit ourselves to the "rst term of
expansion i.e. Dr!.D1`b+DrD1`b. Thus, if we make
use of the identities [18, p. 111, Eq. (65) and p. 20,
Eq. (56)], the interlayer exchange integral (23) and
(24) reads

Iab
1,2

"I
0P

=

0

dtP
=

.

r2~a`bJa~1
(2k

F
r ch t) dr. (27)

Integral (27) can be calculated strictly only for some
values of a and b. In the case of arbitrary a and
b only approximate formulae for the interlayer

coupling parameter Ia,b
1,2

can be obtained. To cal-
culate Ia,b

1,2
let us recall the identity ful"lled by

fractional di$ntegrals of the Bessel functions [28,
p. 48]:

(DIj
0`)[xk@2Jk (Jx)]"2jx(k`j)@2Jk`j(Jx). (28)

Having identity (28) we can integrate over . in Eq.
(27) using the formula for fractional di$ntegration
by parts [28, p. 42]

P
b

a

/(x)Ia
a
`t(x) dx"P

b

a

t(x)Ia
b
~/(x) dx. (29)

If we account that Ij
0`xk&xk`j [28, p. 140, Eq.

(27)] can be reduced to

Iab
1,2

"I
0
(. )k`1P

=

0

(ch t)~2~b@2`aJk (2k
F
. ch t) dt.

(30)

In the case of arbitrary a and b the integration over
variable t in Eq. (30) cannot be performed in a di-
rect way. However, if we have a"2#b/2. Eq. (30)
takes the following form:

Iab
1,2

"I
0
(. )l`1Jl@2 (k

F
. )>l@2(k

F
. ), (31)

where l"1#b/2. The condition a"2#b/2
seems to be very restrictive. However, some layered
systems exhibit continuous dimensional crossover,
when external conditions (e.g. temperature or mag-
netic "eld) are changed. This means that in such
systems this peculiar condition can always be ful"l-
led. In the case of arbitrary a and b the integration
over t in Eq. (30) cannot be performed directly.
Fortunately, with the help of fractional analysis, we
can transform integral (27) to a more simple form,
which allows us to draw some conclusions concern-
ing the interlayer coupling. Setting x"(2k

F
. ch t)2

and using the identity

dj
dxj

"(2k
F
. ch t)~2j

dj
d(k2

F
)j

, (32)

which results from the de"nition of fractional deriv-
atives, we can rewrite Eq. (30) in the following form:

Iab
1,2

"I
0
(. )a~1(k

F
)~lP

=

0

dt
dj

d(k2
F
)j

((k
F
)lJl(2k

F
. ch t)).

(33)
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If we change order of di!erentiation and integra-
tion, then the integration over t leads to

Iab
1,2

"J
0
) (. )a~1

dj
d(k2

F
)j

[(k
F
)lJl@2 (k

F
. )>l@2(k

F
. )]

with j"a!2!b/2 and l"1#b/2.
Result (34) represents the leading term of the

interlayer coupling constant (i.e. the term which
dominates at large . ). The other term of expansion
(24)}(25) can be calculated in a similar way as result
(34). However, since we have assumed that the
interface Fb

2
is self-a$ne it is evident that our

calculations are valid for the superlattices with
relatively thick spacer layers. In this case it su$ces
to study the properties of the leading term (34).
Both expressions (31) and (34) show oscillatory
behavior determined by the oscillations of the
Bessel functions Jl@2 (k

F
. ) and>l@2(k

F
. ). Similarly,

as in the case of systems with integral dimension,
the oscillation period is directly related to the 2k

F
wave vector.

The fact that expressions (21), (31) and (34) are
analytical functions of a and b allows us to discuss
the e!ect of dimensionality on the interlayer coup-
ling. Detailed analysis indicates, that interlayer
coupling constant Ia,b

1,2
is strongly in#uenced by

changes of the spectral dimension of the spacer
layer. In the case of a"3, b"0 the envelope func-
tion falls o! with the spacer thickness d as
I
1,2

&d~2, while for a"2 it decays as I
1,2

&d~1.
Thus the strength of the interlayer coupling varies
during dimensional crossover. This indicates a new
way, in which properties of magnetic multilayers
can be manipulated. In many layered systems the
spectral dimension changes (dimensional cross-
over), when some external parameters like e.g. tem-
perature or magnetic "eld are varied. Thus, by
proper choice of the external "elds, we are able to
in#uence the strength of interlayer coupling, an
e!ect important in the construction of electronic
devices. The interface roughness (b'0) acts in
a similar way as decreasing a.

In conclusion, we have calculated the RKKY
exchange integral in the case of a system that ex-
hibits fractional dimensionality. Expression (14) for
this integral has the same structure as the result
obtained in the case of integral dimension [10],

thus when a approches an integral value (2 or 3),
our formulae reduce to the results obtained earlier.
Having calculated the RKKY exchange integral in
an aD system, by summation over all spin pairs we
derive expression for the interlayer coupling in an
aD superlattice. Both situations of fractal and non-
fractal interfaces are considered. From the analysis
of the formulae obtained it follows that dimen-
sional crossover in a multilayer o!ers the possibili-
ty to control the strength of the interlayer
interaction. Recent experimental data for the Eu/Se
superlattice [23] con"rm fractional dimensionality
of this system.
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